(〈 拓扑学基础 〉) 期中考试

姓名: 学号: 成绩:

→ a、 (15 分) Prove that every second countable space is separable . → b、 (15 分) Prove that any continuous real valued function f on S^1 must identify a pair of antipodal points.

 $\vec{\square}$ a (20 \not) For any $A \subseteq R^2$, define its interior to be $\{y \in A : \forall h \in R^2, \exists t_h > 0, such that <math>y + th \in A, \forall t \in [0, t_h]\}$. Show that this interior operator satisfies the axiom for interiors and so does define a topology on R^2 , which we denote by \mathcal{O} . Associate with $R^2 \times R^2$ the product topology \mathcal{O}' arising from \mathcal{O} . Show that the map f from $(R^2 \times R^2, \mathcal{O}')$ to (R^2, \mathcal{O}) given by f(x, y) = x + y is not continuous.

三 a 、 (15 分) Show that there exists a bounded complete metric space which is not compact.

 \equiv b , (15 \cancel{D}) Prove that continuous maps preserve convergent sequences. Explain why the product topology is called the topology of pointwise convergence.

四 a、 (20 分) Let X be a T_4 space and U_1, \ldots, U_k an open covering of it. Show that we can find another open covering of X, say V_1, \ldots, V_k , such that $V_i \subseteq \overline{V_i} \subseteq U_i, \forall i$. 四 b、 (20 分) Consider the product space $X \times Y$, where Y is compact. Let N be an

open set of $X \times Y$ containing the slice $x_0 \times Y$ of $X \times Y$. Show that N contains some tube $W \times Y$, where W is a neighborhood of x_0 in X.

 Ξ a (20 β) Give the definition of a Lebesgue number for an open covering of a metric space. Prove that any continuous map from a compact metric space to a metric space is

uniformly continuous.

 Ξ b (20 %) Give the definition of a homotopy between two continuous maps. Explain clearly the relationship between homotopy and the path connected components of the mapping space with the compact open topology.

 $\overrightarrow{\longrightarrow}$, (30 \cancel{fr}) Let X, Y be two topological spaces. For any map $f : X \to Y$, set $Gr(f) = \{(x, f(x)); x \in X\}$. Prove the following: 1. f is continuous if and only if the map g from X to $X \times Y$ which sends x to (x, f(x)) is continuous; 2 If f is continuous and X is path connected, then Gr(f) is path connected; 3 If f is continuous and Y is Hausdorff, then Gr(f) is closed in $X \times Y$.