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This talk is based on

Y. Wu, Even poset and a parity result for binary linear code,

Linear Algebra and its Applications, to appear.

I shall tell you how the concept of even poset is invented and

show you some examples of even posets.

By presenting this talk, I expect from you some more examples of

even posets or an indication to some other mathematical objects

which may be related to even posets. Any comment is welcome!

1



The story begins from Euler.

Recall that an Eulerian graph is a graph which has a closed walk

passing through each edge of it exactly once.
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In 1736 Leonhard Euler published a paper on the solution of

the Königsberg Seven Bridge problem entitled ‘ The solution of

a problem relating to the geometry of position’, which is now

considered as the beginnings of topology and graph theory. In

this paper, Euler stated the following theorem but gave no proof,

perhaps because the suitable definitions ∗ needed for such a proof

did not exist then. The first published proof was produced by

Hierholzer in 1873.

Theorem 1 A graph is Eulerian if and only if it is connected

and even.

∗A definition is the enclosing of a wilderness of idea within a wall of words.
– Samuel Butler (1835-1902)
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There is a wonderful three-volume book totally devoted to the

topic of Eulerian graph: Herbert Fleischner, Eulerian Graphs and

Related Topics, North-Holland, Vol.1, 1990, Vol. 2, 1991, Vol.

3, to appear. When I taught a Graph Theory course last year

for some undergraduates in SJTU, I decided to spend about 6

hours on various results about Eulerian graphs. This leads to my

awareness of the following result.

Theorem 2 ∗A graph is Eulerian if and only if every edge of it

is contained in an odd number of circuits.

The backward direction is easy and the nontrivial part is the

forward direction.
∗S. Toida, Properties of a Euler graph, Journal of the Franklin Institute 295
(1973), 343–345.
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Here are some other relevant papers in which Eulerian graphs,
bipartite graphs, Eulerian binary matroids, and bipartite binary
matroids are discussed via various approaches. Similar charac-
terizations are established in these papers.

P.J. Wilde, The Euler circuit theorem for binary matroid, J.
Comb. Theory B 18 (1975), 260–264.

T.A. McKee, Recharacterizing eulerian: intimations of new du-
ality, Discrete Mathematics 51 (1984), 237–242.

H. Fleischner, Elementary proofs of (relatively) recent charac-
terizations of Eulerian graphs, Discrete Mathematics 24 (1989),
115–119.

D.R. Woodall, A proof of McKee’s Eulerian-bipartite character-
ization, Discrete Mathematics 84 (1990), 217–220.
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M.M. Shikare, T.T. Raghunathan, A characterization of binary

Eulerian matroids, Indian J. Pure Appl. Math. 27 (1996), 153–

155.

P. Hoffmann, Counting maximal cycles in binary matroids, Dis-

crete Mathematics 162 (1996), 291–292.

M.M. Shikare, New characterizations of Eulerian and bipartite

binary matroids, Indian J. Pure Appl. Math. 32 (2001), 215–

219.

T.A. McKee, S-minimal unions of disjoint cycles and more odd

eulerian characterizations, Congressus Numerantium 177 (2005),

129–132.
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When I tried to organize the results in the above papers into

some teaching material for our undergraduates, a natural gener-

alization of the earlier results came to my mind. To present it,

we need to prepare some notations.

Consider the linear space V = Fn
2 consisting of 1 × n vectors

over the binary field F2, which can be viewed as F[n]
2 , the set

of functions from [n] to F2. Let W be a subspace of V , which

is called a binary linear code in coding theory. Each w ∈ W is

uniquely determined by its support, denoted supp(w). For any

X ⊆ V, let S(X) = {supp(w) : w ∈ X}. The support poset of

W is S(W ) ordered by the inclusion relation and we will simply

refer to it also by S(W ).

7



Consider a subspace W of Fn
2. Let S ′(W ) be the truncated sup-

port poset of W , which is obtained from S(W ) by removing

its bottom element, namely ∅. Say that w ∈ W is maximal if

supp(x) is a maximal element in S(W ). Say a nonzero vector

w ∈ W is minimal if supp(w) is minimal in S ′(W ). We write

M(W ) and m(W ) for the set of maximal and minimal vectors of

W, respectively.

Theorem 3 For any W ≤ Fn
2, it happens that

∑
x∈m(W ) x =∑

x∈M(W ) x.
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To see that it really generalizes Theorem 7, we choose W to be
the cycle space of a graph and notice that for an Eulerian graph
the only maximal vector in W is the all-ones vector and each
minimal vector corresponds to a circuit and so we come to the
forward direction of Theorem 7.

My original proof follows the idea of Woodall and is somewhat
complicated.

After talking about that proof in this combinatorics seminar last
year, Andreas suggested the use of deletion/contraction to find
out an easier proof. In the course of searching for an easier
proof, the concept of Even Poset comes out which does provide
a much shorter proof of Theorem 3 and help to fit various ear-
lier results into a unified framework. But deletion/contraction
does not appear on the surface and many further questions arise
subsequently.
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Let P = (X,≤) be a poset. For any x ∈ X, we define ↓ x =

{y ∈ X : y ≤ x} and ↑ x = {y ∈ X : y ≥ x}, and call them a

principal ideal and a principal filter of P , respectively. Note that

x is maximal in P if and only if | ↑ x| = 1 whereas x is minimal

in P if and only if | ↓ x| = 1. We say that P is an even poset

provided every principal ideal or principal filter of it either has

size 1, and hence corresponds to a minimal or maximal element

of P , respectively, or has an even size. For any natural number

n, [n] stands for {1, . . . , n}.

10



Example 4 Let n, m be two natural numbers. Let Θn,m =

{(A1, A2, . . . , Am) : Ai ⊆ [n], Ai ∩ Aj = ∅, ∀i 6= j} and order it by

setting (A1, A2, . . . , Am) ≤ (B1, B2, . . . , Bm) if and only if Ai ⊆ Bi

for all i ∈ [m]. It is easy to see that the resulting poset is an

even poset provided m is odd.

Example 5 A finite ranked poset with a unique top element

and a unique bottom element is Eulerian if each interval of it of

positive length has the same number of elements of even rank

as odd rank. It is easy to see that any Eulerian poset is an even

poset. Eulerian poset was introduced by Richard Stanley and

enjoys many remarkable duality properties.
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Lemma 6 For each finite even poset, the number of its maximal

elements and the number of its minimal elements have the same

parity.

Proof. Let P = (X,≤) be the given even poset and M(P ) and

m(P ) be its sets of maximal elements and minimal elements, re-

spectively. The result is straightforward from the following dou-

ble counting reasoning: |M(P )| =
∑

x∈M(P ) 1 ≡
∑

x∈X
∑

y≥x 1 =∑
y∈X

∑
x≤y 1 ≡

∑
y∈m(P ) 1 = |m(P )| ( mod 2).

We will find that the parity result for binary linear code (Theorem

3) follows from this easy duality result for even poset as long as

we identify the even poset structure in binary linear codes. This

is done in the next lemma.
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Lemma 7 For any binary linear code W ≤ Fn
2 and any A ⊆ [n],

SA(W ) is an even poset.

Proof. Take, if any, a B ∈ SA(W ) which is neither maximal nor

minimal in SA(W ). Our task is to show that both the principle

filter ↑ B and the principal ideal ↓ B in SA(W ) have an even size.

Observe that ↑ B is just {C∪B : C ∈ S(q[n]\B(W ))}. This tells us

that it has equal size with the binary linear subspace q[n]\B(W ).

But, as B is not maximal, q[n]\B(W ) is of positive dimension and

thus has an even size.
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We now consider ↓ B. If A = ∅, then we find that ↓ B is just

S(qB(W )). Since B is not minimal, S(qB(W )) is a binary space

of positive dimension and so has an even size. For the remaining

case A 6= ∅, we can check that the binary linear space S(qB(WA))

is a disjoint union of ↓ B = {C ∈ S(qB(WA)) : A ⊆ C} and

Z = {C ∈ S(qB(WA)) : A ∩ C = ∅}. But the map sending C to

B\C obviously induces a bijection from ↓ B to Z. This yields that

| ↓ B| = |S(qB(WA))|
2 . In light of the fact that B is not minimal

in SA(W ), the dimension of qB(WA) has to be greater than one.

Consequently, we conclude that | ↓ B| is even, ending the proof.
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We conclude the story on even posets by giving some remarks.

As before, we still need a new concept.

An oriented poset is a poset P with a sign function r : P → {±1}.
Any a ∈ r−1(1) is called a positive element of P and any one from

r−1(−1) a negative element of P. An oriented poset satisfies the

Euler-Poincarė relation if each interval of it of positive length has

the same number of positive elements as negative ones. A quasi-

Eulerian poset is an oriented poset satisfying the Euler-Poincaré

relation. All Eulerian posets are quasi-Eulerian.

We find that some results of Andreas on Boolean algebra can be

easily generalized to results on quasi-Eulerian posets.
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We remark that all constructions of posets mentioned in this talk

are graded and have the same number of elements of even rank as

odd rank in every interval of positive length, and hence are quasi-

Eulerian. It is clear that the property of being quasi-Eulerian and

the property of being an even poset are both invariant under

the Cartesian product operation. Thus, a natural question to

consider is to figure out the relationship between even posets

and quasi-Eulerian posets. In general, we would like to know to

which extent we can determine (classify) all even posets.
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We know that minimal vectors in a linear code correspond to

circuits in the corresponding binary matroid.

An OM-poset is a poset arising from an oriented matroid. A

maximal cell of an OM-poset is called a tope. Seems that tope

is the concept corresponding to maximal vectors.

Is there any deeper connection between the results presented

here and matroid theory (oriented matroid theory)? Namely,

can we find out the real role of deletion/contraction in this kind

of work (and hence answer the question of Andreas)?
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Give any simplicial complex Γ, we can define its face poset to be

the set of faces of Γ ordered by inclusion.

Conversely, give any poset P , we can define a simplicial complex

∆(P ) consisting of all chains of P , called its order complex.

Question 8 Can we say something more about the structure

of the support poset of a linear code? What about its Möbius

function? What about its order complex? Can we say something

about the simplicial complex whose face poset is a given support

poset of a linear code?

In the same vein, we can replace the support poset by the general

even poset and ask the same question.
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Finally, we mention that we are also interested in the high-

dimensional support poset of a linear code. This type of study

may be said to be a combinatorial study of linear spaces.

Linear space has very trivial algebraic structure; But there may

be some nice unknown combinatorial structure (results) behind

them.
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Thank You!
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