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Introduction
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Distance function and metric

Let X be a set and d be a map from X ×X to R.

We call d a distance function on X provided

I d(x, x) = 0 and

I d(x, y) + d(y, z) ≥ d(x, z) ≥ 0

hold for all x, y, z ∈ X.

We call d a metric on X provided

I d(x, x) = 0 and

I d(x, y) + d(z, y) ≥ d(x, z)

hold for all x, y, z ∈ X.

Note that a metric is just a symmetric distance function. We call
(X,d) a metric space if d is a metric and call (X,d) a directed
metric space if d is a distance function.

3 / 36



KR-polytope and L-polytope of a distance function

For each a ∈ X, let δa be the function on X which takes value 1
at a and value 0 elsewhere. For any a, b ∈ X, let La,b denote the

closure of { δa−δbt : t > d(a, b)} in RX .

Let V0(X) = {f ∈ RX :
∑

x∈X f(x) = 0} (Hyperplane).

KR-polytope: Pd = conv(∪a,b∈XLa,b) ⊆ V0(X).

Its polar:

P∆
d = {f ∈ RX : 〈f, g〉 ≤ 1,∀g ∈ Pd}

= {f ∈ RX : f(a)− f(b) ≤ d(a, b), ∀a, b ∈ X}

L-polytope: Qd = P∆
d ∩ V0(X).
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|X| = 4, d(x, y) = 1 for all x 6= y ∈ X.

Figure: KR-polytope Pd. f -vector = (f0, f1, f2) = (12, 24, 14).
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|X| = 4, d(x, y) = 1 for all x 6= y ∈ X.

Figure: L-polytope Qd. f -vector = (f0, f1, f2) = (14, 24, 12).
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X = {a, b, c, d}, d(a, b) = d(c, d) = 1,
d(a, c) = d(a, d) = d(b, c) = d(b, d) = 2.

Figure: L-polytope Qd.
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d(a, b) = d(c, d) = 2, d(a, c) = d(b, d) = 3, d(a, d) = d(b, c) = 4.

Figure: The KR-polytope Pd and the icosahedron have the same face
lattice.
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Asymmetric norm

Asymmetric Lipschitz norm on V0(X): Given f ∈ V0(X),

‖ f ‖L= min{k : f(a)− f(b) ≤ k d(a, b), ∀a, b ∈ X}.

The L-polytope Qd is the unit ball of the Lipschitz norm on V0(X)
associated with the distance function d.
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If (X,d) is a metric space, then the KR-polytope Pd is the unit
ball of the (asymmetric) Kantorovic-Rubinstein norm on V0(X)
associated with the metric d.

Vershik calls Pd the fundamental polytope of the metric d and he
suggests to study the convex geometry of the fundamental
polytope.
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Problems of Vershik

I Characterize the face lattice of the KR-polytope, say
calculating its f -vector.

I Provide sufficient conditions for two metrics to be equivalent,
meaning that the face lattices of their KR-polytopes are
isomorphic.

I Classify all the n-point metrics up to equivalence.

9 / 36



General metric
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3-point metric (KR-polytope Pd)

d(a, b) = d(b, c) = d(a, c) = 1.

vabvac

vcbvbc

vba vca

d(a, b) = d(b, c) = 1,d(a, c) = 2.

vab

vac

vcbvbc

vba

vca
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Theorem (Melleray, Petrovy, Vershik)

Let X be an n-element set and d a symmetric function from
X ×X to R≥0 with d−1(0) = {(x, x) : x ∈ X}. Then, (X,d) is a
metric space if and only if vab (= δa−δb

d(a,b) ) lies in the

(n− 2)-skeleton of Pd for every {a, b} ∈
(
X
2

)
.

Theorem
Let X be an n-element set and d a function from X ×X to R≥0

with d−1(0) = {(x, x) : x ∈ X}. Then, (X,d) is a directed metric
space if and only if vab lies in the (n− 3)-skeleton of Pd for every
{a, b} ∈

(
X
2

)
or when (X,d) can be isometrically embedded into

the real line R.
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Alternating inequality

Let (X,d) be a metric. For a sequence θ of distinct elements
x1, x2, . . . xk in X, the alternating inequality for θ tells us the sign
of

d(x1, xk)−
k−1∑
i=1

(−1)i d(xi, xi+1)

and

d(x1, xk)−
k−1∑
i=1

(−1)i−1 d(xi, xi+1).

Example (Not all alternating relations are possible)

For sequence a, b, c in X,

d(a, c) + d(b, c) ≥ d(a, b) ⇒ d(a, c) ≥ d(a, b)− d(b, c),

d(a, c) + d(a, b) ≥ d(b, c) ⇒ d(a, c) ≥ −d(a, b) + d(b, c).
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A sufficient condition

Theorem
If two metrics d1 and d2 on |X| are not equivalent, then there
exists a sequence θ of length at most |X| such that d1 and d2 have
different alternating relations for θ.
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Tight span

Given a finite metric space (X,d), we construct the unbounded
polyhedron

P (X,d) = {f ∈ RX : f(a) + f(b) ≥ d(a, b), ∀a, b ∈ X}.

Tight span is the union of bounded faces of P (X,d):

T(X,d) = {f ∈ RX : f(a) = sup
b∈X
{d(a, b)− f(b)}, ∀a ∈ X}.

Isbell (1964): T(X,d) is a smallest injective metric space
containing an isometric copy of X.

Dress (1984): When (X,d) is a tree metric, T(X,d) is a tree
which encodes the metric (X,d).

15 / 36



Projecting tight span into L-polytope

T(X,d)

Qd

X
x 7→ kx

π

kx : y 7→ d(x, y)

π : f 7→ f −
∑

x∈X f(x)

n 1 ∈ V0(X).

Theorem
π(T(X,d)) ⊆ Qd, and π(kx) is vertex of Qd if kx is a dimension
zero face of T(X, d) for each x ∈ X.
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Tree metric
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Tree metric

|X| = 4, d(a, b) = 1 for all a 6= b ∈ X.

a

b

c

d

0.5

0.5

0.5

0.5

X = {a, b, c, d}, d(a, b) = d(c, d) = 1,
d(a, c) = d(a, d) = d(b, c) = d(b, d) = 2.
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A tree on n vertices and its n single-source orientations

i

a

b

c

d

σa

σi

σb

σc

σd
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From an oriented X-tree to a point in V0(X)

eA B

Let T be a tree with leaf set X where each edge e is assigned a
weight ω(e). Fix an orientation σ of T . For each edge e of T ,
define a vector fe ∈ V0(X) such that

fe(v) =

{
ω(e)|B|
|X| , if v ∈ A,
−ω(e)|A|

|X| , if v ∈ B,

where A is the set of leaves at the head side of e and B is the set
of leaves at the tail side of e.

We associate with the weighted oriented tree (T, σ, ω) the vector

fT,σ,ω =
∑

e∈E(T )

fe ∈ V0(X).
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Embedding a tree into its L-polytope

i
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Theorem
Let T be a weighted tree and let (X,dT ) be the induced tree
metric. For all the 1-source orientations of T we construct a graph
T̃ = (V,E) such that

I V = {fT,σ : σ is a 1-source orientation of T} and

I E = {(fT,σ1 , fT,σ2) : σ1 and σ2 differ at exactly one edge}.
Then

T̃ = π(T(X,dT )).
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Directed tree metric

We replace every edge of a tree by two arcs in reverse directions
and assign positive weights to them which are not necessarily
equal. Directed metrics induced by these kinds of directed trees are
called directed tree metrics.
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Minkowski decomposition

a

b d

c

1

2

0.5

1

1

e 0.8

1

0.2

1

1

de(x, y) =

{
0.8, if e ∈ x→ y;
0, otherwise.

Metric decomposition: dT =
∑

e∈E(T ) de .

Theorem
If (X,dT ) is a directed tree metric space, then

QdT
=

∑
e∈E(T )

Qde ,

where E(T ) refers to the set of all those arcs of T .
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Directed tree metric ⇔ L-polytope is zonotope

Theorem
Let (X,d) be a directed metric space. Then Qd is a zonotope if
and only if d is a directed tree metric.
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f -vector of L-polytope

Let dT be a directed tree metric displayed by the leaves of
weighted directed tree T .

I f0(QdT
) = 2

∏
v(2

deg(v) − 1), where v runs through all
interior vertices of T .

Theorem
If T is a weighted directed binary tree, then the f -vector of QdT

is
determined by

fi =

min{i+1,n−i−1}∑
k=1

2k3n−i−k−1

(
n

n+ k − i− 1

)(
n− i− 2

k − 1

)
,

where n = |X| and i ranges from 0 to n− 2.
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Theorem
Let T and T ′ be two weighted directed trees. Then dT and dT ′ are
equivalent if and only if T and T ′ are isomorphic as (unweighted)
graphs.

Corollary

A weighted tree T is determined by the 1-skeleton of QdT
.
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1-skeleton graph of QdT

Proper orientation: An orientation of edges of T such that only
leaves could be source/sink vertices.

Theorem
The vertex/edge sets of the 1-skeleton graph of QdT

are as
follows:

I V = {fT,σ : σ is a proper orientations of T},
I E = {(fT,σ1 , fT,σ2) : σ1 and σ2 differ at exactly one edge}.

Figure: Two adjacent proper orientations.
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The orientation graph

For any graph G, an orientation of its edge set is proper if all the
source/sink vertices have degree at most 1.

Claim
Every graph admits a proper edge orientation.

We construct the orientation graph O(G) = (V,E) by setting

I V = {proper orientations σ of G},
I E = {(σ1, σ2) : σ1 and σ2 differs at exactly one edge}.

Our questions on O(G):

I Size?

I If the graph G has no degree-two vertices, is O(G)
connected? What about its vertex connectivity?

I Minimal degree?

I When can we reconstruct G from O(G)?
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Four-point metric space
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4-point metrics (d(x, y) + d(y, z) > d(x, z))

a

b

c

d

a

b d

c

a

b d

c

x

x

x

x

a

b d

c

x

y

x

y

y > x

ad+ bc=ac+ bd=ab+ cd ad+ bc=ac+ bd>ab+ cd

ad+ bc>ac+ bd=ab+ cd ad+ bc>ac+ bd>ab+ cd

(ab is the shorthand of d(a, b).)
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For sequence a, b, c, d in X,

d(a, d)+d(b, c) > d(a, b)+d(c, d)⇒ d(a, d) > d(a, b)−d(b, c)+d(c, d).

Partial order on the fours metric classes:

==

=> >=

>>

Observation: d1 � d2 if and only if Pd1 is a refinement of Pd2 .
(Refinement: For every facet F1 of Pd1 , there exists a facet F2 of
Pd2 such that Vert(F1) ⊆ Vert(F2).)

Can this phenomenon be generalized to metric spaces of bigger
size?
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Theorem
There are in total 13 nonequivalent proper metrics on a set of size
four.
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Further research
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I Relations with directed tight span (Hirai, Koichi)

I Relation with enriched category theory approach to metric
spaces (Leinster, Willerton)

I Split decomposition of metrics w.r.t L-polytopes vs. that w.r.t
tight span (Bandelt, Dress)

I Characterize the polytopes of some nice metric spaces
(Hamming scheme, Johnson scheme)

I Various extremal problems about f -vectors
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Thank You!
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