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Continuous Time Random Walk

Let Γ = (V, E) be a connected, locally finite graph without double
edges.

Let µ = (µxy) be an edge weight function on E, such that µxy =
µyx > 0 for each (x, y) ∈ E, while µxy = 0 for each (x, y) 6∈ E.

Let ν = (νx) be a positive vertex weights on V.

Denote by X = {Xt : t ≥ 0} a continuous time random walk on
Γ with generator

Lf(x) =
1

νx

∑

y∈V

(f(y) − f(x))µxy.



If νx =
∑

µxy and µxy ∈ {0, 1} for all x, y, then the process X is
called continuous time simple random walk on V.
It is a process that waits an exponential time mean 1 at each
vertex and then jumps along one of its neighbor uniformly.

If νx ≡ 1, then the expected waiting time of each jump may vary
greatly. Moreover, such a process may explode in finite time.
For example, Γ = Z

+, µx−1,x = 2x.



Pairwise Estimates

Fix vertices x1, x2 and functions f1, f2 such that

Pxi(Xt = xi) ≤
1

fi(t)
.

Our interest is, under what circumstance Px1
(Xt = x2) will have

Gaussian upper bounds.
For example, Let X be a continuous time simple random walk
on Z

d. We have

Px(Xt = x) ≤ C

td/2
;

and

Px(Xt = y) ≤ c

td/2
exp

(
−C‖x − y‖2

t

)
.

for any t ≥ ‖x − y‖.



History

The problem of getting a Gaussian upper bound from two point
estimates was introduced in the manifold case by Grigor’yan
(1997). In the subsequent researches, Coulhon, Grigor’yan &
Zucca (2005) studied the problem for discrete time random walks
on graphs, while Folz (2011) studied in the continuous time ran-
dom walks. The current paper considers the same problem, how-
ever, it improves the result of Folz(2011) by · · · .
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Adapted Metric on Γ

Let dν(·, ·) be a metric of Γ such that

{
1
νx

∑
y dν(x, y)2µxy ≤ 1 for all x ∈ V,

dν(x, y) ≤ 1 whenever x, y ∈ V and x ∼ y.
(1)

Metrics satisfying (1) are called adapted metrics. Such metrics
were initiated by Davies (1993), and are closely related to the
intrinsic metric associated with a given Dirichlet form.
Intuition: If µxy is larger, then more quickly for a particle trans-
fers from x to y and so dν(x, y) should be smaller.



(A, γ)−regular

Let f : R+ → R+. Let A ≥ 1 and γ > 1. We say that f is
(A, γ)−regular if the function f is increasing and satisfies that

f(γs)

f(s)
≤ A

f(γt)

f(t)
for all t ≥ s ≥ 0, (2)

which was introduced by Grigor’yan (1997).

For example, tn, et1/2

, et;

f(t) =

{
ct if t ≤ T1,

Ct2 if t > T1;

In particular, if Volume Doubling holds, that is, V (x, 2r) ≤
CV (x, r) then

f(t) = V (x,
√

t).

is regular.



Theorem (Grigor’yan) Let x1, x2 be distinct points on a smooth
Riemannian manifold M, and suppose that there exist (A, γ)−regular
functions g1, g2 such that, for all t > 0 and i ∈ {1, 2},

qt(xi, xi) ≤
1

gi(t)

Then for any D > 2 and all t > 0, the Gaussian upper bound

qt(x1, x2) ≤
4A

g1(δt)g2(δt)
exp

(
−d(x1, x2)

2

2Dt

)

holds, where δ = δ(D, γ).



Theorem (Coulhon, Grigor’yan and Zucca) Let (Γ, µ) be a weighted
graph satisfying condition infx∈V Px(X1 = x) ≥ α > 0. Let x1,
x2 be two fixed vertices in Γ, and assume that there are two
(A, γ)−regular functions g1, g2 such that, for all k ∈ N,

h2k(xi, xi) ≤
1

gi(k)
.

Then, for all k ∈ N,

hk(x1, x2) ≤
C0

g1(ηk)g2(ηk)
exp

(
−d(x1, x2)

2

2D0k

)
,

where η = η(γ) > 0,D0 = D0(α, γ) > 0 and C0 = C0(A,α, γ).



Theorems

Let pt(x, y) = Px(Xt=y)
νy

.

Theorem A(Folz 2011)

Suppose there exists Cν > 0 such that νx ≥ Cν for all x. Let

g1, g2 be (A, γ)−regular functions satisfying

gi(t) ≤ Aet1/2

. (3)

Suppose that

pt(xi, xi) ≤
1

gi(t)
. (4)

Then there exists C1(A, γ,Cν), C2(γ) and α(γ) > 0, such that

for all t ≥ dν(x1, x2),

pt(x1, x2) ≤
C1√

g1(αt)g2(αt)
exp

(
−C2dν(x1, x2)

2

t

)
. (5)



However, our work improves the result of Folz (2011) by no longer
requiring a lower bound on νx. The improvement comes from
imposing conditions on the transition probabilities Px(Xt = x)
instead of the heat kernels pt(x, x). Note that the transition
probabilities are invariant under the transformation from (µ, ν)
to (cµ, cν), where (cµ)xy = cµxy and (cν)x = cνx.



Theorem 1

Suppose

Pxi(Xt = xi) ≤
1

fi(t)
. (6)

Let δ ≥ 1. If each fi is (A, γ)−regular and satisfies

fi(t) ≤ Aeδt for all t ∈ R+, (7)

then there exist universal positive constants C1 and θ, such that

for any t ≥ dν(x1, x2) we have

Px1
(Xt = x2) ≤

C1A
β(νx2

/νx1
)1/2

√
f1(αt)f2(αt)

exp

(
−θ

dν(x1, x2)
2

t

)
, (8)

where α = min{(2γ)−1, (64δ)−1} and β = ⌈ log γ
log 2 ⌉.



Remark 1. The condition (7) is quite natural. Note that Px(Xt =

x) ≥ exp
(
−µx

νx
t
)

, where µx =
∑

y µxy. It implies that (7) holds

if A = 1 and δ = max{µx1

νx1

,
µx2

νx2

}. In particular, for CSRW one

can take δ = 1.

Remark 2. One can also trace the values of C1 and θ. Indeed,
we select θ = 10−7 in our proof.

Remark 3. It is potentially very useful for random walks in ran-
dom environments where one may lack global regularity.



Application

Barlow(2004), Random walks on supercritical percolation clus-
ters, Ann. Probab.

Lemma. There exist random variables Tx(ω) < ∞ and non-
random constants c1, c2 such that almost surely, for all x2 ∈ G(ω)
and t > 0,

qω
t (x, x) ≤

{
c1t

−1/2 if 0 < t ≤ Tx(ω)

c2t
−d/2 if t > Tx(ω).

The theorem above shows that if t ≥ C1(Tx ∨ Ty) ∨ d(x, y) then
we have the Gaussian upper bound

qt(x, y) ≤ C2t
−d/2 exp

(
−C3

d(x, y)2

t

)
.



Positive Subsolution

Let I be an interval of R+. We say that u : I × V 7→ R+ is a
positive subsolution on I × V if

∂

∂t
u ≤ Lu on I × V.

Furthermore, we define a set of functions:

H(I) ={u : u is a positive subsolution on I × V and

|{z ∈ V : u(t, z) 6= 0, t ∈ I}| < ∞}.

Let o ∈ B ⊆ V with |B| < ∞. Set

uB(t, z) =
ν

1/2
o

νz
Po(Xt = z, inf{s ≥ 0 : Xs 6∈ B} > t). (9)

Then uB ∈ H(R+).



Question: Let u be a positive subsolution. Does there exist a
sequence of positive subsolutions un, n = 1, 2, · · · , such that, each
un has finite support and (un) converges to u in some sense?



For any functions f, g on V, define

〈f, g〉 =
∑

x∈V

f(x)g(x)νx.

Integral Maximum Principle

Let h be a positive function on I × V and u ∈ H(I). If for each

t ∈ I one has

1

νy

∑

x

|h(t, x) − h(t, y)|2
4h(t, x)h(t, y)

µxy ≤ − ∂

∂t
log h(t, y) for all y ∈ V,

(10)
then J(t) = 〈u2(t, ·), h(t, ·)〉 is decreasing on I.



Owing to the Adapted metric dν , it leads immediately to Corol-
lary as follows. Define a set of functions:

F(I) ={h : h is a positive function on I × V and for each t ∈ I, x ∼ y,

|h(t, x) − h(t, y)|2
4h(t, x)h(t, y)

≤ −dν(x, y)2
∂

∂t
log h(t, y)

}
.

Corollary

Let u ∈ H(I) and h ∈ F(I). Then J(t) = 〈u2(t, ·), h(t, ·)〉 is

decreasing on I.



Let ρ(·) = dν(o, ·) ∧ R for some o ∈ V and R ≥ 0.

Example 2

Fix a ∈ [0, 1
4 ]. Let h1(t, x) = eaρ(x)− a2

2
t. Then h1 ∈ F(R+).

Example 3

Fix τ > 0. For each t ≥ 0 and z ∈ V, set

h(t, z) = exp

{(
ρ(z) − 4−1e (t + τ)

)
log

(
1 ∨ ρ(z)

4−1e (t + τ)

)
− t

τ

}
.

Then h(t, z) ∈ F(R+).



Some result

Set Ho ={u ∈ H(R+) : u(0, z) = ν−1/2
o 1{o}(z) for each z ∈ V}.

Proposition 4

Let u ∈ Ho. For any t, R > 0, we have

〈u(t, ·)2, 1 − 1BR
〉 ≤ exp

(
−R2

8t

)
if t ≥ R.

Proof. Let a = 4R
t . Then a ∈ [0, 1

4 ]. Obviously,

〈u(t, ·)2, 1 − 1BR
〉 ≤ 〈u(t, ·)2, eaρ(x)− a2

2
t〉e−aR+ a2

2
t.

By the Integer Maximum Principle,

〈u(t, ·)2, eaρ(x)− a2

2
t〉 ≤ 〈u(0, ·)2, eaρ(x)〉 = 1.



Corollary 5

For any z ∈ V,

Po(Xt = z) ≤ (νz/νo)
1/2 exp

{
− r2

16t

}
if t ≥ r > 0,

where r = dν(o, z).

The intuition of our main theorem can be seen from Corollary 5,
if f1 = f2 ≡ 1 are selected as the trivial upper bounds.



Corollary

For any z ∈ V,

Po(Xt = z) ≤ (νz/νo)
1/2 exp

(
−r

2
log

(
1.01r

t

)
+ 60

)
if r ≥ t > 0,

where r = dν(o, z).



Compared with Theorems B and C, Corollaries 5 and 6 work
more efficiently when t ∈ [0.9r, 1.1r] and r = dν(o, z) is large.

Theorem B(Folz 2011)

If x, y ∈ V, then for all t > 0,

pt(x, y) ≤ (νxνy)
−1/2 exp

(
−r2

2t

(
1 − r

t

)
− Λt

)
,

where r = dν(x, y) and Λ ≥ 0 is the bottom of the L2 spectrum

of the operator Lν.

Theorem C(Folz 2011)

If x, y ∈ V, then for all t > 0,

pt(x, y) ≤ (νxνy)
−1/2 exp

(
−r

2
log

( r

2et

)
− Λt

)
.



(A, γ)−regular on an interval

Let f : R+ → R+. Let A ≥ 1 and γ > 1. We say that f is
(A, γ)−regular on [a, b) if the function f is increasing on R+ and
satisfies that

f(γs)

f(s)
≤ A

f(γt)

f(t)
for all a ≤ s < t < γ−1b. (11)



Theorem 7

If each fi is (A, γ)−regular on [T1, T2) and satisfies

fi(t) ≤ Aeδt for all t ∈ [T1, T2) (12)

then there exist universal positive constants C1 and θ, such that

for any t ∈ [T̃1, T2) we have

Px1
(Xt = x2) ≤

C1A
β(νx2

/νx1
)1/2

√
f1(αt)f2(αt)

exp

(
−θ

dν(x1, x2)
2

t

)
, (13)

where T̃1 = (8α−2T 2
1 ) ∨ dν(x1, x2).



Thank you!


