欢迎光临!
您现在所在的位置:首页 >> 通知公告 & 学术信息
科学研究
RESEARCH
Seminars on Dwork Theory-4: Newton Slopes in $\mathbb{Z}_p$-Towers of Curves
时间  Datetime
2021-01-05 10:00 — 11:15
地点  Venue
Zoom APP()
报告人  Speaker
James Upton
单位  Affiliation
University of California, San Diego
邀请人  Host
Jiyou Li
备注  remarks
Zoom No.: 922 327 63848 Passcode: 121212
报告摘要  Abstract

Let $X/\mathbb{F}_q$ be a smooth affine curve over a finite field of characteristic $p > 2$. In this talk we discuss the $p$-adic variation of zeta functions $Z(X_n,s)$ in a pro-covering $X_\infty:\cdots \to X_1 \to X_0 = X$ with total Galois group $\mathbb{Z}_p$. For certain ``monodromy stable'' coverings over an ordinary curve $X$, we prove that the $q$-adic Newton slopes of $Z(X_n,s)/Z(X,s)$ approach a uniform distribution in the interval $[0,1]$, confirming a conjecture of Daqing Wan.