上海交通大学试卷(A卷)

(2008 至 2009 学年 第1学期)

班级号	学号	姓名
课程名称	概率论及其应用(ACM 班)	成绩

1. (15 %) Please prove Murphy's Law, namely if something bad can happen it eventually will. Here is its more precise statement:

Let $A_n, n \ge 1$ be any sequence of events satisfying the nesting condition $A_n \subseteq A_{n+1}$ for any $n \ge 1$ – you can think of A_n as the event that the bad thing happens on or before day n. Let $A = \bigcup_{n=1}^{\infty} A_n$ and suppose that for some $\epsilon > 0$ and any $n \ge 1$ we have $P(A|A_n^c) \ge \epsilon$. Then P(A) = 1. (Hint: $P(A) = P(A|A_n^c)(1 - P(A_n)) + P(A|A_n)P(A_n)$.)

我承诺,我将严	题号	-	 1	四	Ħ.	六	七	八	九	+	总分
格遵守考试纪律。	得分										
	批阅人 (流水阅										
承诺人:	卷教师签名处)										

2. $(15 \not T)$ Let $[n] = \{1, 2, ..., n\}$ and let $X_i, i \in [n]$, be a collection of random variables. For any $S \subseteq [n]$, put X_S to be the collection of random variables $(X_i : i \in S)$. Let $S_1, ..., S_m$ be a family of nonempty subsets of [n]. For any $i \in [m]$, take $s_i = \max_{j \in S_i} r_j$ where r_j stands for $\sharp \{S_k : j \in S_k, k \in [m]\}$. Prove the following:

$$\sum_{i \in [m]} \frac{H(X_{S_i} | X_{\{j: j \notin S_i, j < \max S_i\}})}{s_i} \le H(X_{[n]}).$$

3. (15 $\not T$) Let $A_i, i \in [n]$, be a family of sets. For any $S \subseteq [n]$, put $A_S = \bigcap_{i \in S} A_i$ and $A^S = \bigcup_{i \in S} A_i$. Make use of the inclusion-exclusion principle (namely $1_{A^{[n]}} = \sum_{S \subseteq [n], S \neq \emptyset} (-1)^{\sharp S - 1} 1_{A_S}$) and De Morgan's rule to deduce the following: $1_{A_{[n]}} = \sum_{S \subseteq [n], S \neq \emptyset} (-1)^{\sharp S - 1} 1_{A^S}$.

4. (15 分) Show that a graph on 50 vertices has no more than 1225 minimal edge cutsets.

5. (20 %) Given a fair die, each of its six faces marked with a different number among 1, 2, ...,6, we roll it repeatedly and independently and record the result as a sequence $x_1x_2\cdots$ where x_i is the number which falls uppermost. Compute the expectation of the random variable $X = \min\{i : x_{i+1} = 3x_i\}$.

6. $(10 \ frac{h})$ Let X_1, \ldots, X_n be a set of collectively independent random variables satisfying $P(X_i = 1 - p_i) = p_i$ and $P(X_i = -p_i) = 1 - p_i$. Prove that $P(|\sum_{i \in [n]} X_i| \ge a) \le 2exp(-2a^2/n)$.

7. $(5 \mathcal{D})$ Show that the relative entropy (Kullback Leibler distance) between any two probability mass functions must be nonnegative.