Metastable Densities for the Contact Process on Power Law Random Graphs

Qiang YAO
(Joint with Thomas MOUNTFORD and Daniel VALESIN)

School of Finance and Statistics,
East China Normal University

November 16th, 2013
1 Introduction
- NSW random graphs
- Contact processes

2 Problem and Main Results
- Assumptions and notation
- Problem
- Previous works
- Our main results

3 Idea of Proof
- Connection with GW trees
- Notation of measures
- Two useful estimations
- Sketch of proof

4 References
Introduction
Newman-Strogatz-Watts random graphs

- The graph: \(G^n := (V^n, E^n) \).
- Vertex set: \(V^n := \{1, 2, \cdots, n\} \).
- Degree of vertex \(i \) is denoted by \(d_i \) (\(i = 1, 2, \cdots, n \)), which follows
 (1) \(d_1, d_2, \cdots, d_n \) i.i.d.
 (2) \(p_k := P(d_1 = k) \sim Ck^{-\alpha} \) (\(\alpha > 1, C > 0 \)) if \(k \) is large. i.e.

\[
\lim_{k \to \infty} k^\alpha \cdot p_k = C \in (0, \infty).
\]
How can we construct the graph once given a **suitable** realization of the degree sequence $(d_1(\omega), d_2(\omega), \cdots, d_n(\omega))$?
Newman-Strogatz-Watts random graphs

 each vertex i was issued with d_i half edges and these half edges were matched up in a \textit{uniformly} chosen manner.

- If $\alpha > 3$, then $P(\text{no loops or multiple edges}) \to 1$ as $n \to \infty$. If $2 < \alpha \leq 3$, not so.

- We treat both cases in our work.
Basic definitions of contact processes

- First introduced by T. E. Harris (1974).
- A model to describe the spread of diseases.
- Two classical books:
Basic definitions of contact processes

- The process \((\xi_t : t \geq 0)\): a continuous-time Markov process.
- State space: \(\{A : A \subseteq V^n\}\).
- At each \(t\), each vertex is either healthy or infected. \(\xi_t\) is the collection of infected vertices at time \(t\).
- Transition rates:
 \[
 \begin{align*}
 &\xi_t \rightarrow \xi_t \setminus \{x\} \text{ for } x \in \xi_t \text{ at rate 1}, \\
 &\xi_t \rightarrow \xi_t \cup \{x\} \text{ for } x \notin \xi_t \text{ at rate } \lambda \cdot |\{y \in \xi_t : x \sim y\}|.
 \end{align*}
 \]
- \((\xi_t^A : t \geq 0)\): the process with initial state \(A\).
- Absorbing state: \(\emptyset\).
Self-duality

For any $A, B \in V^n$ and $t > 0$, we have

$$P(\xi_t^A \cap B \neq \emptyset) = P(\xi_t^B \cap A \neq \emptyset).$$

Especially, for any $x \in V^n$ and $t > 0$, we have

$$P(\xi_t^x \neq \emptyset) = P(x \in \xi_t^{V^n}).$$
Problem and Previous Results
Consider the contact process on the Newman-Strogatz-Watts random graph.

Assumptions:

1. $p_0 = p_1 = p_2 = 0$;
2. Conditioned on $E_n := \{d_1 + \cdots + d_n \text{ is even}\}$.

$$\left(\lim_{n \to \infty} P(E_n) = \frac{1}{2} \right)$$
Assumptions and notation

- Given $\delta \in (0, 1)$, $\lambda > 0$, and $x \in V^n$ randomly chosen. Define
 \[
 \rho_n(\lambda, \delta) := P\left(\xi^{x}_{\exp(n^{1-\delta})} \neq \emptyset\right).
 \]

- By self-duality,
 \[
 \rho_n(\lambda, \delta) = P\left(x \in \xi^{V^n}_{\exp(n^{1-\delta})}\right) = E\left(\frac{|\xi^{V^n}_{\exp(n^{1-\delta})}|}{n}\right).
 \]

- Define
 \[
 \underline{\rho}(\lambda, \delta) := \lim_{n \to \infty} \inf \rho_n(\lambda, \delta),
 \]
 \[
 \bar{\rho}(\lambda, \delta) := \lim_{n \to \infty} \sup \rho_n(\lambda, \delta).
 \]
Problem: What is the asymptotic behavior of $\underline{\rho}(\lambda, \delta)$ and $\overline{\rho}(\lambda, \delta)$ if $\lambda > 0$ is small?
Previous works

 If $\alpha > 3$, then $\forall \delta \in (0, 1)$,
 \[
 b\lambda^c \leq \underline{\rho}(\lambda, \delta) \leq \overline{\rho}(\lambda, \delta) \leq B\lambda^c
 \]
 when λ is small enough.

- S. Chatterjee and R. Durrett (2009):
 If $\alpha > 3$, then $\forall \delta \in (0, 1)$, $\varepsilon > 0$,
 \[
 c\lambda^{1+2(\alpha-2)+\varepsilon} \leq \underline{\rho}(\lambda, \delta) \leq \overline{\rho}(\lambda, \delta) \leq C\lambda^{1+(\alpha-2)+\varepsilon}
 \]
 when λ is small enough.
What are we interested in?

- Improve the bounds (find the \textbf{actual} behavior of $\underline{\rho}(\lambda, \delta)$ and $\overline{\rho}(\lambda, \delta)$)
- Extend the result to $\alpha > 2$.

Reference:
S. Chatterjee and R. Durrett: Contact processes on random graphs with power law degree distributions have critical value 0, \textit{Ann. Probab.} \textbf{37} 2332-2356 (2009).
Our main results

- If $\alpha > 3$, there exist $m_1, M_1 > 0$ so that, for any $\delta \in (0, 1)$ and small enough $\lambda > 0$,
 \[
 m_1 \frac{\lambda^{1+2(\alpha-2)}}{\log^{2(\alpha-2)} \left(\frac{1}{\lambda} \right)} \leq \rho(\lambda, \delta) \leq \overline{\rho}(\lambda, \delta) \leq M_1 \frac{\lambda^{1+2(\alpha-2)}}{\log^{2(\alpha-2)} \left(\frac{1}{\lambda} \right)}.
 \]

- If $2^{\frac{1}{2}} < \alpha \leq 3$, there exist $m_2, M_2 > 0$ so that, for any $\delta \in (0, 1)$ and small enough $\lambda > 0$,
 \[
 m_2 \frac{\lambda^{1+2(\alpha-2)}}{\log^{\alpha-2} \left(\frac{1}{\lambda} \right)} \leq \rho(\lambda, \delta) \leq \overline{\rho}(\lambda, \delta) \leq M_2 \frac{\lambda^{1+2(\alpha-2)}}{\log^{\alpha-2} \left(\frac{1}{\lambda} \right)}.
 \]

- If $2 < \alpha \leq 2^{\frac{1}{2}}$, there exist $m_3, M_3 > 0$ so that, for any $\delta \in (0, 1)$ and small enough $\lambda > 0$,
 \[
 m_3 \lambda^{1+\frac{\alpha-2}{3-\alpha}} \leq \rho(\lambda, \delta) \leq \overline{\rho}(\lambda, \delta) \leq M_3 \lambda^{1+\frac{\alpha-2}{3-\alpha}}.
 \]
Idea of Proof
Some basic definitions

- Denote $\mu := \sum_n np_n$, then $\mu \in (0, \infty)$ since $\alpha > 2$.

- Denote the law \tilde{q} by $\tilde{q}_n = \frac{np_n}{\mu}$.

- Denote the law q by $q_n = \tilde{q}_{n+1}$.
 (q is called the **size-biased law**.)

- Given a graph G containing vertex x, denote by $B_G(x, K)$ the set of vertices in G at distance less than or equal to K from x, including x itself.
Connection with Galton-Watson trees

Proposition: For each $n \in \mathbb{N}$, let G^n be a Newman-Strogatz-Watts random graph with degree law p with associated exponent $\alpha > 2$. Assume that x is uniformly chosen in $\{1, \ldots, n\}$, independently of the graph. Then for any $K \in \mathbb{N}$ fixed, as $n \to \infty$, the law of $B_{G^n}(x, K)$ converges to the law of $B_T(o, K)$, where T is a Galton-Watson tree such that

(i) the degree of the root o is chosen $\sim p$.

(ii) the degrees of subsequent vertices are i.i.d. $\sim \tilde{q}$ (in other words, the offspring distribution for subsequent generations is equal to q).

References:

Notation of measures

- Denote by $\widetilde{P}_{(p,q)}$ the law under which a random rooted tree T is obtained by choosing the degrees of the vertices independently: that of the root o according to probability p and those of “subsequent” vertices according to q.

- Use \widetilde{P}_q for the law under which every vertex has degree i.i.d. according to q.

- Notation $\widetilde{P}_{(p,q),\lambda}$ denotes the joint law of the contact process with parameter λ on a tree independently generated according to law $\widetilde{P}_{(p,q)}$.

- Notation $\widetilde{P}_{q,\lambda}$ denotes the joint law of the contact process with parameter λ on a tree independently generated according to law \widetilde{P}_q.
Two useful estimations

Proposition 1: For any $\varepsilon, \delta > 0$, there exists $\lambda_1 > 0$ such that, for any $\lambda < \lambda_1$ and $R > 1$,

\[
\bar{\rho}(\lambda, \delta) \geq \tilde{P}(p,q), \lambda \left(\exists y \in B_T(o, R), \ t \in \mathbb{R}_+ : \ \deg(y) > \frac{1}{\lambda^{2+\varepsilon}}, \ y \in \xi_t^o, \right. \\
\left. \text{and the infection path from} \ o \ \text{to} \ y \ \text{lies entirely in} \ B_T(o, R) \right).
\]

Proposition 2: For any $\delta > 0$,

\[
\bar{\rho}(\lambda, \delta) \leq \tilde{P}(p,q), \lambda \left(\xi_t^o \neq \emptyset \ \forall \ t \right).
\]
The case $\alpha > 3$

- **Lower bound:** When $\alpha > 3$, sites of “supercritical” degree, that is, degree larger than $1/\lambda$ to some power strictly larger than 2, are typically very far from each other and far from the root of the tree. However, if the infection starts at a site whose degree is a large multiple of $\frac{1}{\lambda^2} \log^2 \left(\frac{1}{\lambda} \right)$, then the infection is maintained for a long time and can therefore reach distant sites. We argue that at this distance, supercritical sites can be found.

- **Upper bound:** Argue the opposite direction. That is: sites of degree smaller than a small multiple of $\frac{1}{\lambda^2} \log^2 \left(\frac{1}{\lambda} \right)$ do not maintain the infection for a time that is sufficient to reach “supercritical” sites.
The case $2^{1/2} < \alpha \leq 3$

- The expectation associated to the size-biased distribution q is infinite.

- **Lower bound:** Similar to the lower bound of the case $\alpha > 3$.

- **Upper bound:** In contrast to the case $\alpha > 3$, there is a non-negligible probability that “supercritical” sites are close to the root. Then, if the infection is sustained close to the root for some time of order $1/\lambda^\varepsilon$, where ε is not very small, these supercritical sites will be reached. The proof of the upper bound depends on controlling the probability of this event.
The case $2 < \alpha \leq 2\frac{1}{2}$

- Here the bulk of the density no longer comes from sites which are neighbors of sites with degree of the order (neglecting log terms) $\frac{1}{\lambda^2}$.

- **Idea:** Compare with branching processes.
References

S. Chatterjee and R. Durrett: Contact processes on random graphs with power law degree distributions have critical value 0, Ann. Probab. 37 2332-2356 (2009).

Thank you!

E-mail: qyao@sfs.ecnu.edu.cn