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Discrete dynamical system (äÑÌåÑÁ)

Let S be a set and let F be a family of maps from S to S .

Viewing the maps in F as a set of time-evolution laws and S the
set of possible states, the pair (S ,F ) forms a discrete
dynamical system, where the dynamics are given by iterating
the maps in F .
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Phase space (��W)

The phase space of the discrete dynamical system (S ,F ),
denoted by PSS ,F or simply PSF , is the digraph with vertex set
S and arc set {s→ f (s) : s ∈ S , f ∈ F }.

When F is a singleton set { f }, we call PSF the phase space of
a single map f and often write it as PS f . The digraph PS f has
constant out-degree 1 and so each weakly connected
component of it is a cycle with a directed tree (known as its
transient there) attached to each vertex in the cycle.
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Discrete Models in Systems Biology Workshop SAMSI

Example

The wiring diagram:

x4

x1 x2

x3

Let f1 = ¬x2, f2 = x4 ∨ (x1 ∧ x3), f3 = x4 ∧ x2, f4 = x2 ∨ x3.

The phase space of f :

 0 0 0 0

 1 0 0 0  0 0 0 1

 1 1 0 0

 0 0 1 0

 1 0 0 1

 0 0 1 1

 1 1 0 1

 0 1 1 1

 0 1 0 0

 0 1 0 1

 0 1 1 0  1 0 1 0  1 0 1 1  1 1 1 0

 1 1 1 1

Virginia Bioinformatics Institute 3 Virginia Tech

Figure: http://www.samsi.info/sites/default/files/
abdul_jarrah_122008.pdf
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Rooted labelled tree (k��ÿµ)

I A rooted labelled n-vertex tree is a rooted tree T with n
vertices together with a bijection ` from V(T ) to Zn.

I We say that this labelled tree T = (T, `) has tree type T .
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Trees and permutations (µ��m)

We define two maps pn and qn from the set of all rooted labelled
n-vertex trees to itself, which involve both one-line notation and
cycle notation of permutations.
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The map pn (N�pn)

T1 = (T, `)

3

4 1

5 6 2

T2 = (T, p6(`))

3

6 2

4 5 1

p6

Multiplication from right to left (cycle notation):
(2, 1)(1, 3)(6, 4)(5, 4)(4, 3) = (3, 5, 6, 4, 2, 1)

Change the labelling (one-line notation):

3

3

5

4

6

5

4

6

2

1

1

2

`

p6(`)
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The map qn (N�qn)

T1 = (T, `)

3

4 1

5 6 2

T3 = (T, q6(`))

3

6 4

2 1 5

q6

Multiplication from right to left (cycle notation):
(2, 1)(1, 3)(6, 4)(5, 4)(4, 3) = (3, 5, 6, 4, 2, 1)

Change the labelling (one-line notation):

3

3

5

2

6

1

4

6

2

5

1

4

`

q6(`)
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A quiz (�i�)

The phase spaces of pn and qn are denoted Pn and Qn,
respectively.

What is the shape of Pn and Qn? Or, what is the dynamical
behavior of pn and qn?
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Fixed points of pn (pn�ØÌm)

Theorem (W., Xu, Zhu). The set of labelled n-vertex trees of
star type coincides with the set of fixed points of pn.

1

2 3 6 4 5

T4: a star

(6, 1)(5, 1)(4, 1)(3, 1)(2, 1)
= (1, 2, 3, 4, 5, 6)

Figure: T4 is a fixed point of p6.
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Fixed points of qn (qn�ØÌm)

Theorem (W., Xu, Zhu). A rooted n-vertex tree T with iT

inner vertices admits exactly α(T ) labellings ` such that (T, `) is
a fixed point of qn, where α(T ) = 2iT if the root of T is a leaf and
the maximum degree of T is at most 3, and α(T ) = 0 otherwise.

1

3

2 5

4 6

T5: a tree T6: a path

(6, 5)(5, 3)(4, 5)(3, 1)(2, 3)
= (1, 6, 5, 4, 3, 2)

(6, 2)(5, 3)(4, 5)(3, 6)(2, 1)
= (1, 6, 5, 4, 3, 2)

1 2 6 3 5 4

Figure: Both T5 and T6 are fixed points of q6.
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T1 T2

T4

Figure: Typical weakly connected components of P6.

T1 T3

T5 T6

Figure: Typical weakly connected components of Q6.
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Theorem (W., Xu, Zhu). Each vertex of Pn (Qn) is either a
loop vertex or on a 2-cycle or has its unique out-neighbor in a
2-cycle.
Theorem (W., Xu, Zhu). For every rooted tree T with n
vertices, the number of labellings ` such that (T, `) is on a cycle
of Pn (Qn) is n

∏
v∈V(T ) degT (v)!.

1

2 4

3

1

3 4

2

1

4 2

3

1

3 2

4
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Perturbation of the rule (kn�9)

I In general, Pn and Qn are not isomorphic to each other.
I Let σn be the map from Zn to Zn that sends i to i + 1. Instead

of using the map pn and qn, we can use σk
n ◦ pn and σk

n ◦ qn

for some fixed k and get new dynamical systems. It is
observed that cycles of various lengths can happen in the
phase spaces of these more general dynamical systems.
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1.1 Permutation (�m)
1.2 Primitivity (��5)
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Matrix as a map on nonempty subsets (Ý4�N�)

Let k be a positive integer and let Setk denote 2[k] \ {∅}.

A map f from Setk to Setk is essential provided
I f (A) ∪ f (B) = f (A ∪ B), and
I f ([k]) = [k].

The digraph of f , denoted Γ f , is the digraph with vertex set [k]
such that i→ j is an arc of Γ f if and only if j ∈ f (i).

An essential map from Setk to Setk is the combinatorial
counterpart of a k by k matrix without zero lines. Indeed, such a
map f can be thought of as any k by k matrix M whose ith
column has f (i) as its support for all i ∈ [k].
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Primitive matrix set (��Ý4x)

Let F be a family of essential maps on Setk. Let the primitive
index of F , which we denote by g(F ), be the longest possible
length of a walk in PSF without using the arc [k]→ [k].

We say that F is primitive provided g(F ) is finite, namely
whenever the only cycle in PSF is the loop at [k].

It is clear that F is primitive if and only if g(F ) ≤ 2k − 2 and if
and only if PSF is acyclic after deleting the loop edge at [k].
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Wielandt-type matrices (Y×A.Ý4)

Take a positive integer k ≥ 2 and choose i ∈ [k − 1] satisfying
gcd(i, k) = 1. A Wielandt-type matrix Wk;i is the essential map
(matrix) A from Setk to Setk such that A(1) = {2}, . . . ,
A(k − 1) = {k}, A(k) = {1, 1 + i}.

W4;1 =


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

 ,W4;3 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 1

 ,W5;4 =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
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PSW4;1

1000 0100 0010 0001

1001
1100 0110 0011

1101
1011 1110 0111 1111
1010 0101

g(W4;1) = 10 = (4 − 1)2 + 1.

Wielandt (1959) shows that the primitive index of a primitive
(0,1) matrix of order k is at most (k − 1)2 + 1 and the bound is
attained if and only if the matrix is permutation similar to Wk;1.
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PSW4;3

1000 0100 0010 0001
1001

1100 0110 0011
1101 1111

1010 0101
1011

1110 0111

g(W4;3) = 6 = 2 × 4 − 2
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PSW5;4

10000 01000

11000

00100

01100

10100

11100

00010

00110

01010

01110

10010

10110

11010

11110

00001

00011

00101

00111

01001

01011

01101

01111

10001

10011

10101

10111

11001

11011

11101 11111

g(W5;4) = 8 = 2 × 5 − 2
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Extremal behavior of Wielandt-type matrices (!�Lð)

Lemma (Wang, W., Xiang). Let k ≥ 2 and A be a k × k
primitive (0,1) matrix. Then PSA has at least 2k−2 vertices of
in-degree zero, where the equality holds if and only if A is
permutation similar to a Wielandt-type matrix.
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Primitive index of matrix set of fixed size and order

Let gk,t be the maximum possible value of g(A) where A is a
primitive matrix set consisting of t (0, 1) matrices of order k.

Besides Wielandt’s bound of gk,1 = (k − 1)2 + 1 and the trivial
bound of gk,t ≤ 2k − 2, very little is known about gk,t.



g2,2 = 2 = 22 − 2 = (2 − 1)2 + 1
g3,2 = 6 = 23 − 2
g4,2 = 12 = 24 − 22

g5,2 ≥ 23 < 24 = 25 − 23

g6,2 ≥ 39 < 48 = 26 − 24
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Cohen-Sellers (1982) suggest to estimate the parameter γk,

where γk = min{t : gk,t = 2k − 2}.

Theorem (Wang, W., Xiang). It holds for all positive integers
k that γk ≤ 1 +

(
k−2

b(k−2)/2c

)
.

I Is the inequality in the theorem indeed an equality?
I γ1 = γ2 = 1, γ3 = 2, γ4 = 3, γ5 ∈ {3, 4}.
I The proof of the theorem makes very heavy use of the

structure analysis of the phase space of Wk;k−1 as well as
the chain decomposition of the Boolean algebra.

I Is there good understanding of the phase space of the
general Wielandt-type matrices?
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A pair of chain decompositions of 2[k]

k = 4 :



0 0 0 0 0 1
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
1 1 0 0 0 1
1 0 1 0 0 1
0 1 1 0 0 1
1 0 0 1 0 1
0 1 0 1 0 1
0 0 1 1 0 1
1 1 1 0 0 1
1 1 0 1 0 1
1 0 1 1 0 1
0 1 1 1 0 1
1 1 1 1 0 1



,



1 1 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 0
1 1 1 0 0 0
1 0 0 1 1 0
1 1 0 0 1 0
1 0 1 1 0 0
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 1 0
1 0 0 0 0 0
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Period (±Ï)

Let A be an essential map on Setk such that ΓA is strongly
connected. For every S ⊆ [k], we say that a positive integer i is
a period of A at S provided Ai(S ) ⊇ S and we write PerA(S ) for
the least period of A at S .

Example. For

A =


0 0 0 1 0
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0


,

we have
max

S∈Setk
PerA(S ) = 7

and
25→ 3→ 4→ 15→ 23→ 34→ 145→ 1235

is a walk of length 7 in PSA.
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Simplicial complex (C�¡E/)

Let Primk be the set of all primitive essential maps on Setk.

The kth primitive essential map complex is the simplicial
complex on the ground set Primk such that F ⊆ Primk is a face
of the complex if and only if F is primitive.
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Can we see/smell a linear map? (×kDñÚk�)

Figure: http://media.sjtu.edu.cn/photo!list.do?cid=23

I Take an essential map A on Setk such that ΓA is strongly
connected. What is the shape of PSA? Especially, how to
get an upper bound for maxS∈Setk PerA(S )?

I Is the primitive matrix set complex a pure simplicial
complex? Namely, is it true that all maximal faces of it are
of the same dimension?
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An evolutionary tree of life ()·üzµ)

Figure: https://en.wikipedia.org/wiki/Phylogenetics
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2.1 Preorder (OS)
2.2 Partition (�©)
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a

b

c

d
T

The leaf set of the tree T is X = {a, b, c, d}. The tree T induces
the tree metric DT ∈ Z

X×X given by
DT (a, a) = DT (b, b) = DT (c, c) = DT (d, d) = 0,DT (a, b) = DT (c, d) =

2,DT (a, c) = DT (a, d) = DT (b, c) = DT (b, d) = 3.

It also defines a total preorder pT on
(

X
2

)
:

ab = cd < ac = ad = bc = bd,

which comes from

DT (a, b) = DT (c, d) < DT (a, c) = DT (a, d) = DT (b, c) = DT (b, d).

We call pT a tree preorder.
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I The tree metrics have the famous 4-point condition
characterization.

I Is there any characterization for the tree preorders?
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Are there two different trees sharing the same leaf set and the
same preorder?

Of course, subdividing edges appropriately will give us many
such examples.

a

b

c

d
T

a

b

c

d
T ′

pT = pT ′ : ab = cd < ac = ad = bc = bd
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To see a world in a grain of sand (�s�. �ð�X¬)

Conjecture (W., Xiang, Xu). Let T and T ′ be two trees with
the same leaf set and without degree two vertices. If pT = pT ′ ,
then there is a graph isomorphism from T to T ′ which fixes
every leaf vertex of the tree.

Since the tree metric DT uniquely determines T , the above
conjecture basically says that we can uniquely reconstruct the
tree metric from the tree preorder provided the tree has no
degree two vertices.
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Regular tree (�nµ)

A regular tree is a tree all of whose inner vertices have the
same degree and that degree is at least 3.

Theorem (W., Xiang, Xu). Let T and T ′ be two regular trees
sharing the same leaf set. If pT = pT ′ , then there is a graph
isomorphism from T to T ′ which fixes every leaf vertex.
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Tell a tree from its distance set (çåä8wµ)

I The distance set of a tree T , denoted by DST , is the set of
numbers which appear as distances on T between pairs of
leaves.

I A set I of positive integers is called an avoidable tree
distance set if for every number k there exists a tree T
without degree 2 vertices such that its diameter is greater
than k and I ∩ DST = ∅.

I We say that a positive integer k is a distance jump of a tree
T provided there exists j ∈ DST such that

k = min{i : i > 0, i + j ∈ DST }.
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Symbolic dynamics (ÎÿÌåXÁ)

Theorem (W., Xu, Zhu). There is an algorithm to decide, for
any finite set I of positive integers, whether or not I is an
avoidable tree distance set.

Our algorithm is to transform the problem to that of deciding
whether or not a shift of finite type is an empty shift space.
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A tree without leaf distance 6 (ðWåØÑð8�µ)

Figure: DST = {2, 3, 4, 5, 7}
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Some low-hanging fruits (�Ã�Ó)

Theorem (W., Xu, Zhu).
I A positive integer is an unavoidable tree distance if and

only if it is one of 2, 4 and 6.

I A tree without degree 2 vertices and with diameter at least
6 can miss leaf distance 6 if and only if it is obtained from
the tree in the previous slides by adding leaves to those
vertices which is already adjacent to a leaf.

I The set {2k − 1, 2k} is an unavoidable tree distance set if
and only if k ≤ 6.

I ......
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Distance jump (åäa�)

Let O be the set of positive odd integers. An even tree is a tree
such that DST ∩O = ∅. It is easy to construct even trees without
degree 2 vertices and with arbitrarily large distance jumps.

For any given positive number k, is there always a set I of
consecutive positive integers of size bigger than k such that
I ∪ O is avoidable?
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2.1 Preorder (OS)
2.2 Partition (�©)
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Edge boundary partition (�8.��©)

For any graph G and any U ⊆ V(G), let

EG(U) = {uv ∈ E(G) : u ∈ U, v < U}

denote the edge boundary of U in G.

An edge boundary partition of a graph G is a collection Π of
subsets of V(G) such that
I G[U] is connected for all U ∈ Π and
I {EG(U) : U ∈ Π} form a partition of E(G).

Every edge boundary partition Π of G determines a vertex
covering multiplicity vector χΠ which maps v ∈ V(G) to the size
of the multiset {S : v ∈ S ∈ Π}.
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King I (��)

X
v1 u v2

Y

Z
v3 W

U
v4 v5

V

A nested edge boundary partition: Π1 = {{v1}, {v2}, {v3}, {v4}, {v5}}

χΠ1(v1) = 1, χΠ1(X) = 0, χΠ1(u) = 0
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King II (��)

X
v1 u v2

Y

Z
v3 W

U
v4 v5

V

A nested edge boundary partition:
Π2 = {{v1, v2, v3, u}, {u}, {v4}, {v5}}

χΠ2(v1) = 1, χΠ2(X) = 0, χΠ2(u) = 2
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King III (�n)

X
v1 u v2

Y

Z
v3 W

U
v4 v5

V

A nonnested edge boundary partition:
Π3 = {{v1, v3, u}, {u, v2}, {v4}, {v5}}

χΠ3 = χΠ2
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I An edge boundary partition Π should in general be viewed
as a multiset. But for a connected graph G, the only
possible elements appeared in Π with multiplicity greater
than 1 are only V(G) and ∅.

I It is easy to see that a graph has an edge boundary
partition if and only if it is a bipartite graph.
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Representing partitions on trees (#µLð��©XÁ)

Due to the phylogenetics background,
Huber-Moulton-Semple-Wu (2014) initiate the study of those
partitions of a set X which can generate a weighted split system
of X represented on a tree.

A reformulation of their main concern using the concept of edge
boundary partition is as follows:

Let T be a tree with leaf set X. An edge boundary partition Π of
T is normal if χΠ takes value zero on X. What is the global
structure of all the normal edge boundary partitions of T?
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Two operations (�"�m)

Let G be a bipartite graph and let EBPG be the set of all edge
boundary partitions of G. For any U ⊆ V(G), let fG(U) be the set
of connected components of G[U].

We define two natural operations which are self-maps of EBPG.
Let Π ∈ EBPG.
I Operation I (decreasing vertex covering multiplicity): Take

A, B ∈ Π such that A ⊆ B, and set
Π′ = (Π − {A, B}) ∪ fG(B − A);

I Operation II (increasing nestedness): Take A, B ∈ Π and
set Π′ = (Π − {A, B}) ∪ {A ∪ B} ∪ fG(A ∩ B).

Operation II : Π3 → Π2

Operation I : Π2 → Π1
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Poset structure of the edge boundary partitions ( S¡\)

For any Π1,Π2 ∈ EBPG, we write

Π1 b Π2

whenever we can transform Π2 into Π1 via a sequence of
Operations I and II.

Lemma (W., Xu). The binary relation b gives a partial order
on EBPG.
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Operation II and partitions with the same multiplicity (�m
��C§�����8.��©)

Let NEBPG be the set of nested edge boundary partitions of G.
For every Π ∈ NEBPG, let LΠ consist of those elements Π′ of
EBPG with χΠ = χΠ′ .

Lemma (W., Xu). Take Π ∈ NEBPG. A map Π′ ∈ NEBPG is
equal to Π if and only if χΠ = χΠ′ . Operation II sends LΠ to itself
and every element in LΠ can be transformed to Π by a
sequence of Operation II.

Problem (W., Xu). Take a tree G and a map Π ∈ NEBPG. Is
it true that the subposet of (EBPG,b) induced by LΠ is a ranked
poset?

The problem has a positive answer when G is a path. In that
case, that subposet restricted to normal edge boundary
partitions corresponds to an interval in the strong Bruhat order
of the symmetric group.
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Distributive lattice of nested edge boundary partition (i@
�8.��©\¤�©��)

Let G be a connected bipartite graph with partite sets V0 and
V1. For i ∈ {0, 1}, let NEBPG(i) represent the elements
Π ∈ NEBPG such that χΠ takes odd value on Vi and takes even
value on V1−i.

Theorem (W., Xu). For any i ∈ {0, 1}, the subposet of
(EBPG,b) induced by NEBPG(i) is a (ranked) distributive
lattice.

When G is the path of even length 2n, the distributive lattice
induced by the set of normal nested edge boundary partitions
is just the strong Bruhat order restricted on 312-avoiding

permutations and its size is the Catalan number Cn =
(2n

n )
n+1

(Barcucci-Bernini-Ferrari-Poneti, 2005).
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Operation I and Bruhat order (�m��Ù�CS)

Π1 = {{c}, {b, c, d}, { f }, {a, b, c, d, e, f , g}}
Π2 = {{b}, {d}, { f }, {a, b, c, d, e, f , g}}

a b c d e f g a b c d e f g

( )

( )

( )

( ) ) (( )

( )

( )

=⇒

Π1 Π2
⇓

(
1′

(
2′

(
3′

)
3

)
2

(
4′

)
4

)
1

=⇒ (
1′

(
2′

)
2

(
3′

)
3

(
4′

)
4

)
1

⇓

3241 2341=⇒
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Normal nested edge boundary partitions of a path vs the
Bruhat order (´��k�8.��©�Ù�CS)

1234

1243 1324 2134

1342 1423 2143 2314 3124

1432 2341 2413 3142 3214 4123

2431 3241 3412 4132 4213

3421 4231 4312

4321

1234

1243 1324 2134

1342 2143 2314

1432 2341 3214

2431 3241

3421

4321

59 / 64
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Normal nested edge boundary partitions of a tree (µ��
ki@�8.��©)

m n o p q

a
g

b

h

e
k

d

j

`

f

i

c

01010

210100121001012

212102101201212

232102121201232

2321221232

23232

Figure: All vertex covering multiplicity vectors take value 0 on
{a, b, c, d, e, f } and value 1 on {g, h, i, j, k, `}. We thus only record their
values on {m, n, o, p, q}. 58 / 60



A possible generalization of Catalan number (kA×��
�Uíz)

Problem (W., Xu). What is the size of the lattice of all normal
nested edge boundary partitions of a tree?

59 / 60



Once there was a tree... (çck�µ...)

https://allpoetry.com/poem/
8538991-The-Giving-Tree-by-Shel-Silverstein
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