Representation Dimension and Tilting

Luise Unger
joint work with Dieter Happel

Shanghai, October 2011
Representation dimension

Λ: fin. dim. k-algebra, not semi simple
k: algebraically closed field
$\text{mod}\Lambda$: category of fin. dim. left Λ-modules
Representation dimension

Λ: fin. dim. k-algebra, not semi simple
k: algebraically closed field
modΛ: category of fin. dim. left Λ-modules

$M \in \text{mod}\Lambda$ generator-cogenerator: $\Lambda \Lambda \oplus D(\Lambda \Lambda) \in \text{add} M$
addM: category of direct sums of direct summands of M
Representation dimension

Λ: fin. dim. k-algebra, not semi simple

k: algebraically closed field

$\text{mod}\Lambda$: category of fin. dim. left Λ-modules

$M \in \text{mod}\Lambda$ generator-cogenerator: $\Lambda \Lambda \oplus D(\Lambda \Lambda) \in \text{add}M$

$\text{add}M$: category of direct sums of direct summands of M

$\text{rep.dim}\Lambda$: smallest global dimension of $\text{End}_{\Lambda} M$, $M \in \text{mod}\Lambda$ a generator-cogenerator [introduced by Auslander in 1971]
Representation dimension

Alternative characterization

M a generator-cogenerator such that for all $X \in \text{mod}\Lambda$ there is

\[0 \rightarrow M^d \rightarrow \cdots \rightarrow M^1 \rightarrow M^0 \rightarrow X \rightarrow 0 \]

exact with $M^i \in \text{add} M$ and

\[0 \rightarrow \text{Hom}_\Lambda(M, M^d) \rightarrow \cdots \rightarrow \text{Hom}_\Lambda(M, M^0) \rightarrow \text{Hom}_\Lambda(M, X) \rightarrow 0 \]

is exact. We call such an M an **Auslander generator**.
Representation dimension

Alternative characterization

M a generator-cogenerator such that for all $X \in \text{mod}\Lambda$ there is

$$0 \rightarrow M^d \rightarrow \cdots \rightarrow M^1 \rightarrow M^0 \rightarrow X \rightarrow 0$$

exact with $M^i \in \text{add}M$ and

$$0 \rightarrow \text{Hom}_\Lambda(M, M^d) \rightarrow \cdots \rightarrow \text{Hom}_\Lambda(M, M^0) \rightarrow \text{Hom}_\Lambda(M, X) \rightarrow 0$$

is exact. We call such an M an **Auslander generator**.

Let d be the smallest number such that there exists such an M.

[Auslander 1971:] rep.dim $\Lambda = d + 2$.

Representation dimension

Alternative characterization

M a generator-cogenerator such that for all $X \in \text{mod} \Lambda$ there is

$$0 \rightarrow M^d \rightarrow \cdots \rightarrow M^1 \rightarrow M^0 \rightarrow X \rightarrow 0$$

exact with $M^i \in \text{add} M$ and

$$0 \rightarrow \text{Hom}_\Lambda(M, M^d) \rightarrow \cdots \rightarrow \text{Hom}_\Lambda(M, M^0) \rightarrow \text{Hom}_\Lambda(M, X) \rightarrow 0$$

is exact. We call such an M an **Auslander generator**.

Let d be the smallest number such that there exists such an M.

[Auslander 1971:] $\text{rep.dim} \Lambda = d + 2$.
Some known results

[Auslander 1971:]
- $\text{rep.dim} \Lambda = 2$ iff λ is representation finite.
- Λ hereditary $\Rightarrow \text{rep.dim} \Lambda \leq 3$
Representation dimension

Some known results

[Auslander 1971:]

- $\text{rep.dim}\Lambda = 2$ iff λ is representation finite.
- Λ hereditary $\Rightarrow \text{rep.dim}\Lambda \leq 3$

Auslander’s philosophy: rep.dim measures how (homologically) complicated $\text{mod}\Lambda$ is.
Representation dimension

Some known results

[Auslander 1971:]

- $\text{rep.dim} \Lambda = 2$ iff λ is representation finite.
- Λ hereditary $\Rightarrow \text{rep.dim} \Lambda \leq 3$

Auslander’s philosophy: rep.dim measures how (homologically) complicated $\text{mod} \Lambda$ is.

[Igusa, Todorov, 2005:] If $\text{rep.dim} \Lambda \leq 3$ then finitistic dimension conjecture holds for Λ.

[Iyama 2003:] $\text{rep.dim} \Lambda$ is finite (conjectured by Auslander).

[Rouquier 2006:] For all $n \geq 2$ there is Λ_n with $\text{rep.dim} \Lambda_n = n$.
Representation dimension

Some known results

[Auslander 1971:]
- \(\text{rep.dim} \Lambda = 2 \) iff \(\lambda \) is representation finite.
- \(\Lambda \) hereditary \(\Rightarrow \) \(\text{rep.dim} \Lambda \leq 3 \)

Auslander’s philosophy: \(\text{rep.dim} \) measures how (homologically) complicated \(\text{mod} \Lambda \) is.

[Igusa, Todorov, 2005:] If \(\text{rep.dim} \Lambda \leq 3 \) then finitistic dimension conjecture holds for \(\Lambda \).

[Iyama 2003:] \(\text{rep.dim} \Lambda \) is finite (conjectured by Auslander).
Representation dimension

Some known results

[Auslander 1971:]
- \(\text{rep.dim}\Lambda = 2 \) iff \(\lambda \) is representation finite.
- \(\Lambda \) hereditary \(\Rightarrow \) \(\text{rep.dim}\Lambda \leq 3 \)

Auslander’s philosophy: \(\text{rep.dim} \) measures how (homologically) complicated \(\text{mod}\Lambda \) is.

[Igusa, Todorov, 2005:] If \(\text{rep.dim}\Lambda \leq 3 \) then finitistic dimension conjecture holds for \(\Lambda \).

[Iyama 2003:] \(\text{rep.dim}\Lambda \) is finite (conjectured by Auslander).

[Rouquier 2006:] For all \(n \geq 2 \) there is \(\Lambda_n \) with \(\text{rep.dim}\Lambda_n = n \).
Representation dimension

Some known classes of examples

Some tame blocks of finite groups [Holm 2002]
Representation dimension
Some known classes of examples
Some tame blocks of finite groups [Holm 2002]

Tilted algebras [Assem-Platzeck-Trepode 2006]

Behaviour of rep.dim under stable equivalence [Guo 2005]

Behaviour of rep.dim under tilting [Xi 2006], [Chen-Hu 2010]
Representation dimension

Some known classes of examples

Some tame blocks of finite groups [Holm 2002]

Tilted algebras [Assem-Platzeck-Trepode 2006]

Quasitilted algebras [Oppermann 2007]
Representation dimension

Some known classes of examples

Some tame blocks of finite groups [Holm 2002]

Tilted algebras [Assem-Platzeck-Trepode 2006]

Quasitilted algebras [Oppermann 2007]

Iterated tilted algebras [Coelho-Happel-Unger 2010]
Representation dimension

Some known classes of examples

Some tame blocks of finite groups [Holm 2002]

Tilted algebras [Assem-Platzeck-Trepode 2006]

Quasitilted algebras [Oppermann 2007]

Iterated tilted algebras [Coelho-Happel-Unger 2010]

Behaviour of rep.dim under stable equivalence [Guo 2005]
Representation dimension

Some known classes of examples

Some tame blocks of finite groups [Holm 2002]

Tilted algebras [Assem-Platzeck-Trepode 2006]

Quasitilted algebras [Oppermann 2007]

Iterated tilted algebras [Coelho-Happel-Unger 2010]

Behaviour of rep.dim under stable equivalence [Guo 2005]

Behaviour of rep.dim under tilting [Xi 2006],[Chen-Hu 2010]
Tilting modules

Λ \mathcal{T} \in \text{mod}\Lambda \text{ called tilting module if}

1. \text{pd}_\Lambda \mathcal{T} \leq 1,

2. \text{Ext}_\Lambda^1(\mathcal{T}, \mathcal{T}) = 0 and

3. there is 0 \rightarrow \Lambda \Lambda \rightarrow T^0 \rightarrow T^1 \rightarrow 0 \text{ exact with } T^0, T^1 \in \text{add}\mathcal{T}.

[Brenner-Butler 1980]: Let \Gamma = \text{End}_\Lambda \mathcal{T}. Then \mathcal{T} \in \text{mod}\Lambda \text{ induces torsion pairs } (\mathcal{T}((\mathcal{T})), F(\mathcal{T})) \text{ on } \text{mod}\Lambda \text{ and } (X((\mathcal{T})), Y(\mathcal{T})) \text{ on } \text{mod}\Gamma, \text{ where}

1. T((T)) = \{X \in \text{mod}\Lambda | \text{Ext}_\Lambda^1(\mathcal{T}, X) = 0\}

2. F(T) = \{X \in \text{mod}\Lambda | \text{Hom}_\Lambda(\mathcal{T}, X) = 0\}

3. X(T) = \{X \in \text{mod}\Gamma | T \otimes \Gamma X = 0\}

4. Y(T) = \{X \in \text{mod}\Gamma | \text{Tor}_\Gamma^1(\mathcal{T}, X) = 0\}.
Tilting modules

$T \in \text{mod}\Lambda$ called tilting module if

1. $\text{pd}_\Lambda T \leq 1$,
2. $\text{Ext}_\Lambda^1(T, T) = 0$ and
3. there is $0 \to \Lambda \to T^0 \to T^1 \to 0$ exact with $T^0, T^1 \in \text{add} T$.

[Brenner-Butler 1980]: Let $\Gamma = \text{End}_\Lambda T$. Then $\Lambda T \in \text{mod}\Lambda$ induces torsion pairs $(\mathcal{T}(T), \mathcal{F}(T))$ on $\text{mod}\Lambda$ and $(\mathcal{X}(T), \mathcal{Y}(T))$ on $\text{mod}\Gamma$, where

1. $\mathcal{T}(T) = \{X \in \text{mod}\Lambda \mid \text{Ext}_\Lambda^1(T, X) = 0\}$
2. $\mathcal{F}(T) = \{X \in \text{mod}\Lambda \mid \text{Hom}_\Lambda(T, X) = 0\}$
3. $\mathcal{X}(T) = \{X \in \text{mod}\Gamma \mid T \otimes_\Gamma X = 0\}$
4. $\mathcal{Y}(T) = \{X \in \text{mod}\Gamma \mid \text{Tor}_1^\Gamma(T, X) = 0\}$.
Splitting tilting modules

The restrictions

\[\text{Hom}_\Lambda(\mathcal{T}, -) : \mathcal{T}(\mathcal{T}) \to \mathcal{Y}(\mathcal{T}) \]

\[\text{Ext}^1_\Lambda(\mathcal{T}, -) : \mathcal{F}(\mathcal{T}) \to \mathcal{X}(\mathcal{T}) \]

are equivalences of categories.

\[\Lambda \mathcal{T} \] is called a splitting tilting module if each indecomposable \(\Gamma \)-module \(X \) either \(X \in \mathcal{X}(\mathcal{T}) \) or \(X \in \mathcal{Y}(\mathcal{T}) \).

[Hoshino 1983:] A tilting module \(\Lambda \mathcal{T} \) is splitting if and only if \(\text{inj.dim} \ X \leq 1 \) for all \(X \in \mathcal{F}(\mathcal{T}) \).
Splitting tilting modules

The restrictions

\[\text{Hom}_\Lambda(T, -) : \mathcal{T}(T) \rightarrow \mathcal{Y}(T) \]

\[\text{Ext}^1_\Lambda(T, -) : \mathcal{F}(T) \rightarrow \mathcal{X}(T) \]

are equivalences of categories.

\(\Lambda T \) is called **splitting tilting module** if each indecomposable \(\Gamma \)-module \(X \) either \(X \in \mathcal{X}(T) \) or \(X \in \mathcal{Y}(T) \).
Splitting tilting modules

The restrictions

\[\text{Hom}_{\Lambda}(T, -) : \mathcal{T}(T) \longrightarrow \mathcal{Y}(T) \]

\[\text{Ext}^1_{\Lambda}(T, -) : \mathcal{F}(T) \rightarrow \mathcal{X}(T) \]

are equivalences of categories.

\(\Lambda T \) is called splitting tilting module if each indecomposable \(\Gamma \)-module \(X \) either \(X \in \mathcal{X}(T) \) or \(X \in \mathcal{Y}(T) \).

[Hoshino 1983:] A tilting module \(\Lambda T \) is splitting if and only if \(\text{inj.dim}X \leq 1 \) for all \(X \in \mathcal{F}(T) \).
Approximations

\[C \subseteq \text{mod}\Lambda \text{ a full subcategory, } X \in \text{mod}\Lambda. \text{ A map } f : X \to F_X \]

called **left \(C \)-approximation** of \(X \) if \(F_X \in C \) and for all \(g : X \to C \in C \) there is \(h : F_X \to C \) making

\[
\begin{array}{ccc}
X & \xrightarrow{f} & F_X \\
C & \xleftarrow{g} & C
\end{array}
\]

\[\text{commutative.} \]
Approximations

$\mathcal{C} \subseteq \text{mod}\Lambda$ a full subcategory, $X \in \text{mod}\Lambda$. A map $f : X \to F_X$ called **left \mathcal{C}-approximation** of X if $F_X \in \mathcal{C}$ and for all $g : X \to C \in \mathcal{C}$ there is $h : F_X \to C$ making

$$
\begin{array}{ccc}
X & \xrightarrow{f} & F_X \\
g \downarrow & \circlearrowleft & \downarrow h \\
C & \circlearrowright & C \\
\end{array}
$$

commutative.

$\mathcal{C} \subseteq \text{mod}\Lambda$, $X \in \text{mod}\Lambda$. A map $f : F_X \to F_X$ called **right \mathcal{C}-approximation** of X if $F_X \in \mathcal{C}$ and for all $g : C \to X$, $C \in \mathcal{C}$ there is $h : C \to F_X$ making

$$
\begin{array}{ccc}
C & \xrightarrow{=} & C \\
g \downarrow & \circlearrowleft & \downarrow h \\
F_X & \xrightarrow{f} & X \\
\end{array}
$$

commutative.
$\mathcal{C} \subseteq \text{mod}\Lambda$ called **functorially finite** if each $X \in \text{mod}\Lambda$ admits a left and a right \mathcal{C}-approximation.
Approximations
A result we’ll need

$\mathcal{C} \subseteq \text{mod}\Lambda$ called \textbf{functorially finite} if each $X \in \text{mod}\Lambda$ admits a left and a right \mathcal{C}-approximation.

[Happel-Ringel 1982], [Smalø 1984]: The categories $\mathcal{T}(T)$ and $\mathcal{F}(T)$ are functorially finite.
Piecewise hereditary algebras

Λ called **piecewise hereditary** if $D^b(Λ)$ is equivalent to $D^b(\mathcal{H})$ for some hereditary abelian category \mathcal{H}.

[Happel 2001]: Two possibilities for \mathcal{H}:

• $\mathcal{H} = \text{mod} \, H$ for some hereditary k-algebra H,
• $\mathcal{H} = \text{coh} \, X$ for a weighted projective line X.

We call $\text{mod} \, H$ resp. $\text{coh} \, X$ the **type** of Λ.

Λ piecewise hereditary of type $\text{mod} \, H$ is called an **iterated tilted** algebra.
Piecewise hereditary algebras

Λ is called **piecewise hereditary** if $D^b(\Lambda)$ is equivalent to $D^b(H)$ for some hereditary abelian category H.

[Happel 2001]: Two possibilities for H:

- $H = \text{mod} H$ for some hereditary k-algebra H, or
- $H = \text{coh} X$ for a weighted projective line X

We call $\text{mod} H$ resp. $\text{coh} X$ the **type** of Λ.
Piecewise hereditary algebras

Λ called **piecewise hereditary** if $D^b(Λ)$ is equivalent to $D^b(\mathcal{H})$ for some hereditary abelian category \mathcal{H}.

[Happel 2001]: Two possibilities for \mathcal{H}:

- $\mathcal{H} = \text{mod}H$ for some hereditary k-algebra H, or
- $\mathcal{H} = \text{coh}X$ for a weighted projective line X

We call $\text{mod}H$ resp. $\text{coh}X$ the **type** of $Λ$.

Λ piecewise hereditary of type $\text{mod}H$ is called an **iterated tilted algebra**.
Piecewise hereditary algebras

Examples:

• hereditary algebras
• tilted algebras
• iterated tilted algebras
• quasitilted algebras (i.e. $\text{End}_\mathcal{H} T$ for some tilting object T in a hereditary category \mathcal{H})

Auslander’s philosophy: These algebras are homologically easy. They should have small rep. dim.
Piecewise hereditary algebras

Examples:

- hereditary algebras
- tilted algebras
- iterated tilted algebras
- quasitilted algebras (i.e. $\text{End}_\mathcal{H} T$ for some tilting object T in a hereditary category \mathcal{H})

Auslander’s philosophy: These algebras are homologically easy. They should have small rep. dim.
Piecewise hereditary algebras

Examples:

- hereditary algebras have \(\text{rep.dim} \) at most 3 [Auslander]
- tilted algebras
- iterated tilted algebras
- quasitilted algebras (i.e. \(\text{End}_\mathcal{H} T \) for some tilting object \(T \) in a hereditary category \(\mathcal{H} \))

Auslander’s philosophy: These algebras are homologically easy. They should have small rep. dim.
Piecewise hereditary algebras

Examples:

- hereditary algebras have \(\text{rep.dim} \) at most 3 [Auslander]
- tilted algebras have \(\text{rep.dim} \) at most 3 [Assem-Platzeck-Trepode]
- iterated tilted algebras

- quasitilted algebras (i.e. \(\text{End}_\mathcal{H} T \) for some tilting object \(T \) in a hereditary category \(\mathcal{H} \))

Auslander’s philosophy: These algebras are homologically easy. They should have small rep. dim.
Piecewise hereditary algebras

Examples:

- hereditary algebras have rep.dim at most 3 [Auslander]
- tilted algebras have rep.dim at most 3 [Assem-Platzeck-Trepode]
- iterated tilted algebras have rep.dim at most 3 [Coelho-Happel-Unger]
- quasitilted algebras (i.e. $\text{End}_\mathcal{H} T$ for some tilting object T in a hereditary category \mathcal{H})

Auslander’s philosophy: These algebras are homologically easy. They should have small rep. dim.
Piecewise hereditary algebras

Examples:

- hereditary algebras have \(\text{rep.dim} \) at most 3 [Auslander]
- tilted algebras have \(\text{rep.dim} \) at most 3 [Assem-Platzeck-Trepode]
- iterated tilted algebras have \(\text{rep.dim} \) at most 3 [Coelho-Happel-Unger]
- quasitilted algebras (i.e. \(\text{End}_\mathcal{H} T \) for some tilting object \(T \) in a hereditary category \(\mathcal{H} \)) have \(\text{rep.dim} \) at most 3 [Oppermann]

Auslander’s philosophy: These algebras are homologically easy. They should have small rep. dim.
Characterization of piecewise hereditary algebras

[Happel-Richard-Schofield 1988] [Happel-Reiten-Smalø 1996]

Theorem Let \(\Lambda \) be piecewise hereditary.

1. If \(\Lambda \) is of type \(\text{mod} H \), then
 \[\exists \] algebras \(\Lambda_i \) and splitting tilting modules \(\Lambda_i T_i \), \(0 \leq i \leq m \) such that
 \[\Lambda_0 = H, \; \Lambda_{i+1} = \text{End}_{\Lambda_i} T_i \text{ and } \Lambda_m = \Lambda. \]

2. If \(\Lambda \) is of type \(\text{coh} X \), then
 \[\exists \] quasitilted algebra \(\Gamma \) and a sequence of algebras \(\Lambda_i \), \(0 \leq i \leq m \) and splitting tilting or cotilting modules \(\Lambda_i T_i \), \(0 \leq i \leq m \) such that
 \[\Lambda_0 = \Gamma, \; \Lambda_{i+1} = \text{End}_{\Lambda_i} T_i \text{ and } \Lambda_m = \Lambda. \]
Main theorem

Both types: we know $\text{rep.dim}\Lambda_0$. If we knew how rep. dim. changes under taking endomorphism rings of splitting tilting/cotilting modules, we knew rep. dim of piecewise hereditary algebras.
Main theorem

Both types: we know $\text{rep.dim}\Lambda_0$. If we knew how rep. dim. changes under taking endomorphism rings of splitting tilting/cotilting modules, we knew rep. dim of piecewise hereditary algebras.

Theorem: Λ f.d. k-algebra with $\text{rep.dim.}\Lambda \leq 3$, ΛT a splitting tilting/cotilting module, $\Gamma = \text{End}_\Lambda T$.
Then $\text{rep.dim}\Lambda \leq 3$.

Corollary: Λ piecewise hereditary $\Rightarrow \text{rep.dim}\Lambda \leq 3$.
Main theorem

Sketch of proof

- May assume that Λ and Γ are representation infinite.
Main theorem

Sketch of proof

- May assume that Λ and Γ are representation infinite.
- What to take as Auslander generator: ΛM an Auslander generator of $\text{mod}\Lambda$, $\Lambda M \to \Lambda E_M$ minimal left $\mathcal{T}(T)$-approximation of ΛM.

$$\Gamma N = \text{Hom}_\Lambda(T, T \oplus E_M) \oplus \text{Ext}_\Lambda^1(T, \tau T)$$

Easy: ΓN is a generator-cogenerator for $\text{mod}\Gamma$.

Main theorem

Sketch of proof

- May assume that Λ and Γ are representation infinite.
- What to take as Auslander generator: ΛM an Auslander generator of $\text{mod}\Lambda$, $\Lambda M \to \Lambda E_M$ minimal left $T(T)$-approximation of ΛM.

$$\Gamma N = \text{Hom}_\Lambda(T, T \oplus E_M) \oplus \text{Ext}_\Lambda^1(T, \tau T)$$

Easy: ΓN is a generator-cogenerator for $\text{mod}\Gamma$.

- ΛT splitting, hence every indecomposable ΓX lies in $\mathcal{X}(T)$ or $\mathcal{Y}(T)$. In either case we explicitly construct

$$0 \longrightarrow \Gamma N^1 \longrightarrow \Gamma N^0 \overset{\pi}{\longrightarrow} \Gamma X \longrightarrow 0$$

such that π is an $\text{add}_\Gamma N$-approximation. Then ΓN is an Auslander-generator and $\text{rep.dim}\Gamma \leq 3$.