欢迎光临!
您现在所在的位置:首页 >> 通知公告 & 学术信息
学术信息
SEMINARS
Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky equation
时间  Datetime
2019-09-12 10:30 — 12:00 
地点  Venue
Large Conference Room(706)
报告人  Speaker
李骥
单位  Affiliation
华中科技大学
邀请人  Host
张祥
报告摘要  Abstract

We analyze a singularly Kuramoto-Sivashinsky perturbed Camassa-Holm equation with methods of the geometric singular perturbation theory. Especially, we study the persistence of smooth and peaked solitons. Whether a solitary wave of the original Camassa-Holm equation is smooth or peaked depends on whether the parameter 2k is equal to 0, which is related to the critical wave speed. On the one hand, we prove that if 2k > 0, then a unique solitary wave persists under singular Kuramoto-Sivashinsky perturbation. On the other hand, we show that if 2k = 0, then any observable soliton fails to persist.