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Symbols

1. To any vector x ∈ Rn, define ||x|| by the Euclidean length of vector x, namely

||x|| :=
√

x2
1 + . . . + x2

n

2. To any vectors x, y ∈ Rn, define x ≤ y by

x ≤ y ⇐⇒ x1 ≤ y1, x2 ≤ y2, . . . , xn ≤ yn

3. Let A ∈ Rm×n. Define the the i-th row of A by vector a>i ∈ Rm, the j-th column
of A by vector a′j ∈ Rn, and the j-th element on the i-th row by aij ∈ R, where
1 ≤ i ≤ m and 1 ≤ j ≤ n.

4. Let A ∈ Rm×n and b ∈ Rn. Define

P (A, b) := {x ∈ Rn | Ax ≤ b}
P=(A, b) := {x ∈ Rn | Ax = b}
r=
F (A, b) := {i ∈ {1, 2, . . . , m} | a>i x = bi, ∀x ∈ F}

r=
z (A, b) := r=

{z}(A, b)

r=(A, b) := r=
P (A,b)(A, b)

AF,b := a submatrix of A containing a>i for all i ∈ r=
F (A, b)

Az,b := a submatrix of A containing a>i for all i ∈ r=
z (A, b)

Ab := a submatrix of A containing a>i for all i ∈ r=(A, b)
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Chapter 1

Polytopes, polyhedra, Farakas’ lemma, and linear
programming

1.1 Convex sets

First there are some base concepts within this course:

Definition 1.1. A subset C of Rn is called convex if for all x, y ∈ C and any 0 ≤ λ ≤ 1
also λx + (1 − λ)y ∈ C. So C is convex if with any two points in C, the whole line
segment connecting x and y belongs to C.

Definition 1.2. Let set X ⊆ Rn,

Conv.hull(X) :=
{

x | ∃t ∈ N,∃x1, . . . , xt ∈ X, ∃λ1, . . . , λt ≥ 0 :

x =
t∑

i=1

λixi,
t∑

i=1

λi = 1
}

Definition 1.3. We call a subset H of Rn a hyperplane if there exist a vector c ∈ Rn

with c 6= 0 and a δ ∈ R such that: H = {x ∈ Rn | c>x = δ}.
Definition 1.4. We call a subset H of Rn a halfspace (or an affine halfspace) if
there exist a vector c ∈ Rn with c 6= 0 and a δ ∈ R such that

H = {x ∈ Rn | c>x ≤ δ}
And following is the first important theorem in this chapter:

Theorem 1.1 (Separating hyperplane theorem). Let C be a closed convex set in
Rn and let z /∈ C. Then there exists a hyperplane separating z and C.

Basic idea. To prove this theorem, firstly we choose a point y ∈ C such that y is
nearest to z among all points in C. Since C is closed, such y always exists. Then we pick
a hyperplane separates z and y with normal vector z− y. Without loss of generality, the
hyperplane passes (z + y)/2. That is, we pick the hyperplane

H = {x | (z − y)>x =
(z − y)>(z + y)

2
=
||z||2 − ||y||2

2
}

Next we want to show H indeed separates z and C. A fast way to do this is to find a
contradiction. Assume there exists an x ∈ C lying on the same side of H with z. Then
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1.1. CONVEX SETS 4

one can easily verify the existence of another point w on the line segment connecting x
and y, such that ||w − z|| < ||y − z||. This contradicts the fact that y is nearest to z. So
the theorem follows.

C
x

y

z

w

Figure: To prove separating hyperplane theorem

Proof. Since C is closed, there exists a y ∈ C such that for each x ∈ C, ||y−z|| ≤ ||x−z||.
Let c = z − y, δ = (||z||2 − ||y||2)/2 and H = {x | c>x = δ}.

From c>z + c>y = 2δ and c>(z − y) = ||c||2 > 0, one has c>z > δ and c>y < δ.
Assume there exists an x ∈ C, such that c>x ≥ δ. Next we show there is a point
w = λx + (1− λ)y satisfying 0 ≤ λ ≤ 1 and ||w − z|| < ||y − z||.

||w − z||2 = ||λx + (1− λ)y − z||2 = ||λ(x− y) + (y − z)||2
= ||λ(x− y) + c||2 = λ2||x− y||2 − 2λ(x− y)>c + ||c||2

Let

0 < λ < min
{

2c>(x− y)
||x− y||2 , 1

}

Then ||w − z||2 < ||y − z||2 = ||c||2. This contradicts the fact that for each x ∈ C,
||y − z|| ≤ ||x − z||. Thus for each x ∈ C, c>x < δ. Therefore H is a hyperplane
separating z and C.

Separating hyperplane theorem is a fundamental but very useful theorem. It is widely
used in the proof of many propositions. We can obtain Farakas’ Lemma by applying
this theorem on a convex cone.

As a direct consequence of separating hyperplane theorem, we have

Proposition 1.2 (Exercise [1] 2.1). Each closed convex set is the intersection of a
collection of halfspaces, possibly infinite many of them.

Proof. Let C be a closed convex set in Rn. Then

C = Rn\
⋃

z/∈C

{z}

= Rn\
⋃

z/∈C

{x | c>z x > δz}

=
⋂

z/∈C

{x | c>z x ≤ δz}

The second equality follows the separating hyperplane theorem.
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1.2 Polytopes, polyhedra and cones

Polytope and polyhedra are special cases of convex sets:

Definition 1.5. A subset P of Rn is a polyhedron iff there exists an m × n matrix A
and a vector b ∈ Rm such that

P = {x ∈ Rn|Ax ≤ b}
A polyhedron is the intersection of a finite number of halfspaces.

Definition 1.6. A subset P of Rn is called a polytope iff P is the convex hull of a finite
number of vectors. That is, there exists vectors x1, . . . , xt ∈ Rn such that

P = Conv.hull{x1, . . . , xt}
Besides given the definitions of polytopes and polyhedra, we also show the relationship

between them:

Theorem 1.3. P is a polytope iff P is a bounded polyhedron.

To prove Theorem 1.3, first we provide the definition of extreme point :

Definition 1.7. Let P be a convex set. A point z ∈ P is called a extreme point of P
if z is not on the line segment connecting any two other points in P . That is, there do
not exist points x, y in P such that x 6= z, y 6= z and z = (x + y)/2.

Extreme points have an important property:

Theorem 1.4. Let A ∈ Rm×n, b ∈ Rm and P be the polyhedron P (A, b). For each
z ∈ P (A, b), z is an extreme point of P , iff rank(Az,b) = n.

Basic idea. A simple method to prove this proposition is by contradiction.
First we suppose z is an extreme point of P (A, b) with rank(Az,b) < n. By some

simple calculations we can find x 6= z and y 6= z such that z = (x + y)/2.
Then we assume z is not an extreme point but with rank(Az,b) = n. Let z = (x+y)/2,

and we show x = y. Thus x = y = z.

Proof. Necessity. Suppose z is an extreme point of P with rank(Az,b) < n. Then there
exists a vector 0 6= c ∈ Rn satisfying (Az,b)c = 0.

Then for each i /∈ r=
z (A, b), it holds a>i z < bi. So there exists a small real δi > 0, such

that a>i (z ± δic) < bi.
Now let δ = min{δi}, and x = z − δc, y = z + δc, then x, y ∈ P . Since c 6= 0, δ > 0,

we have x 6= z, y 6= z and z = (x + y)/2. This contradicts the fact that z is an extreme
point of P .

Sufficiency. Assume z is not an extreme point of P but holds rank(Az,b) = n. Then
there exists x 6= z, y 6= z, such that z = (x + y)/2.

For each i ∈ r=
z (A, b), we have

a>i x ≤ bi = a>i z =⇒ a>i (x− z) =
a>i (x− y)

2
≤ 0

a>i y ≤ bi = a>i z =⇒ a>i (y − z) =
a>i (y − x)

2
≤ 0

∴ a>i (x− y) = 0

So Az,b(x−y) = 0. Since rank(Az,b) = n, we have x−y = 0, x = y. Therefore x = y = z.
It contradicts x 6= z and y 6= z.
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And from this theorem, we can easily derive:

Corollary 1.4.1. The total number of extreme points of a polyhedron is always finite.

Proof. Let P = P (A, b) be a nonempty polyhedron where A ∈ Rm×n and b ∈ Rn. Then
there are at most 2m extreme points of P .

Following Theorem 1.4, we can show something more:

Theorem 1.5. Let P = P (A, b) be a bounded polyhedron, with extreme points x1, . . . , xt.
Then

P = Conv.hull(x1, . . . , xt)

Basic idea. To prove the equality, we need only to show

Conv.hull(x1, . . . , xt) ⊆ P

and
P ⊆ Conv.hull(x1, . . . , xt)

According to the convexity of P , we can easily obtain the former inclusion. Next
we need only to show the latter one. That is, for each z ∈ P , we need to show z ∈
Conv.hull(x1, . . . , xt). By the property of extreme points, if rank(Az,b) = n, z itself is
an extreme point of P . So z is in the convex hull generated by all extreme points of P .
If rank(Az,b) = k < n, we use mathematical induction to show the inclusion. Namely,
we are going to find two vectors y and z where rank(Ax,b) > k and rank(Ay,b) > k. By
induction hypothesis, x, y ∈ Conv.hull(x1, . . . , xt). Thus z ∈ Conv.hull(x1, . . . , xt).

Figure: A bounded polyhedron, a polytope

Proof. Let C = Conv.hull(x1, . . . , xt).
By the convexity of P , we know C ⊆ P . Next we need only to show P ⊆ C.
For each z ∈ P , if rank(Az,b) = n, z itself is an extreme point. Then z ∈ {x1, . . . , xt} ⊆

C. If rank(Az,b) < n, there exists a vector c 6= 0, such that (Az,b)c = 0.
Let

µ0 = max{µ | z + µc ∈ P}
ν0 = max{ν | z − νc ∈ P}

And x = z + µ0c, y = z − ν0c. Since P is bounded and closed, µ0 and ν0 exist and are
both finite.

Let |r=
z (A, b)| = t. Without loss of generality, r=

z (A, b) = {1, 2, . . . , t}. Following the
definition of µ0, we know

a>1 x = b1, . . . , a>t x = bt
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and
a>t+1x ≤ bt+1, . . . , a>mx ≤ bm

Since µ0 attains maximum, we obtain there exists a t′ > t, such that a>t′x = bt′ . Thus Az,b

is a submatrix of Ax,b, and Ax,b has at least one more line than Az,b. As a>t′ z < bt′ and
a>t′x = a>t′ (z+µ0c) = bt′ , a>t′ c 6= 0. So (Ax,b)c 6= 0. This implies rank(Ax,b) > rank(Az,b).

Similarly we can show rank(Ay,b) > rank(Az,b). By our induction hypothesis, x, y ∈
C. So z, a convex combination of x and y, is a member of C.

As a direct consequence, we have

Corollary 1.5.1. Each bounded polyhedron is a polytope.

To prove Theorem 1.3, we need only to prove backward:

Theorem 1.6. Each polytope is a bounded polyhedron.

Proof. Let P be a polytope in Rn, say P = Conv.hull(x1, . . . , xt). And we prove this
theorem by induction on dim(P ).

If P is contained in some hyperplane, namely dim(P ) < n, the theorem follows from
the induction hypothesis.

If dim(P ) = n, this implies x2 − x1, . . . , xt − x1 span Rn. Thus there exists a x0 ∈ P
and a real number r > 0, such that B(x0, r) := {y : ||y − x0|| ≤ r} is contained in P .

Without loss of generality, x0 = 0. Define P ∗ by

P ∗ := {y ∈ Rn | x>y ≤ 1 ∀x ∈ P}

For each y ∈ P ∗, it holds x>j y ≤ 1 for j = 1, . . . , t. At the same time, for each y

satisfying x>j y ≤ 1 for j = 1, . . . , t, we have

x>y =
t∑

j=1

λjx
>
j y ≤

t∑

j=1

λj = 1

for each x ∈ P . Therefore,

P ∗ = {y ∈ Rn | x>j y ≤ 1 j = 1, . . . , t}

Moreover, P ∗ is bounded. As B(x0, r) = B(0, r) ⊆ P , for each 0 6= y ∈ P ∗, let

x′ = r · ||y||−1y

Then x′ ∈ B(0, r) ⊆ P , hence x>y = r · ||y|| ≤ 1. So ||y|| < 1/r, namely P ∗ ⊆ B(0, 1/r).
By Corollary 1.5.1, we know P ∗ is a polytope. Thus

P ∗ = Conv.hull(y1, . . . , ys)

Next we show P = (P ∗)∗, and this implies

P = {x ∈ Rn | y>j x ≤ 1 ∀j = 1, . . . , s}

By the definition of P ∗, we know P ⊆ (P ∗)∗. And for each z /∈ P , by the separating
hyperplane theorem, there exists a hyperplane H = {x | c>x = δ} such that c>x < δ for
all x ∈ P , and c>z > δ. As 0 ∈ P , we have c>0 = 0 < δ. Without loss of generality,
δ = 1. So c ∈ P ∗, and z /∈ (P ∗)∗. Therefore P = (P ∗)∗, namely P is a polyhedron.
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Comment. In our proof of Theorem 1.6, we used a key concept P ∗. P ∗ is call the dual
of P . We will focus on the concept of Polarity and Duality in section 1.5.

Theorem 1.3 follows from Corollary 1.5.1 and Theorem 1.6.

Convex cone is another key concept in this course:

Definition 1.8. A subset C of Rn is called a convex cone if for any x, y ∈ C and any
λ, µ ≥ 0 one has λx + µy ∈ C.

Definition 1.9. For any X ⊆ Rn, Cone(X) is the smallest cone containning X. That
is:

Cone(X) := {λ1x1 + . . . + λtxt | x1, . . . , xt ∈ X;λ1, . . . , λt ≥ 0}
A cone C is called finitely generated if C = Cone(X) for some finite set X.

And convex cone is kind of polyhedra:

Proposition 1.7 (Exercise [1] 2.7). Let C ⊆ Rn. Then C is a convex cone, iff C is
the intersection of a collection of linear halfspaces.

Proof. Let z ∈ Rn and z /∈ C. Then there exists a hyperplane

H = {x ∈ Rn | c>x = δ}

separating z and C. That is, c>z > δ and for any x ∈ C, c>x < δ. Since C is a convex
cone, 0 ∈ C. So c>0 = 0 < δ.
If there exist an x′ ∈ C such that c>x′ = θ > 0. Without loss of generality, θ = 1. Then
(2δ)x′ ∈ C. But

c>(2δx′) = 2δ(c>x′) = 2δ > δ

This contradicts the fact that for all x ∈ C, c>x < δ. So for any x ∈ C, c>x < 0, and
for z /∈ C, c>z > 0. Therefore,

C = Rn\
⋃

z/∈C

{x | c>x > 0}

=
⋂

z/∈C

{x | c>x ≤ 0}

So C is the interesection of linear halfspaces.

In fact, convex cones are polyhedra in one higher dimension. And we define another
two useful symbols:

lift(P ) :=
{(

x
1

) ∣∣∣∣ x ∈ P

}

slice(P ) :=
{

x

∣∣∣∣
(

x
1

)
∈ P

}

Proposition 1.8.
Conv.hull(S) = slice(Cone(lift(S)))
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Proof. Let Y = lift(S). Then

∀x ∈ slice(Cone(Y ))

⇐⇒
(

x
1

)
∈ Cone(Y )

⇐⇒
(

x
1

)
=

∑

p∈Y

λpp where λp ≥ 0 and p =
(

p′

1

)

⇐⇒ x =
∑

p∈Y

λpp
′ where λp ≥ 0 and

∑

p∈Y

λp = 1

⇐⇒ x ∈ Conv.hull(S)

Now we know that statements about polytopes and polyhedra can be translated into
statements about cones in one higher dimension. And next we use this homogenization
technique to prove the first part of Caratheodory’s theorem.

Theorem 1.9 (Caratheodory’s theorem).

(i) Given a set S, for any point p in Conv.hull(S) there is a subset T with p in
Conv.hull(T ), with |T | = dim(S) + 1, and the points of T are affinely indepen-
dent1.

(ii) Given a set S, for any point p in Cone(S) there is a subset T with p in Cone(T ),
with |T | = dim(S), and the points of T are linearly independent.

Proof. (ii). Suppose there exists a subset T ′ with p in Cone(T ′) and the size T ′ is minimal,
but |T ′| > dim(S). Then

P =
∑

s∈T ′
css where cs > 0

Since |T ′| > dim(S), the vectors in T ′ are linearly dependent. Thus
∑

s∈T ′
dscss = 0 where ds 6= 0

Pick the element s0 with the largest ds = ds0 . We have

cs0s0 =
∑

s∈T ′\{s0}
− ds

ds0

css

And we use this sum to express cs0s0. This eliminates the appearance of s0 in the sum,
and keep all the other coefficients nonnegative. This contradicts the choice of T ′.

Proof. (i). Let S′ = lift(S). Then by part (ii) of this theorem we know there exists a
T ′ ⊆ S′ such that (

p
1

)
∈ Cone(T ′)

and |T ′| = dim(S′) = dim(S) + 1 with all vectors in T ′ are linearly independent.
Let T = slice(T ′). Then T ⊆ S, p ∈ slice(Cone(T ′)) = Conv.hull(T ) and all vectors

in T are affinely independent. Moreover, |T | = |T ′| = dim(S′) = dim(S) + 1.

1We say n vectors x1, . . . , xt are affinely independent, iff

(
x1

1

)
. . .

(
xn

1

)
are linearly independent.
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Theorem 1.10 (Exercise [1] 2.12, Polyhedron decomposition theorem). Let P
be a subset of Rn. Show that P is a polyhedron, iff P = Q + C for some polytope Q and
some finitely generated convex cone C.

Proof. Necessity. (Minkowski’s Theorem)

P is a polyhedron

=⇒ P = {x | x ∈ Rn, b ∈ Rm, A ∈ Rm×n, Ax ≤ b}
=⇒ Let X = lift(P )

Then Cone(X) =
{

x

∣∣∣∣ x ∈ Rn+1,

(−b A
−1 0

)
x ≤ 0

}

=⇒ cone(X) is finitely generated
=⇒ Cone(X) = {λ1x1 + . . . λtxt | λ1, . . . , λt ≥ 0}

Let xi =
(

x′i
ai

)
, and a1, . . . , as > 0, as+1, . . . , at = 0

=⇒ ∀x ∈ P(
x
1

)
=λ1

(
x′1
a1

)
+ . . . + λt

(
x′t
at

)

=
s∑

i=0

λiai

(
x′i
ai

1

)
+

t∑

i=s+1

λi

(
x′i
0

)
where

s∑

i=0

λiai = 1

=⇒ x = (λ1a1
x′1
a1

+ . . . + λsas
x′s
as

) + (λs+1x
′
s+1 + . . . + λtx

′
t)

Let

Q = Conv.hull(
x′1
a1

, . . . ,
x′s
as

) and C = Cone(x′s+1, . . . , x
′
t)

then we have
P = Q + C

Sufficiency. (Weyl’s Theorem) If P = Q + C where

Q = {a1x1 + . . . asxs | a1, . . . , as ≥ 0, a1 + . . . + as = 1}

is a polytope and
C = {b1x

′
1 + . . . btx

′
t | b1, . . . , bt ≥ 0}

is a finitely generated convex cone.
Let X = lift(P ), then

∀
(

x
1

)
∈ X,

(
x
1

)
= a1

(
x1

1

)
+ . . . + as

(
xs

1

)
+ b1

(
x′1
0

)
+ . . . + bt

(
x′t
0

)

Cone(X) = Cone
{(

x1

1

)
, . . . ,

(
xs

1

)
,

(
x′1
0

)
, . . . ,

(
x′t
0

)}

So Cone(X) is finitely generated, and therefore it is the intersection of a finite number
of linear halfspaces. This implies P is the intersection of a finite number of halfscapes in
one lower dimension.
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1.3 Farkas’ Lemma

By applying the separating hyperplane theorem to a convex cone, we have:

Theorem 1.11. Let C be a convex cone in Rn. Then to any vector z ∈ Rn, either

z ∈ C

or

∃c ∈ Rn such that for each x ∈ C, c>x ≤ 0 and c>z > 0

but not both.

Proof. For each z /∈ C, by the separating hyperplane theorem, there exists a hyperplane
H = {x ∈ Rn | c>x = δ} satisfying that for all x ∈ C, c>x < δ and c>z > δ. If there is
an x′ ∈ C such that c>x′ = ε > 0, we obtain the contradiction

δ > c>
(

2δ

ε
x′

)
=

2δ

ε
· ε = 2δ > 0

So for all x ∈ C, c>x ≤ 0 < δ and c>z > δ > 0.

With Theorem 1.11 in hand, we can prove Farkas’ Lemma by some translation:

Theorem 1.12 (Farkas’ Lemma). Let A be an m×n matrix and b ∈ Rm. Then either

Ax = b has a nonnegative solution x0

or

∃y0 ∈ Rm such that y>0 A ≤ 0 and y>0 b > 0.

but not both.

Proof. To an m× n matrix A, define Cone(A) by2

Cone(A) := Cone(a′1, . . . , a
′
m)

Ax = b does not have nonnegative solution
⇐⇒ b /∈ Cone(A)

⇐⇒ ∃y such that ∀x ∈ Cone(A), y>x ≤ 0 and y>b > 0

⇐⇒ ∃y such that y>A ≤ 0 and y>b > 0

The second step follows Theorem 1.11.

There are several variants of Farkas’ Lemma, that can be easily derived from Theorem
1.12.

Corollary 1.12.1. The system Ax ≤ b has a solution x, iff there is no vector y satisfying
y ≥ 0, y>A = 0 and y>b < 0.

2Please notice this symbol, as it will be used in further definitions and proofs.
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Proof. Let A′ be the matrix
A′ =

(
A −A I

)

Then

The system Ax ≤ b has a solution.
⇐⇒ There exists x1, x2, y ≥ 0 such that A(x1 − x2) + y = b

⇐⇒ (
A −A I

)



x1

x2

y


 = b where




x1

x2

y


 ≥ 0

⇐⇒ The system A′x′ = b has a nonnegative solution.

Applying Theorem 1.12 to the system A′x′ = b gives the corollary.

Corollary 1.12.2. Suppose the system Ax ≤ b has at least one solution. Then for every
solution x of Ax ≤ b one has c>x ≤ δ, iff there exists a vector y ≥ 0 such that y>A = c>

and y>b ≤ δ.

1.4 Linear programming

One of the standard forms of a linear programming (LP) problem is:

maximize c>x

subject to Ax ≤ b

So LP can be considered as maximizing a ‘linear function’ c>x over a polyhedron P =
P (A, b). Geometrically, this can be seen as shifting a hyperplane to its ‘highest’ level,
under the condition that it intersects P .

Clearly, the minimization problem can be translated to the maximization problem:

min{c>x | x ∈ P (A, b)} = −max{−c>x | x ∈ P (A, b)}
One says the x is a feasible solution if x ∈ P (A, b), namely Ax ≤ b. If x attains the

maximum, it is called an optimum solution.
The main theorem of this section is the Duality theorem of LP, due to von Neumann.

The theorem states that if
max{c>x | Ax ≤ b}

is finite, then its duality
min{y>b | y ≥ 0, y>A = c>}

is finite, and the value of the maximum is equal to the value of another. In order to show
this, we first prove:

Lemma 1.1. Let P be a nonempty polyhedron in Rn and let c ∈ Rn. If sup{c>x | x ∈ P}
is finite, then max{c>x | x ∈ P} is attained.

Proof. Let P = P (A, b), and δ = sup{c>x | x ∈ P}. Next we show there exists an x ∈ Rn

such that c>x ≥ δ.

There exists some x ∈ P , such that c>x ≥ δ

⇐⇒ The system
(

A
−c>

)
x ≤

(
b
−δ

)
has a solution
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By Farkas’ Lemma in the form of Corollary 1.12.1, we have either
(

A
−c>

)
x ≤

(
b
−δ

)
has a solution

or

∃y′ ∈ Rn+1, y′ ≥ 0 such that y′>
(

A
−c>

)
= 0 and y′>

(
b
−δ

)
< 0

but not both. Next we show the latter case never occur.
Suppose such y′ exists. Let

y′ =
(

y
λ

)
where y ≥ 0 and λ ≥ 0

If λ = 0, it follows y>A = 0 and y>b < 0. This contradicts the fact that P is nonempty.
So λ > 0. Without loss of generality, λ = 1. We have y>A = c> and y>b < δ for all
x ∈ P . And it follows a contradiction that for each x ∈ P ,

δ = c>x = y>Ax ≤ y>b < δ

From this we derive:

Theorem 1.13 (Duality theorem of LP). Let A be an m × n matrix b ∈ Rm and
c ∈ Rn. Then

max{c>x | Ax ≤ b} = min{y>b | y ≥ 0, y>A = c>}
provided that both sets are nonempty.

Proof. First note that

sup{c>x | Ax ≤ b} ≤ inf{y>b | y ≥ 0, y>A = c>}

because for each x ∈ P (A, b) and y ∈ Rm
+ satisfying y>A = c>, it holds

c>x = y>Ax = y>(Ax) ≤ y>b

As both sets are nonempty, the supremum and infimum are finite. By Lemma 1.1,
there exists an x0 ∈ P (A, c) and a real δ such that

c>x0 = max{c>x | Ax ≤ b} = δ

Next we want to find a vector y0 ∈ Rm
+ , y>0 A = c> such that y>0 b = δ.

Let k = r=
x0

(A, b). Without loss of generality, we have




a>1 x0 = b1

. . . . . .
a>k x0 = bk

a>k+1x0 < bk+1

. . . . . .
a>mx0 < bm
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where 0 ≤ k ≤ m. Then by Theorem 1.11, either

c ∈ Cone(a1, . . . , ak)

or
∃y ∈ Rm such that y>ai ≤ 0 and y>c > 0 for all i = 1, . . . , k

Now we show that the latter case will never occur. Otherwise, if such y exists, we can
find a small enough positive ε such that A(x0 + εy) ≤ b and c>(x0 + εy) > c>x0. This
contradicts the choice of x0.

x0

a
>
1
x = b1

a>
2 x = b2

c>x = δ

a1 a2
c

P = {x | Ax ≤ b}

Figure: c always lies in Cone(a1, . . . , ak)

Therefore, we have k ≥ 1 and c ∈ Cone(a1, . . . , ak), say

c = λ1a1 + . . . + λkak where λ1, . . . , λk ≥ 0

Let
y0 =

(
λ1 . . . λk 0 . . . 0

)> ∈ Rm
+

Then it is clear that y>0 A = c>, and

δ =c>x0

=(λ1a
>
1 + . . . + λka>k )x0

=λ1b1 + . . . + λkbk

=y>0 b

There are some variants of the Duality theorem:

Corollary 1.13.1. Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Then both

max{c>x | x ≥ 0, Ax ≤ b}

and
min{y>b | y ≥ 0, y>A ≥ c>}

exist and are equal, provided both sets are nonempty.
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Proof.

max{c>x | x ≥ 0, Ax ≤ b}

=max
{

c>x

∣∣∣∣
(

A
−I

)
x ≤

(
b
0

)}

=min
{ (

y>1 y>2
) (

b
0

) ∣∣∣∣
(

y1

y2

)
≥ 0,

(
y>1 y>2

) (
A
−I

)
= c>

}

=min{y>1 b | y1, y2 ≥ 0, y>1 A− y>2 = c>}
=min{y>b | y ≥ 0, y>A ≥ c>}

Here the second equality follows the Duality theorem.

Corollary 1.13.2. Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Then both

max{c>x | Ax ≥ b}

and
min{y>b | y ≤ 0, y>A = c>}

exist and are equal, provided both sets are nonempty.

Proof.

max{c>x | Ax ≥ b}
=max{c>x | (−A)x ≤ (−b)}
=min{y>(−b) | y ≥ 0, y>(−A) = c>}
=min{(−y)>b | (−y) ≤ 0, (−y)>A = c>}
=min{y>b | y ≤ 0, y>A = c>}

Here the second equality follows the Duality theorem.

Theorem 1.14 (Exercise [1] 2.25). Let a matrix, a column vector, and a row vector
be given: 


A B C
D E F
G H K







a
b
c


 (

d e f
)

where A,B, C, D, E, F, G,H, K are matrices, a, b, c are column vectors, and d, e, f are
row vectors (of appropriate dimensions). Then

max{ dx + ey + fz : x ≥ 0, z ≤ 0
Ax + By + Cz ≤ a

Dx + Ey + Fz = b

Gx + Hy + Kz ≥ c }
=min{ ua + vb + wc : u ≥ 0, w ≤ 0

uA + vD + wG ≥ d

uB + vE + wH = e

uC + vF + wK ≤ f }
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Proof.

max{ dx + ey + fz : x ≥ 0, z ≤ 0

Ax + By + Cz ≤ a

Dx + Ey + Fz = b

Gx + Hy + Kz ≥ c }

=max

{
(
d e −e −f

)



x
y1

y2

−z


 :




x
y1

y2

−z


 ≥ 0




A B −B −C
D E −E −F
−D −E E F
−G −H H K







x
y1

y2

−z


 ≤




a
b
−b
−c




}

=min

{
(
u v1 v2 −w

)



a
b
−b
−c


 :




u>

v>1
v>2
−w>


 ≥ 0




A> D> −D> −G>

B> E> −E> −H>

−B> −E> E> H>

−C> −F> F> K>







u>

v>1
v>2
−w>


 ≥




d>

e>

−e>

−f>




}

=min{ ua + vb + wc : u ≥ 0, w ≤ 0

uA + vD + wG ≥ d

uB + vE + wH = e

uC + vF + wK ≤ f }
Here, the first and last equality are doing translations and the middle one follows the
Duality theorem of the form 1.13.1.

Theorem 1.15 (The Von Neumann’s Minimax Theorem on two-person zero-sum
game). Let Pn = {x ∈ Rn

+ | x1 + . . . + xn = 1}. Then for every A ∈ Rm×n,

max
x∈Pm

min
y∈Pn

x>Ay = min
y∈Pn

max
x∈Pm

x>Ay

Proof. Let
v1 = max

x∈Pm

min
y∈Pn

x>Ay

and
v2 = min

y∈Pn

max
x∈Pm

x>Ay

Next we show v1 = v2 by linear programming.
Without loss of generality, aij > 0 for all i, j.3 For any fixed x, miny∈Pn x>Ay is

3Let B be an m × n matrix containing only 1’s. Then for all x ∈ Pm and y ∈ Pn, x>By = 1. So if
the minimal element in A is smaller than or equal to 0, say t, let A′ = A + (1− t)B. Then

max
x

min
y

x>A′y = max
x

min
y

x>Ay + (1− t) = v1 + (1− t)

min
y

max
x

x>A′y = min
y

max
x

x>Ay + (1− t) = v2 + (1− t)

Hence to prove v1 = v2, we need only to show maxx miny x>A′y = miny maxx x>A′y, where A′ is an
m× n matrix with all its elements greater than 0.
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attained at an extreme point of the polytope {Ay | y ∈ Pn}.4 That is,

v1 = max
x∈Pm

min
y∈Pn

x>Ay = max
x∈Pm

min{x>a′1, . . . , x
>a′n}

This follows v1 is the maximum of the LP problem:

max
v∈R

v

subject to
∃x ∈ Pm, x>a′i ≥ v, i = 1, 2, . . . , n

It is obvious that this problem has a feasible solution yielding v > 0. So by defining
x′i = xi/v and x′ =

(
x′1 . . . x′n

)>, we have

v1 = max
1∑n

i=1 xi/v
= max

1∑n
i=1 x′i

Hence 1/v1 is the minimum of the LP problem:

min
n∑

i=1

x′i = x′>




1
...
1




subject to
x′>A ≥ (

1 . . . 1
)

and x′ ≥ 0

Similarly, v2 is the minimum of the LP problem:

min
v∈R

v

subject to
∃y ∈ Pn, a>i y ≤ v, i = 1, 2, . . . , m

Define y′i by yi/v and y′ =
(
y′1 . . . y′m

)>, we know 1/v2 is the maximum of the LP
problem:

max
m∑

i=1

y′i =
(
1 . . . 1

)
y′

subject to

Ay′ ≤




1
...
1


 and y′ ≥ 0

According to the Duality Theorem of the form 1.13.1, we obtain 1/v1 = 1/v2. This
completes the proof.

4We will give a strictly proof to this property in Section 1.6 (Corollary 1.24.1).
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1.5 Polarity and duality

Definition 1.10. Let C be a convex cone in Rn, define Cz by

Cz := {y ∈ Rn | x>y ≤ 0 ∀x ∈ C}
And Cz is called the polar of C.

Theorem 1.16 (Exercise [1] 2.13). For any subset C of Rn,

(i) For each convex cone C, Cz is a closed convex cone.

(ii) For each closed convex cone C, Czz = C.

Proof. (i). For any y1, y2 ∈ Cz, it holds x>y1 ≤ 0, x>y2 ≤ 0 for all x ∈ C. And for any
λ, µ ∈ R+, we have

x>(λy1 + µy2) = λ(x>y1) + µ(x>y2) ≤ 0

Hence λy1 + µy2 ∈ Cz. So Cz is a closed convex cone.

C

Cz

Figure: C and Cz

Proof. (ii). For any x ∈ C, by the definition of Cz, we have y>x ≤ 0 for all y ∈ Cz. So
C ⊆ Czz.

And for any x′ /∈ C, by Theorem 1.11, there exists a hyperplane c>x = 0, such that
for all x ∈ C, c>x ≤ 0 and c>x′ > 0. From the definition of Cz, we know c ∈ Cz. And
since c>x′ > 0, x′ /∈ Czz. So C = Czz.

Theorem 1.17. Let A ∈ Rm×n, and C be the cone P (A, 0). Then

C = Cone(A>)z

Proof. For each x ∈ C, that is, Ax ≤ 0. And for all y ∈ Cone(A>), that is, y =
λ1a1 + . . . + λmam where λ1, . . . , λm ≥ 0, we have

y>x =
m∑

i=1

(λia
>
i )x =

m∑

i=1

λi(a>i x) ≤ 0

So x ∈ Cone(A>)z. Thus C ⊆ Cone(A>)z.
For each x′ /∈ C, there exists an i ∈ {1, 2, . . . , m}, such that a>i x′ > 0. Let y = ai ∈

Cone(A>), then y>x′ > 0. So x′ /∈ Cone(A>)z. Therefore C = Cone(A>)z.

Theorem 1.18 (Exercise [1] 2.28). Let A be an m × n matrix and let b ∈ Rn. Let
P = P (A, b), P 6= ∅ and C be the convex cone P (A, 0). Let the the set C consists of all
vectors c for which max{c>x | x ∈ P} is finite. Then C = Cz.
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Proof. To prove C = Cz, we just show that C ⊆ Cz and conversely Cz ⊆ C. And by
Theorem 1.16 and Theorem 1.17, we know Cz = Cone(A>).

For all c ∈ C, by the Duality theorem of LP of the form Theorem 1.13 we obtain
c> = y>A for some y ≥ 0. That is, c ∈ Cone(A>). So C ⊆ Cz.

Conversely, for each c ∈ Cz, we have

c =
m∑

i=1

λiai where λ1, . . . , λm ≥ 0,
m∑

i=1

λi = 1

Then for all x ∈ P ,

c>x =
m∑

i=1

λia
>
i x ≤

m∑

i=1

λibi ≤
m∑

i=1

bi

So max{c>x | x ∈ P} is finite, namely Cz ⊆ C.
Next we extend the concept of polar to Polyhedra by define:

Definition 1.11. Let P be a polyhedron in Rn, define P ∗ by

P ∗ := {y ∈ Rn | x>y ≤ 1 ∀x ∈ P}
And P ∗ is called the dual of P .

Proposition 1.19. Let C be a convex cone in Rn. Then Cz = C∗.

Proof. By the definition of Cz and C∗, we know Cz ⊆ C∗. For each x /∈ Cz, namely
there exists a c ∈ C, such that c>x = δ > 0. Without loss of generality, δ = 1. Then
x /∈ C∗. So Cz = C∗.

Theorem 1.20 (Exercise [1] 2.14). Let P be a polyhedron.

(i) P ∗ is again a polyhedron.

(ii) P contains the origin, iff (P ∗)∗ = P .

(iii) The origin is an internal point of P , iff P ∗ is bounded.

Proof. (i). Let X = lift(P ), Q = Cone(X). Then by Theorem 1.16, Q∗ is again a convex
cone.

Since

x>y ≤ 1 ⇐⇒ (
x 1

) (
y
−1

)
≤ 0

and it follows

y ∈ P ∗ ⇐⇒
(

y
−1

)
∈ Q∗

Hence P ∗ = −slice(−Q∗) is a polyhedron5.

Proof. (ii). Necessity. It is easy to show that ∀p ∈ P , p ∈ (P ∗)∗. So P ⊆ (P ∗)∗.
For any p′ /∈ P , there exists a hyperplane c>x = δ such that ∀p ∈ P , c>p < δ, and

c>p′ > δ. Since P contains the origin, c>0 = 0 < δ. Without loss of generality, δ = 1. It
follows ∀p ∈ P , c>p < 1. So c ∈ P ∗. As c>p′ > 1, p′ /∈ (P ∗)∗. So P = (P ∗)∗.

Sufficiency. Since 0 ∈ (P ∗)∗ and P = (P ∗)∗, one has 0 ∈ P .
5Here we use −A to express the set {−x | x ∈ A}.
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Proof. (iii). Necessity. If the origin is an internal point of P , that is there exists r > 0,
such that B(0, r) ⊆ P . And for each y 6= 0 in P ∗, let x = r||y||−1y. Since ||x|| = r,
x ∈ B(0, r) ⊆ P . So x>y ≤ 1. That is, r||y|| ≤ 1, ||y|| ≤ 1/r. Hence P ∗ ⊆ B(0, 1/r), P ∗

is bounded.
Sufficiency. If P ∗ is bounded, that is, P ∗ is a polytope. Let

P ∗ = Conv.hull(y1, . . . , yt)

Then (P ∗)∗ = {x ∈ Rn | y>j x ≤ 1 j = 1, . . . , t}.
If 0 /∈ P , there exists a hyperplane c>x = δ, such that for each p ∈ P , c>p < δ, and

c>0 = 0 > δ. So kc ∈ P ∗, ∀k ∈ R+. This contradicts P ∗ is bounded. So 0 ∈ P , therefore
P = (P ∗)∗, namely

P = {x ∈ Rn | y>j x ≤ 1 j = 1, . . . , t}
As y>j 0 = 0 < 1 for all j = 1, . . . , t, the origin is an internal point of P .

Now we recall the basic idea of the proof of Theorem 1.6. In fact, the idea is quite
simple.

We have a polytope P , and we want to prove it is also a bounded polyhedron. It is
not so easy to do directly, so we use a indirect way to show this. First we show the polar
of a polytope is a polyhedron, thus P ∗ is a polyhedron. And by Theorem 1.5.1, we know
P ∗ is a polytope. This follows (P ∗)∗ is a polyhedron. Since P = (P ∗)∗, we obtain P is
a polyhedron.

1.6 Faces, edges and vertices

Definition 1.12. Let P = P (A, b) is a polyhedron with A ∈ Rm×n and b ∈ Rn. Then
x ∈ P (A, b) is called an inner point of P , iff a>i x < bi for all i /∈ r=(A, b). That is,
r=
x (A, b) = r=(A, b).

Proposition 1.21. Every nonempty polyhedron has an inner point.

Proof. Let P be a polyhedron in Rn, and we prove by induction on n.
If P is contained in some hyperplane, the induction hypothesis gives the proposition.

So we may assume that P is not contained in any affine hyperplane. This follows there
are t affinely independent vectors x1, x2, . . . , xt ∈ P , namely x2 − x1, . . . , xt − x1 span
Rn. It follows that there exists a vector x0 ∈ P and a real r > 0, such that B(x0, r) is
contained in P . Then x0 is an inner point of P .

Next, we give the definition of the dimension of a polyhedron:

Definition 1.13. A polyhedron P is of dimension k, denoted by dim(P ) = k, if the
maximal number of affinely independent points in P is k + 1.

We say dim(P ) = −1, if P = ∅.
Lemma 1.2. Let A ∈ Rm×n and b ∈ Rm. Then dim(P (A, b)) = n − rank(Ab) provided
that P (A, b) is nonempty.

Proof. The solution space for Abx = 0 is of dimension n − rank(Ab). That is, there are
n − rank(Ab) linearly independent vectors x1, . . . , xn−rank(Ab) satisfying Abx = 0. And
this follows 0, x1, . . . , xn−rank(Ab) are affinely independent. According to Proposition 1.21,
we can take an inner point in P (A, b), say x̃. This implies that there exists a small enough
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real ε > 0, satisfying x̃, x̃ + εx1, . . . , x̃ + εxn−rank(Ab) are affinely independent points in
P (A, b). So dim(P (A, b)) ≥ n− rank(Ab).

Next we show that dim(P (A, b)) ≤ n− rank(Ab). Let y1, . . . , yk be a set of k affinely
independent points in P (A, b). By the definition of Ab, let β ∈ R|r=(A,b)| be a vector
containing all bi where i ∈ r=(A, b). Then to any x ∈ P (A, b), Abx = β. Hence y1, . . . , yk

are affinely independent solutions to the system Abx = β. So k ≤ n − rank(Ab) + 1.
Therefore dim(P (A, b)) ≤ n− rank(Ab).

Before giving the first theorem in this section, we provide some definitions:

Definition 1.14. Let c ∈ Rn, δ ∈ R and P be a nonempty polyhedron. Then the halfspace
{x ∈ Rn | c>x ≤ δ} is called a supporting halfspace of P , iff it contains P .

If H = {x | c>x ≤ δ} is a supporting halfspace of P , then we say F := P ∩{x | c>x =
δ} is a face of P , and c>x ≤ δ represents it. A face F is said to be proper if F 6= ∅
and F 6= P . If F 6= ∅, we say that Ax ≤ b supports F .

The face of dimension dim(P )− 1 is called a facet of P . The face of dimension 0 is
called a vertex of P .

The face F is supported by c>x ≤ δ iff max{c>x | x ∈ P} = δ, and in such a case it
holds F is the set of optimal solutions to the LP program max{c>x} subject to x ∈ P .
By Lemma 1.1 on page 12, we know nonempty F exists if max{c>x | x ∈ P} is finite.

And by Theorem 1.4 on page 5 and Theorem 1.2, we obtain:

Theorem 1.22. Let P be a nonempty polyhedron P (A, b) where A ∈ Rm×n and b ∈ Rn.
Then following assertions are equivalent:

1. z is an extreme point of P .

2. z is a vertex of P .

3. rank(Az,b) = n.

Theorem 1.23. Let A be an m× n matrix, b ∈ Rn, P = P (A, b) and F is a nonempty
face of P . Then F is a polyhedron of the form

F = { x ∈ Rn : a>i x = bi ∀i ∈ r=
F (A, b)

a>i x ≤ bi ∀i /∈ r=
F (A, b) }

Proof. Let F be a face of P supported by c>x ≤ δ. Then by the definition of F , we have



A
c>

−c>


 x ≤




b
δ
−δ




So F is a polyhedron.
Assume r=

F (A, b) = k. Without loss of generality, r=
F (A, b) = {1, 2, . . . , k}. Then let

F ′ = {x ∈ Rn | a>1 x = b1, . . . , a>k x = bk, a>k+1x ≤ bk+1, . . . , a>mx ≤ bm}

The definition of F ′ directly follows F ⊆ F ′. Next we show that F ′ ⊆ F .
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By Proposition 1.21, we can take an inner point of F , say x′. This follows:

r=
x′(A, b)

= r=
x′

(


A
c>

−c>


 ,




b
δ
−δ




)
\{m + 1,m + 2}

= r=
F

(


A
c>

−c>


 ,




b
δ
−δ




)
\{m + 1,m + 2}

= r=
F (A, b)

So a>i x′ = bi for i = 1, 2, . . . , k and a>i x′ < bi for i = k + 1, . . . , m. This gives
c ∈ Cone(a1, . . . , ak). Let c = λ1a1 + . . . + λkak and y′ =

(
λ1 . . . λk 0 . . . 0

)>,
then y′>b = δ and y′>A = c>. For all x ∈ F ′, we have c>x = y′>Ax = y′>b = δ. So
F ′ ⊆ F .

This theorem directly gives:

Corollary 1.23.1. The number of distinct faces of a polyhedron is finite.

Proof. To a polyhedron P = P (A, b) where A ∈ Rm×n and b ∈ Rn, the number of all its
distinct faces will not exceed 2m.

This property shows that to a polyhedron P , although there can be infinite many
of vector c which satisfies δ = max{c>x | x ∈ P} is finite, the number of distinct faces
supported by c>x ≤ δ is finite.

Moreover, we have:

Corollary 1.23.2. The intersection of two faces of P is again a face of P .

Corollary 1.23.3. If P is a polyhedron, F is a face of P and G is a face of F . Then G
is also a face of P .

Theorem 1.24. Suppose P = P (A, b) 6= ∅ and rank(A) = n − k. Then each minimal
nonempty face of P under inclusion has dimension k.

Proof. Let F be a minimal nonempty face of P under inclusion. If dim(F ) = 0, according
to Lemma 1.2 and Theorem 1.23, 0 = dim(F ) = n − rank(AF,b) ≥ n − rank(A), so
rank(A) = n, k = 0. The theorem follows.

Next we assume dim(F ) > 0. By Proposition 1.21, we can take an inner point x′ of
F . Since dim(F ) > 0, there exists a y ∈ F , y 6= x. Consider the line L connecting x′ and
y:

L = {x | x = x′ + λ(y − x′)} where λ ∈ R
If L intersects with a hyperplane H = {x | a>i x = bi}, where i /∈ r=

F (A, b) = r=
x′(A, b).

Then the nonempty set F ′ = F ∩H does not contain x′. Thus r=
F ′(A, b) ⊇ r=

F (A, b)∪{i}.
And this implies dim(F ′) < dim(F ), which contradicts the choice of F .

So L does not intersect with any hyperplane H = {x | a>i x = bi} where i /∈ r=
F (A, b).

This follows L is contained in P , namely Ax′ + λA(y − x′) ≤ b for all λ ∈ R. So
A(y − x′) = 0 for all y ∈ F . This gives F = {y | Ay = Ax′}. As rank(A) = n − k, by
Theorem 1.23 we obtain dim(F ) = k.

As a direct consequence of this theorem, we have
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Corollary 1.24.1 (Exercise [1] 2.22). Let P = P (A, b) be a nonempty polyhedron with
at least one vertex. Then for all vector c such that

δ = max{c>x | x ∈ P}

is finite, there exists a vertex x′ of P , satisfying c>x′ = δ.

Corollary 1.24.2. For A ∈ Rm×n and c ∈ R, P (A, b) 6= ∅ has a vertex iff rank(A) = n.

Since an m×n matrix A with rank(A) = n has at most Cn
m invertible submatrices with

the size of n× n, we obtain that the polyhedron P (A, b) contains at most Cn
m vertices.



Chapter 2

Integer programming, totally unimodular matrices

2.1 Integer linear programming

Let b ∈ Rm, c, d ∈ Rn and A,B ∈ Rm×n. To the LP problem

max{c>x + d>y}
subject to

x, y ∈ Rn
+, Ax + By ≤ b

if we add one more restriction that y is an integer vector, namely y ∈ Zn
+, the LP problem

is now called a mixed-integer linear programming (MIP) problem.
Moreover, an integer linear programming (IP) problem is a special case of MIP prob-

lem in which there are no continuous variables:

max{c>x | x ∈ Zn
+, Ax ≤ b}

Although LP is solvable in polynomial time, the general IP problem is NP-complete.
However, in some special classes of IP problem, polynomial-time algorithms have been
found.

Definition 2.1. To a polyhedron P = P (A, b), if for each vector c satisfying δ =
max{c>x | x ∈ P} is finite, there exists an integer vector x′ ∈ P , such that c>x′ = δ, we
say the polyhedron P is integral.

By Definition 2.1, we know the IP problem over an integral polyhedron P collapses
to an LP problem.

Definition 2.2. Let P be a convex set in Rn. Define the integer hull of P by

Conv.hull(P ∩ Zn)

which is the convex hull generated by all integer points in P .

Proposition 2.1. A polyhedron P is integral iff the integer hull of P is P itself.

Proof. Necessity. By Theorem 1.10 on page 10, we know P = Q + C where Q is a
polytope and C is a finitely generated cone. Without loss of generality, each vertex of Q
is also the vertex of P . Since P is integral, Q and C can both be generated by integer
points. Therefore the integer hull of P equals to P itself.

Sufficiency. Since the integer hull of P is P itself, we know each face of P which is
the set of solution to some optimization problem on P , contains an integer point.

24
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2.2 Totally unimodular matrices

Definition 2.3. A unimodular matrix is a square integer matrix whose determinant
has magnitude 1.

A totally unimodular matrix is a matrix with all its square submatrix having de-
terminant equals to 0, +1 or −1. That is, all nonsingular square submatrices of a totally
unimodular matrix are unimodular.

Proposition 2.2. Let A be a totally unimodular n×m matrix. Then

−A, A>,
(
A In

)
,

(
A
Im

)
,

(
A −A

)
and

(
A
−A

)

are also totally unimodular.

Proof. Firstly, it is quite clear that −A and A> are totally unimodular.
Secondly, we show

(
A In

)
is totally unimodular. For each square k × k submatrix

B of
(
A In

)
, suppose the first t columns of B come from A, and the other k − t ones

come from In. Next we induction on t.
If t = k, B is a submatrix of A. Since A is totally unimodular, |det B| equals to 0 or

1. If t < k, the last column of B contains all 0’s but one 1. Let the 1 be on the r-th row
of B, then det(B) = (−1)r+k(detB′), where B′ is a (k − 1)× (k − 1) matrix given by B
omitting the r-th row and the k-th column. By our induction hypothesis, |detB′| equals
to 0 or 1. Hence |det B| also equals 0 or 1. This follows

(
A In

)
is totally unimodular.

Similarly we can show
(

A
Im

)
is totally unimodular.

Next we prove
(
A −A

)
is totally unimodular. Let B be a submatrix of

(
A −A

)
.

If there exists a column i, such that the i-th columns of A and −A both occur in B, we
can easily derive that detB = 0.

Otherwise B can be given by rearranging the columns of a submatrix of A, say C,
then multiply −1 to some of its columns. This implies |det B| = |detC|, namely |det B|
equals 0 or 1.

Next we show the relationship between totally unimodular matrices and the IP prob-
lem:

Lemma 2.1. Let A be a totally unimodular m × n matrix and let b ∈ Zm. Then each
vertex of the polyhedron P = P (A, b) is an integer vector.

Proof. Let z be a vertex of P . By Theorem 1.22 on page 21, we know rank(Az,b) = n.
Hence Az,b has a nonsingular n× n submatrix A′. Let b′ be the part of b corresponding
to the rows of A that occur in A′. Then, we have A′z = b′.

Since A is totally unimodular, |detA′| = 1. Because A′ is an integer matrix, (A′)−1

is also integer. Therefore z′ = b′(A′)−1 is an integer vector.

Theorem 2.3. Let A be a totally unimodular m × n matrix and let b ∈ Zm. Then the
polyhedron P = P (A, b) is integral.

Proof. Let c ∈ Rn and x = x∗ be an optimum solution of the LP problem

max{c>x | x ∈ P}
Choose d1, d2 ∈ Zn such that d1 ≤ x∗ ≤ d2, and consider that polyhedron

Q := {x ∈ Rn | Ax ≤ b, d1 ≤ x ≤ d2}
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Let

A′ :=




A
−I
I


 and b′ :=




b
−d1

d2




then
Q = {x ∈ Rn | A′x ≤ b′}

Since Q is of full column rank, by Theorem 1.24 on page 22, Q contains a vertex. And
by Corollary 1.24.1 we obtain the maximum of LP problem {c>x | x ∈ Q} is attained
at a vertex of Q, say x̃. By Proposition 2.2, we know A′ is totally unimodular. Thus
according to Lemma 2.1, x̃ is integer.

As x∗ ∈ Q, c>x̃ ≥ c>x∗. Hence x̃ is also an optimum solution of LP problem

max{c>x | x ∈ P}

By Proposition 2.2 and Theorem 2.3, we can derive:

Corollary 2.3.1. Let A be an m×n totally unimodular matrix. Let b ∈ Zm and u ∈ Zn.
Then each of the following polyhedra is integral:

1. P (A, b)

2. P (A, b) ∩ Rn
+

3. P=(A, b)

4. P=(A, b) ∩ {x | x ≤ u}
Proof. P (A, b) being integral is directly given by Theorem 2.3.

Let

A′ =
(

A
−I

)
and b′ =

(
b
0

)

we know A′ is totally unimodular and b′ ∈ Zm+n. Thus P (A′, b′) = P (A, b) ∩ Rn
+ is

intergal.
Similarly, let

A′ =
(

A
−A

)
and b′ =

(
b
−b

)

then A′ is totally unimodular and b′ ∈ Z2m. So P (A′, b′) = P=(A, b) is intergal.
Finally, let

A′ =




A
−A
I


 and b′ =




b
−b
u




then A′ is totally unimodular and b′ ∈ Z2m+n. So P (A′, b′) = P=(A, b) ∩ {x | x ≤ u} is
intergal.

In the following part of this section, we will prove the famous Hoffman-Kruskal The-
orem. As a preparation, we prove:
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Lemma 2.2. Let b ∈ Zm, and A be an integer m× n matrix such that the polyhedron

P = P (A, b) ∩ Rn
+ = {x | Ax ≤ b, x ≥ 0}

is integral. And let B =
(
A I

)
. Then for any c ∈ Zn, each vertex (if any) of the

polyhedron
Q = P=(B, c) ∩ Rn

+ = {x | Bx = c, x ≥ 0}
is integer.

Proof. Let

z =
(

z1

z2

)

be a vertex of Q where z1 ∈ Rn
+ and z2 ∈ Rm

+ . Since z ∈ Q, namely Bz = Az1 + z2 = c,
we have Az1 = c − z2 ≤ c. This means z1 ∈ P . Moreover, z1 is an extreme point of P .
If not so, namely there exists u, v ∈ P , such that u 6= v and z1 = (u + v)/2, we have

z2 = c−Az1 = c− A(u + v)
2

=
1
2
(c−Au) +

1
2
(c−Av)

Thus

z =
(

z1

z2

)
=

1
2

(
u

c−Au

)
+

1
2

(
v

c−Av

)

This contradicts the fact that z is a vertex of Q.
Since P is integral, z1 is integer. Therefore z2 = c−Az1 is also integer.

With Lemma 2.2 in hand, we can now start to prove Hoffman-Kruskal Theorem:

Theorem 2.4 (Hoffman-Kruskal Theorem). Let A ∈ Zm×n. Then A is totally
unimodular, iff for each b ∈ Zm, the polyhedron

P = P (A, b) ∩ Rn
+ = {x | Ax ≤ b, x ≥ 0}

is integral.

Proof. Necessity. Let A′ =
(

A
I

)
and b′ =

(
b
0

)
, then A′ is also totally unimodular and

P = P (A′, b′). By Theorem 2.3, we obtain P is integral.
Sufficiency. Let B =

(
A I

) ∈ Zm×(n+m). Then A is totally unimodular iff each
nonsingular m×m submatrix of B has determinant ±1.

Let C ∈ Zm×m be a unsingular submatrix of B. Next we show C−1 is integer. To
any v ∈ Zm, there exists another vector u ∈ Zm such that

z = u + C−1v ∈ Zm
+

Let b = Cz, then b = Cz = Cu + CC−1v = Cu + v is integer.
Without loss of generality, C contains first m columns of B, namely B =

(
C D

)
.

And we raise z to z′ ∈ Zn+m:

z′ =
(

z
0

)

where 0 is an all-zero vector in Rn.
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Let

E =




B
−B
−I


 and f =




b
−b
0




Then for system
Ez′ ≤ f

the equality holds for the first m rows and last n rows of E. Since rank(C) = m, and the
last n rows come from −I, we obtain rank(Ez′,f ) = m + n. By Theorem 1.4 on page 5,
z′ is a vertex of polyhedron P (E, f) = P=(B, b) ∩ Rm

+ . By Lemma 2.2, z′ is integer. So
z is integer.

Hence for any integer vector v, C−1v = z − u is integer. Therefore C−1 is integer.
This implies C is integer.
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