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Abstract

The bit permutation networks (BPNs), proposed by Chang, Hwang
and Tong (Networks, 33 (1999) 261-267), are a class of digraphs which in-
clude the underlying topological structure of almost all the commonly used
switching networks or sorting networks. Many problems about BPNs have
been intensively studied. Our work here is to present several graph theo-
retical characterizations of BPNs, which can be naturally divided into two
parts. One part follows the approach of several researchers in France and
German, in which we characterize BPNs in terms of their distinguished
component structure. The other part combines the techniques used by
several researchers in Israel and Taiwan, where layered cross product (Net-
works, 29 (1997) 219-223) and channel graph play a critical role. Our work
confirms the observation that a high degree of regularity is the reason why
most of the networks in use have BPNs as underlying topologies. Our re-
sults have implications in many kinds of problems about BPNs, such as
devising algorithms for checking topological equivalence, verifying useful
network representations suiting specific need, revealing the rich intrinsic
combinatorial properties of BPNs, and so on.

Keywords: Bit permutation network; channel graph; characterization;
components; cross product family; layered cross product; multistage in-
terconnection network; partition; topological equivalence

1 Introduction

1.1 Background

Multistage Interconnection Networks (MIN) are popular in switching and com-
munication applications. Although there has been a large amount of research
on them, there seems to be a surprisingly small number of basic designs that
recur under many disguises. In fact, for almost all the MINs considered in the
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literature and used in parallel processing, there are some integers d, n ≥ 2 such
that each of the crossbar switches in the network has d inlets and d outlets and
each stage of the network is composed of dn crossbar switches. Moreover, a
common phenomenon is that the crossbars in each stage are labeled by the set
of d-nary n-bit strings and the labeling strings of any two adjacent crossbars (in
adjacent stages) deviate in a regular way. This type of connection patterns and
the corresponding labeling schemes play an important role in making possible
good routing algorithms performed on these MINs. We note that the topological
properties of a network is independent of any labeling of its crossbars, though
the topological structure of the network will be embodied in the existence of a
special labeling and such a labeling will often naturally introduce an efficient
tag routing scheme on the network.

To capture the characteristic connection pattern of the usual MIN topologies,
Chang, Hwang and Tong [12] proposed the so-called bit permutation networks
(BPN), which are networks permitting some special labeling scheme on them
(See Sec.1.2.). This family of networks have included most of the MINs in
use, like the Beneš network, the shuffle− exchange network, the butterfly
network, the baseline network, and so on. We note that some concepts similar
to BPN have appeared in [18, 27].

Many BPNs were known under different names for decades before it was
discovered that they are actually topologically equivalent. This ”blindness”
is largely due to the various representations which conceal their underlying
topological structure [15]. There have been work toward comprehending the
topological equivalence among several families of BPNs which make the results
obtained through the investigation of one network applicable to the others and
highlight the possibility to develop general algorithms for all MINs in the same
equivalence class. Even if some BPNs are not topologically equivalent to each
other, one still would like to extract their common underlying characteristic
and have a clear simple representation by which we can easily compare their
structural and functional difference. This then leads to the classification and
representation problem. By establishing good topological properties and pro-
viding good representations of BPNs, some practical problems about them, like
VLSI layout [2, 30] and nonblocking capability [10, 11, 27], can be efficiently
addressed.

Our paper aims to provide new topological characterizations for the whole
class of BPN and deepen our understanding of some related issues. We note
that, this subject, for which only a theoretician would be a possible tackler,
may belong to one of the three types of fundamental research questions for a
technology-focused theoretician, namely the question about what really matters,
according to the classification of Rosenberg [33]. That is, this is an attempt to
find out some structure properties of BPNs which 1) might help to explain
how BPN is distinguished from the remaining MINs; 2) might help to reveal
and clarify the relationship among various seemingly unrelated BPNs and give
insight into checking and recognizing algorithms; and 3) might provide a tool to
verify certain representation of a BPN when we need a suitable viewpoint from
which we find out some property of a BPN more clearly.

In discussing such a topic focusing on the topological properties, one can
just turn to the graph model of a network which is, roughly speaking, obtained
by representing a crossbar as a vertex and connecting two vertices whenever
the corresponding crossbars are connected by a link in the original network.
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We shall adopt this approach from now on. The necessary graph theoretical
machinery and some existing results stated in this machinery will be presented
in the next subsection. For the purpose of this paper we do not elaborate on the
background any more. The reader can refer to [1, 4, 5, 6, 12, 17, 18, 22, 24, 28, 37]
for more details about how this approach is relevant to problems arising from
the communication and interconnection practice.

1.2 Graph Theoretical Approach

We begin with some basic definitions together with some notations to be reserved
hereafter. An MIN digraph G is a simple digraph (along with its vertex par-
tition) whose vertices are partitioned into, say m, subsets, V1, V2, · · · , Vm and
whose arcs are partitioned accordingly into m − 1 subsets E1, E2, · · · , Em−1,
where arcs in Ei always go from Vi to Vi+1 for 1 ≤ i < m. Vi is sometimes
called the ith stage of G and Ei the ith arc-stage of G. Usually, such an MIN
can be written as G = (V1, V2, · · · , Vm; E1, E2, · · · , Em−1). Let d be an integer
greater than one. We say that an m-stage MIN digraph G is of degree d if all its
vertices with the exception of those in V1 have in-degree d and all vertices other
than those in Vm have out-degree d. It is not difficult to see that all stages of
an MIN digraph of degree d must have a common size, which will be referred
to as the size of the digraph. For our purpose, any digraph mentioned in this
and the next section will always be an m-stage MIN digraph of degree d with
size equal to a power of d, say dn, for some integers n > 0, d, m > 1.

For any pair of numbers i and j, 1 ≤ i ≤ j ≤ m, the subdigraph of G induced
by Vi∪· · ·∪Vj , denoted as Gi,j throughout the paper, will be referred to as a full
subdigraph of G. For brevity, we simply call a weakly connected component a
component. We mention that any components of a full subdigraph of an MIN
digraph G of degree d must also be an MIN digraph of the same degree. Clearly
any MIN digraph of a constant degree can only have a unique vertex partition to
fit into the definition of MIN and any isomorphism between two such digraphs
must be stage preserving.

Denote by Zn
d the set of d-nary n-bit strings, {xnxn−1 · · ·x1 | xi = 1, 2, · · · , d}.

For k = 1, 2, · · · , n, xk is called the kth bit of the string xnxn−1 · · ·x1. Chang,
Hwang and Tong [12] defined a bit-k group in Zn

d to be a set of d elements whose
bits are identical among the group except the kth one. Generally, for any subset
A of {1, 2, · · ·n} we define a bit-A group as a set of d|A| strings the lth bits of
which have a common value for all l outside of A.

To describe the adjacency structure of a digraph we need to equip its vertices
with labels for easy of reference. For an MIN digraph we always assume that any
vertex in its ith stage has a stage label i and an additional position label from
Zn

d . We require that different vertices in any single stage Vi receive different
position labels (Note that this means that the labeling induces a bijection from
Zn

d to Vi). A labelled MIN digraph is an MIN digraph with both stage labels
and position labels properly assigned to its vertices. For a labeled MIN, we
can refer to a vertex with position label x and stage label i by (x, i) or just
x if there is no danger of confusion. We also say that a set of vertices in
Vi is a bit-k group if so is the set of their position labels and we will write
xnxn−1 · · ·xk+1x0xk−1 · · ·x1 for the bit-k group whose common ith bit, i 6= k,
is xi, namely we use x0 as a special symbol which represents the set of numbers
in Zd, as was done in [12]. Let σ be any permutation on the set {0, 1, · · · , n}
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such that σ(0) 6= 0. For a labeled MIN digraph G, we say that Ei is determined
by σ if any vertex xnxn−1 · · ·x1 in Vi has neighbor set xσ(n)xσ(n−1) · · ·xσ(1) in
Vi+1. Therefore, if σ(0) = k and σ(k

′
) = 0, the set Ei constitutes of disjoint

collections of arcs each forming a complete bipartite digraph from a bit-k group
in Vi to a corresponding bit-k

′
group in Vi+1. In particular, when σi = (0, k), we

also say Vi is bit-k connected to Vi+1. We are now ready to present the definition
of bit permutation networks. We remark that it is just the convention to use
the term ”network” here which can simply be read as ”digraph”.

Definition 1.1 [12] Let σ1, σ2, · · · , σm−1 be a sequence of permutations of the
set {0, 1, · · · , n} which do not fix 0. The bit permutation network G(d, n, m;
σ1, σ2, · · · , σm−1) is an m-stage digraph of degree d with stage size dn for
which there exists a labeling of its vertices such that Ei is determined by σi for
i = 1, 2, · · · ,m− 1.

Bit permutation networks are a class of MIN digraphs broad enough to
include most of the intensively studied MIN digraphs. Chang, Hwang, and
Tong initiate the study of them as a whole and give some nice results in this
direction. In order to present their result, we have to introduce first the concept
of canonical sequence [12]. A sequence of positive integers (k1, k2, · · · , km−1) is
said to be canonical provided that for each positive integer i ≤ m − 1 we have
{1, 2, · · · , ki} ⊆ {kt | t = 1, 2 · · · , i}.
Theorem 1.1 [12] For every bit permutation network G, there is a unique
canonical sequence (k1, k2, · · · , km−1) such that G = G(d, n, m; σ1, σ2, · · · , σm−1)
where σi = (0, ki). Any two BPNs with different canonical sequences are not
isomorphic to each other.

This result gives a sequence representation for each bit permutation network.
This is a good representation as it reduces the problem of checking topological
equivalence to just comparing two associated sequences. Further, given a labeled
BPN, Hwang and Yen [24] demonstrate a method to find out the canonical
sequence of a BPN. However, combining these two results together, we still does
not get an intuitive characteristic of the underlying topology structure of BPN.
It would be interesting to get results more directly relevant to the structure
property of BPN rather than their representation.

A typical Omega network can be represented as G(d, n, n + 1; σ, σ, · · · , σ),
where σ = (n, n − 1, · · · , 1, 0). The Ω-equivalent class is the set of networks
having the same topological structure with Omega networks. Several topological
characterizations for them have been established by Bermond, Fourneau and
Jean-Marie. The properties they used are the P (∗, ∗) property and the banyan
property, defined in the sequel. A (1 + n)-stage MIN digraph G of degree d
is said to satisfy property P (i, j) if Gi,j contains exactly dn−j+i components.
The P (∗, ∗) property stands for the union of all P (i, j) for 1 ≤ i ≤ j ≤ n + 1.
Similarly, Bermond et al. introduced the self-suggestive notation P (1, ∗) and
P (∗, n+1). G satisfies the banyan property if any input/output pair of vertices
is connected by at most one path.

Theorem 1.2 [6] An MIN digraph G of degree two is topologically equivalent to
an Omega network if and only if it satisfies the P (∗, ∗) property and the banyan
property.
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Based on this result, Bermond et al. go further to get the next theorem
which corresponds to a simpler Ω-equivalence checking algorithm.

Theorem 1.3 [6] An MIN digraph G of degree two is topologically equivalent
to an Omega network if and only if it satisfies the properties P (1, ∗), P (∗, n+1),
and the banyan property.

Several other characterizations of the Ω-equivalent class were given by Hotzel
[18].

Even and Litman [15] introduced the layered cross product as a technique
to construct interconnection networks. Conversely, an interesting observation is
that many MINs can be decomposed as the layered cross product of two simpler
MINs and this decomposition can help to investigate various properties of the
original network, like tight VLSI layout, network partitioning, and rearrange-
ability. Recently, there have appeared work on understanding the structure of
MINs along this approach [9, 10, 17, 26, 31]. Paz [31] presented the concept
of prime MIN and developed a theory of decomposition into prime factors for
certain class of MINs. Tong et al. [35] proved that different BPNs have different
channel graphs.

As is commonly agreed that the understanding or gaining insight into a
problem is linked more often than not to the discovery of hidden structures or the
imposition of new ones, we aim to deepen the understanding of the uniformity of
BPN structure through revealing various characteristic objects associated with a
BPN structure. In Section 2, we will present some characterizations of the whole
class of bit permutation networks, generalizing the results of Bermond et al. and
those of Hotzel. In Section 3 using the powerful tool of layered cross product we
provide a clear description of the structure of channel graph for any given BPN,
from which we derive again the result of Tong et al. Further, a characterization
of BPN in terms of its channel graph is given which tells us that the BPN family
just consists of those MINs with a uniform channel graph structure. In section
3, we also present a simpler proof for the basic theorem in the decomposition
theory of Paz [31] and we show that BPN is just a special family of MINs which
can be decomposed into layered cross products of prime factors. An important
consequence of this work is that we can thus transforms a problem of checking
equivalence between two MINs into a problem of decomposing each of them into
prime factors and comparing the multiplicities of each prime factor.

We note that Hotzel [18] made a conjecture that the Omega network is the
most symmetric one among a certain range of MINs, namely the Omega network
is distinguished from many others because it has a biggest automorphism group.
To prove this conjecture, a natural approach is to find some properties which
can both characterize the Omega network and be deduced from the symmetric
properties asserted in the conjecture. Thus, by giving several different char-
acterizations of BPNs, we also intend to prepare for proving the conjecture of
Hotzel and getting any possible corresponding result for a larger class of BPN.

2 Component Characterizations

This section will give two characterizations of BPNs in terms of some properties
of its components, generalizing the work in [4, 5, 6, 18]. Note that these charac-
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terizations will utilize merely graph theoretical properties, rather than relying
on any specific vertex labeling.

Let π be an equivalence relation on the set E = {E1, E2, · · · , Em−1}. We use
the symbol [Ei] to denote the equivalence class containing Ei. The equivalence
classes under relation π induce a partition of E. With a little abuse of notation,
we also use π for this partition. For any 1 ≤ i ≤ j ≤ m− 1, let πi,j denote the
number of different equivalence classes appearing in {[Ei], [Ei+1], · · · , [Ej−1]}.
G is said to satisfy the Pπ(i, j) property if Gi,j contains exactly dn−πi,j compo-
nents, and is said to satisfy the Pπ(∗, ∗) property if it satisfies property Pπ(i, j)
for all 1 ≤ i ≤ j ≤ m. When m = n + 1 and there are exactly n equivalence
classes, the Pπ(i, j) and Pπ(∗, ∗) properties are reduced to the P (i, j) and P (∗, ∗)
properties introduced by Bermond et al., respectively.

G is referred to as having property R(i, j) provided that each component
of Gi,j has size dτi,j for some integer τi,j . Similarly, we also use the shorthand
notation R(∗, ∗) for the collection of all R(i, j)’s. When τi,j coincides with πi,j

for some partition π of E, we say that G fulfills the Rπ(i, j) property, etc.. We
remark that the R(∗, ∗) property reflects some sort of homogeneous property of
the BPN topology, namely the components in the same full subdigraph having
the same size.

Let u ∈ Vi, 1 ≤ i ≤ j ≤ m, and N(u, j) = {v | v ∈ Vj , there is a path
leading from u to v}. We say that G satisfies the Q(i, j) property if for any two
vertices u, v ∈ Vi, we have either N(u, j) = N(v, j) or N(u, j) ∩ N(v, j) = Ø.
Correspondingly, for each v ∈ Vj , we can define N−(v, i) = {u | u ∈ Vi, there is
a path leading from u to v}. One can check that the Q(i, j) property can also be
formulated as for any two vertices u, v ∈ Vj , it holds either N−(u, j) = N−(v, j)
or N−(u, j)∩N−(v, j) = Ø. G is said to have the Q(∗, ∗) property if it satisfies
Q(i, j) property for each feasible ordered pair (i, j). Notice that Q(∗, ∗) property
has intimate connection with the appearance of iterated line digraph structure
[40] and is also somewhat similar to the modified buddy property introduced
by Hotzel in his work to give alternative characterizations of the Ω-equivalent
class [18].

Let us present an easy observation on the topological structure of the bit
permutation networks.

Theorem 2.1 Every bit permutation network G satisfies properties Q(∗, ∗),
Rπ(∗, ∗) and Pπ(∗, ∗) for some partition π of E into no more than n nonempty
parts.

Proof: By virtue of Theorem 1.1, the vertices of G can be labeled so that Vi is
bit-ki connected to Vi+1 for any i, 1 ≤ i < m. Define π to be the equivalence
relation on E such that Ei and Ej are equivalent if and only if ki = kj . For
any 1 ≤ i < j ≤ m, let Ai,j = {ki, ki+1, · · · , kj−1}. It is easy to see that for any
u ∈ Vi, N(u, j) is a bit-Ai,j group whose lth bit for l outside of Ai,j has value
the same as that of u. Further, we can find that for each component of Gi,j , say
K, the sets of position labels of K ∩Vl, l = i, · · · , j, are the same bit-Ai,j group.
These observations give the result. 2

The global properties Q(∗, ∗), together with the Pπ(∗, ∗) properties or the
Rπ(∗, ∗) properties, turn out to distinguish BPN from other topologies. To
illustrate it, we still need some lemmas.
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Let 1 ≤ i ≤ j ≤ m and K be any subdigraph of G. We wright Ki,j for the
subdigraph of K obtained by removing all vertices of K outside of ∪j

t=iVt.

Lemma 2.1 For an MIN digraph G, if the component number of Gi,l is equal
to that of Gi+1,l, then the component number of Gi,k is equal to that of Gi+1,k

for all k ≥ l.

Proof: Gi,l (Gi,k) and Gi+1,l (Gi+1,k) have the same number of components if
and only if each vertex in Vi has all its out-neighbors in the same component
of Gi+1,l (Gi+1,k). Notice that any component of Gi,l entirely falls in some
component of Gi,k. Thus the result follows. 2

We say that an MIN has the full access property if for each pair of vertices,
one in its first stage and the other in its last stage, there is a path connecting
them. The forthcoming lemma tells us that the Q(∗, ∗) property is just the full
access property for each component of full subdigraphs of G.

Lemma 2.2 Let 1 ≤ i ≤ j ≤ m. G satisfies the Q(i, j) property if and only if
each component K of Gi,j possesses the full access property.

Proof: The sufficiency part is easy to see and we only consider the necessity
part.

Since G is of degree d and has property Q(i, j), we know that there are
partitions

Vi = ∪r
t=1Υt, Vj = ∪r

t=1Ψt,

such that for each vertex u ∈ Υt we have N(u, j) = Ψt (Correspondingly we
have N−(v, i) = Υt for each v ∈ Ψt) We will prove that Gi,j has exactly r
components, each component having a Υt and Ψt as its first stage vertices and
last stage vertices, respectively. It is easy to see that the lemma follows from
this statement.

Observe that for each vertex x of Gi,j , we must have N−(x, i) 6= ∅. Thus
by taking a vertex u ∈ N−(x, i) we find that N(x, j) ⊆ N(u, j). This says
that each vertex of Gi,j corresponds to a unique set Ψt such that N(x, j) ⊆ Ψt.
Clearly the vertices corresponding to the same Ψt, denoted by St, are in the
same component.

It remains to show that there is no arc between St and Sl if t 6= l. Assume
otherwise that there is xy ∈ E(K) with x ∈ St and y ∈ Sl. Then we have
N(x, j) ⊇ N(y, j) and thus x should correspond to the set Ψl. A contradiction.
2

We use the notation GT for the digraph obtained from G by reversing the
direction of all arcs of it. Observe that G satisfies the Q(i, j) property if and
only if GT satisfies the Q(m+1−j,m+1−i) property. The next lemma provides
a local picture for BPN and will be the key for getting our characterizations.

Lemma 2.3 Let 1 ≤ i < j ≤ m, and π be a partition of E. Assume that G
satisfies the properties Pπ(i, j) , Pπ(i + 1, j), Pπ(i, j + 1), Pπ(i + 1, j + 1) and
Q(i, j). Then

(1) if πi,j = πi+1,j, all successors of any vertex in Vi belong to one component
of Gi+1,j; if πi,j = πi,j−1, all predecessors of any vertex in Vj belong to one
component of Gi,j−1;
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(2) if πi,j > πi+1,j, then πi,j = πi+1,j + 1. Moreover, the successors of any
vertex in Vi belong to d different components of Gi+1,j and each component of
Gi,j comprises d components of Gi+1,j.

(3)if πi+1,j+1 > πi+1,j, then πi+1,j+1 = πi+1,j + 1. Moreover,we have that
the predecessors of any vertex in Vj+1 belong to d different components of Gi+1,j

and each component of Gi+1,j+1 comprises d components of Gi+1,j;
(4) If πi,j = πi+1,j+1 = πi,j+1 = πi+1,j + 1, the components of Gi+1,j can

be divided into groups such that each group consists of d components and corre-
sponding to each group, say K = K1∪· · ·∪Kd, where K1, · · · ,Kd are components
of Gi+1,j, there are a component U of Gi,j and a component V of Gi+1,j+1 with
Ui+1,j = Vi+1,j = K.

Proof: (1) This is obvious as πi,j = πi+1,j (πi,j = πi,j−1) implies that Gi,j and
Gi+1,j (Gi,j−1) have the same number of components.

(2) Recalling the definition of properties Pπ(i, j) and Pπ(i + 1, j), πi,j >
πi+1,j means Gi,j has dn−πi,j components and Gi+1,j has dn−πi+1,j ≥ dn−πi,j+1

components. Let K be an arbitrary component of Gi,j whose subdigraph Ki+1,j

comprises, say k, components of Gi+1,j . In view of Lemma 2.2, the Q(i, j)
property guarantees that each vertex x in Vi∩K has access to all vertices in Vj∩
K. We then deduce that every component of K(i + 1, j), which is a component
of G(i + 1, j) too, must contain some out-neighbor of x. Consequently, we
get that k ≤ d. Since the above argument applies to all components of Gi,j ,
by comparing the component numbers of Gi,j and Gi+1,j , we know that each
component of Gi,j contains exactly d components of Gi+1,j . In particular, we
see the d successors of x spread through exactly d components of G(i + 1, j).
This finishes the proof of the claim.

(3) To get the claim in this case, it suffices to consider the digraph GT and
quote the preceding result.

(4) According to what we have just obtained above, we have two ways of
partitioning the components of Gi+1,j into groups each of size d, one satisfying
that each group is in the same component of Gi,j and the other satisfying that
each group is in the same component of Gi+1,j+1. We point out that this two
partitions are in fact the same, from which the theorem follows. Assume other-
wise, there are components K1, K2 of Gi+1,j which are in different components
of Gi+1,j+1, say U and V, but in the same component of Gi,j . This shows that
there is a component of Gi,j+1 which contains both U and V . Observe that
each component of Gi,j+1 must contain some component of Gi+1,j+1. Hence,
Gi+1,j+1 has more components than Gi,j+1, contradicting the assumption that
πi+1,j+1 = πi,j+1. 2

By carefully checking the proof of Lemma 2.3, we find out that the R(∗, ∗)
property can play the role of the Pπ(∗, ∗) property in getting the result. For
our later use, we only list the following result, whose proof is similar to that of
Lemma 2.3 and is left to the reader.

Lemma 2.4 Let 1 ≤ i < j ≤ m. Assume that G satisfies the properties R(i, j),
R(i + 1, j), R(i, j + 1), R(i + 1, j + 1) with corresponding component size dτi,j ,
dτi+1,j , dτi,j+1 , and dτi+1,j+1 . If G has further the Q(i, j) property, then the quan-
tities τi,j − τi+1,j and τi,j − τi,j−1 can only take values in {0, 1}.

8



After all the above preparations, we arrive at two characterizations for BPN
now.

Theorem 2.2 G is a bit permutation network if and only if there exists a par-
tition π of E such that G satisfies properties Pπ(∗, ∗) and Q(∗, ∗).

Proof: The ”only if” part is just Theorem 2.1.
We assume henceforth that G satisfies both the Pπ(∗, ∗) property and the

Q(∗, ∗) property and provide below the argument for the ”if” part.
To prove the theorem, we need to construct a labeling of G, namely assign

a d-nary n-tuple f(v) as the position label for each vertex v of G, such that
the adjacency relation of G is compatible with its labeling according to the
definition of BPN.

Choose a bijection from Z
π1,m

d to the dπ1,m components of G. For any vertex
in the component corresponding to the element x ∈ Z

π1,m

d , let f(v) has x as its
last (n− π1,m)-bit substring.

We continue to assign value bit by bit for the first π1,m bits of the label of
each vertex.

Enumerate the π1,m equivalent classes in E as E1,E2, · · · , Eπ1,m . For any
j ≤ π1,m, assume that Ej = {Ej1 , Ej2 ,· · · , Ejs}, where j1 < j2 < · · · < js, and
s = s(j) is determined by j. Write j0 = 0 and js+1 = m. There is a natural
partition of V (G) into s+1 parts associated with Ej , where the pth part consists
of vertices in stages jp + 1 through jp+1, p = 0, 1, · · · , s. We will give labels to
each part of vertices separately. Notice that

πj0+1,j1 + 1 = πj0+1,j1+1, πj1+1,j2 + 1 = πj1+1,j2+1,

· · · , πjs−1+1,js + 1 = πjs−1+1,js+1; (1)

πjs,js+1 = πjs+1,js+1 + 1, πjs−1,js = πjs−1+1,js + 1,

· · · , πj1,j2 = πj1+1,j2 + 1. (2)

Let xp = πjp+1,jp+1 . From Lemma 2.3 we know that the dn−xp components of
Gjp+1,jp+1 can be partitioned into dn−xp−1 groups of size d such that each group
is in the same component of Gjp+1,jp+1+1 (except the case p = s) and in the
same component of Gjp,jp+1 (except the case p = 0). This is depicted in Fig. 1
below, where a small box represents a component of Gjp+1,jp+1 and a large box
represents a component of Gjp,jp+1+1.
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Label each group of d components of Gjp+1,jp+1 from 0 through d − 1 in
an arbitrary order, and use this label as the pth bit of all vertices in the corre-
sponding components. This then finishes the labeling procedure for the vertices
of G.

We are in the position to verify that this labeling does have the properties
presented in the definition of BPN. To this end, we have to prove the following
claims:

(i) The labeling scheme gives every vertex of G a d-nary n-bit string;

(ii) Different vertices in the same stage receive different labels;

(iii) For any i ∈ {1, 2, · · · ,m − 1}, Vi is bit-θ(i) connected to Vi+1, where θ is
the mapping from {1, 2, · · · , m} to π1,m such that Eθ(i) = [Ei].

Claim (i) is obvious.
If Claim (ii) does not hold, then for some l ∈ {1, 2, · · · ,m}, there are two

different vertices u, v ∈ Vl whose labels are the same. Note that u and v must
belong to the same component of G = G1,m, for otherwise the last n − π1,m

bits of their labels would be different. Choose i and k with 1 ≤ i < k ≤ m and
k − i being as small as possible such that u and v are in the same component
of Gi,k. By the choice of i and k, we have either u and v are in two different
components of Gi+1,k or u and v are in two different components of Gi,k−1. We
deal with the former case here by using relations (2) while we omit the similar
analysis for the latter case which needs equations (1). Suppose that θ(i) = j
and Ej = {Ej1 , Ej2 ,· · · , Ejs}, where j1 < j2 < · · · < js. We intend to prove
that the jth bits of u and v are different. If i = js, Lemma 2.3, joined to the
labeling process, clearly gives our claim. Otherwise, let i = jp with p < s.
As πjp,jp+1+1 = πjp+1,jp+1+1, it follows from Lemma 2.1 that k ≤ jp+1. Thus
we are left to illustrate that u and v are in the same component of Gjp,jp+1

but in two different components of Gjp+1,jp+1 respectively. The first assertion
also comes from Lemma 2.1. The second one can be seen from Lemma 2.3 and
equations (2) as follows. By Lemma 2.3 there is a vertex w ∈ Vi such that the
out-neighbors of w intersect with each of the d components of Gi+1,k which are
in the same component of Gi,k containing both u and v. In particular, we see
that u and v are in different components of Gi+1,k, say K1 and K2, such that
wx1, wx2 ∈ E(G) for x1 ∈ K1 and x2 ∈ K2. But Lemma 2.3 tells us that there
is exactly one edge from w to each of the d component of Gjp+1,jp+1 which are
contained in a common component of Gjp,jp+1 . This shows that K1 and K2 are
in different components of Gjp+1,jp+1 , and thus so are u and v, as desired.

Finally we are going to prove Claim (iii). For any i ∈ {1, 2, · · · ,m − 1},
consider the subdigraph Gi,i+1, which is the disjoint union of dn−1 complete
bipartite digraphs, each being of size d × d. Let K be one of these bipartite
digraphs. We only need to show that all vertices of K have a common value
for each of their bits except the jth one, where j = θ(i). In fact, for any t 6= j,
suppose Et = {Et1 , Et2 ,· · · , Ets}, where t1 < t2 < · · · < ts and s = s(t). As
j 6∈ {t1, t2, · · · , ts}, it follows that the Vi and Vi+1 belong to the same part
in the partitioning of V (G) associated with Et. Moreover, because that K is
connected, K is contained in a component of the full subdigraph corresponding
to that part of vertices and hence its vertices receive a common tth bit in the
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labeling process described above. 2

We note that the above theorem is a natural generalization of Theorem 1.3,
since properties P (∗, ∗) and Q(∗, ∗) turn out to be equivalent for an MIN with
banyan property.

Theorem 2.3 An MIN digraph G is a bit permutation network if and only if
it satisfies the properties R(∗, ∗) and Q(∗, ∗).

Proof: In view of Theorem 2.1, we can restrict attention to the proof of the
sufficiency.

For any i and j, 1 ≤ i ≤ j ≤ m, let τi,j be the nonnegative integer such
that each component of Gi,j has size dτi,j and thus the full subdigraph Gi,j has
exactly dn−τi,j components.

Let 1 ≤ i < j ≤ m − 1. Define Ei to be adjacent to Ej if τi,j = τi,j+1 =
τi+1,j+1 = τi+1,j +1. Notice that if Ei is adjacent to Ej , then τi,j+1 = τi+1,j+1,
which in turn gives τi,l = τi+1,l for all l ≥ j + 1 as a result of Lemma 2.1.
Thus if there is k such that Ei is adjacent to Ek, then τi,k = τi+1,k + 1 and
henceforth k < j + 1. Clearly this says that any arc-stage of G is adjacent to at
most one arc-stage. Similarly, we also can establish that any arc-stage of G can
be adjacent from at most one arc-stage. This discussion enables us to endow
the arc-stages of G with a partial order such that Ei covers Ej if and only if Ej

is adjacent to Ei. Note that the partially ordered set thus obtained must be a
disjoint sum of a set of chains. Denote by π this partition of the arc-stages of
G into chains and use [Ei] for the chain that Ei lies in.

To complete the proof, we appeal to Theorem 2.2 and thus need only to
show that G satisfies property Pπ(∗, ∗), or equivalently to show that τi,j = πi,j .
This is done by induction on j − i. It is trivial for j − i = 0 and it follows from
property Q(i, i + 1) for j − i = 1 (Note that we use the fact that G is simple
here). Assuming the assertion for j − i = k − 1, we consider the case when
j − i = k.

If τi,l > τi+1,l for all l ∈ {i+1, i+2, · · · , j}, then Ei is not adjacent to any one
in the set {Ei+1, · · · , Ej−1}. Therefore, we have [Ei] /∈ {[Ei+1], · · · , [Ej−1]}, and
consequently πi,i+k = πi+1,i+k +1. Using Lemma 2.4, we see that it follows from
the induction hypothesis now that πi,i+k = πi+1,i+k + 1 = τi+1,i+k + 1 = τi,i+k,
as desired.

Otherwise, we get from Lemma 2.1 that τi,j = τi+1,j . But clearly τi,i+1 =
τi+1,i+1 + 1. Noting Lemma 2.4 in addition, we obtain that there is an l ∈
{i+2, · · · , j}, such that τi,l = τi+1,l and τi,l−1−τi+1,l−1 = 1. We use Lemma 2.4
again to deduce that it holds either τi+1,l−1 = τi+1,l or τi+1,l−1+1 = τi+1,l. But
the former case is impossible as it will give τi,l−1 − 1 = τi+1,l−1 = τi+1,l = τi,l,
which contracts Lemma 2.4. Therefore, we see that Ei is adjacent to El−1 and
thus πi,j = πi+1,j . Using our induction hypothesis, we get τi,j = πi,j immedi-
ately. This finishes the proof. 2

We point out that the local structure reflected in Lemma 2.3 is an essen-
tial characteristic of bit permutation networks. Indeed, the proof of Theorem
2.2 shows that any MIN digraph having this kind of structure and satisfying
the Q(∗, ∗) property is a bit permutation network. We do not formulate this
observation as a theorem because this leads to a long-winded characterization.
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Nevertheless, this observation may be helpful to produce some other variants of
the characterization of BPN suiting specific application.

Theorem 2.2 and Theorem 2.3 shows that every bit permutation network
corresponds to a characteristic partition of its arc-stages. In fact, they both
imply that such a partition uniquely determines the structure of the MIN di-
graph and thus it is meaningful to refer to a BPN with associated arc-stage
partition π as G(d, n,m; π), or simply G(π). Moreover, if two bit permutation
networks, say G(d, n, m;π) and G(d, n,m; π1), correspond to different partitions
π and π1, then they can not be isomorphic, since Theorem 2.2 indicates that
there is a stage interval on which the component numbers of G(d, n, m;π) and
G(d, n, m; π1) are not equal. This then tells us that there is a one to one corre-
spondence between all BPN and all partitions of E. Let us state this observation
formally as a theorem, which is actually a reformulation of Theorem 1.1 in terms
of labeling-independent language.

Theorem 2.4 Each bit permutation network can be expressed as G(d, n, m; π)
for some partition of E and two bit permutation networks G(d, n, m; π) and
G(d, n, m; π1) are isomorphic if and only if π = π1. Especially, we have the
number of different m-stage BPNs of degree d and stage size dn is equal to the
number of partitions of the set {1, 2, · · · ,m− 1} into no more than n parts.

A natural problem now is that given an MIN digraph how can we recognize
if it is a BPN and if so how can we discover its characteristic arc-stage partition.

Corollary 2.1 G is isomorphic to the shuffle-exchange network if and only if
either one of the following conditions holds:

(1) It satisfies the properties Pπ(∗, ∗) and Q(∗, ∗), where π is a partition of
{E1, E2, · · · , Em−1} satisfying πi,j = min{j − i, n}, 1 ≤ i ≤ j ≤ m;

(2) If m < n + 1, each component is an Omega equivalent network, and if
m ≥ n + 1, any n + 1 consecutive stages induce an Omega equivalent network.

Proof: (1) The forward direction is easy from the definition of the shuffle-
exchange network. The other direction comes from the fact that the condition
listed uniquely determine the network topology as Theorem 2.1 asserts.

(2) The condition is obviously necessary. To show its sufficiency, we need
only to show that if G satisfies the condition then it is a bit permutation net-
work. Define π to be the partition: Ej ∈ [Ei] if and only if j ≡ i (mod n). Then
it can be easily shown that G satisfies Pπ(∗, ∗) and Q(∗, ∗). 2

We remark that Corollary 2.1 can also be derived by using a generalization
of a criterion of Hemminger for iterated line digraph [40].

Corollary 2.2 G(d, n, m; π) is isomorphic to its inverse network (obtained by
reversing the direction of all arcs) if and only if π satisfies: πi,j = πm+1−j,m+1−i,
1 ≤ i ≤ j ≤ m.

3 Layered Cross Product and Channel Graph

As asserted in the introduction, this is the only section when mentioning an
MIN we will not impose on it the implicit assumption that it is of degree d and

12



all its stages have the same size. We say that an MIN is d-nary provided that the
in-degrees and out-degrees of it only take values 0, 1 or d. Even and Litman [15]
introduced the operation of layered cross product between two MINs with the
same number of stages, which is similar to the categorical product (also called
Kronecker product due to its close relationship with the Kronecker product of
matrices ) between two graphs [3].

Definition 3.1 For any two m-stage MIN digraphs Gj = (V j
1 , V j

2 , · · · , V j
m;

Ej
1, E

j
2, · · · , Ej

m−1), j = 1, 2, the layered cross product (LCP) of them, denoted
by G1×G2, is the MIN digraph G = (V1, V2, · · · , Vm;E1, E2, · · · , Em−1), where
Vi = V 1

i × V 2
i and Ei = E1

i × E2
i .

Let us present two simple facts about LCP here. We say that (a1, · · · , am−1;
b1, · · · , bm−1) is the stage-degree sequence of an MIN provided that each of its
stage i vertex has out-degree ai for 1 ≤ i ≤ m− 1 and each of its stage j vertex
has in-degree bj−1 for j = 2, · · · ,m.

Lemma 3.1 Let G1 has stage-degree sequence (a1, · · · , am−1; b1, · · · , bm−1) and
G2 has stage-degree sequence (c1, · · · , cm−1; d1, · · · , dm−1). Then G1 × G2 has
stage-degree sequence (a1c1, · · · , am−1cm−1; b1d1, · · · , bm−1dm−1).

Let Gi, i = 1, 2, 3, be three MIN digraphs of the same stage number. We
represent the disjoint union of G1 and G2 by G1 + G2. The next trivial result
is again stated without proof.

Lemma 3.2 (G1 + G2)×G3 = G1 ×G3 + G2 ×G3.

A channel graph [23] is an acyclic digraph with a source vertex s and a
target vertex t such that every vertex lies on a path from s to t. For an MIN
digraph G and two of its vertices x and y, define the channel graph CG(x, y) to
be the union of all paths connecting x to y in G. We make the convention that
CG(x, y) is the empty graph in case that there is no path from x to y in G. In
general, different MIN digraphs cannot be distinguished by the channel graphs
associated with it. For example, all unique path full access (UPFA) networks
of the same stage numbers look the same if we only analyze the structure of
various channel graphs associated with them; while we know that there are
lots of nonequivalent UPFA networks [38]. However, when restricted to BPN,
those channel graphs become a kind of characteristic objects, as demonstrated
by Tong, Hwang and Chang [35]. In the sequel, we will report the part of our
work on characterizing BPNs motivated by their interesting discovery and the
investigation of LCP by Even, Litman [15] and Paz [31].

We say that a channel graph C is the channel graph of G, or G has C
as its channel graph, provided that C is isomorphic with CG(x, y) for each pair
x ∈ V1 and y ∈ Vm (We assume here that the MIN in consideration has a unique
stage partition.). It is well-known that the layered cross product operation is
associative and commutative and thus it is meaningful to refer to the LCP
of a set of MINs with the same stage number. We formalize below a simple
observation about LCP and channel graph.

Lemma 3.3 Assume that ℘ is a set of MIN digraphs and each member of ℘ has
its channel graph. Then the LCP of the MIN digraphs in ℘ also has a channel
graph which is just the LCP of the channel graphs of those in ℘.
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Paz considered the inverse of the LCP operation, namely the decomposition
of a complex network structure into an LCP of a set of simpler ”prime graphs”
[31]. In fact, Paz developed a decomposition theory for it and argued that it
may have wide applications [31]. We present some concepts introduced by him
here in a form meeting our need.

Definition 3.2 Let d,m ≥ 2 be two integers. For any two integers 0 ≤ i
< j ≤ m, Xd,m

i,j is the d-nary m-stage simple MIN digraph which is uniquely
determined by the following requirements:

(i) it has one vertex in its stages 1, 2, · · · , i and stages j + 1, · · · , m and two
vertices in all other stages;

(ii) only its stage i vertex has out-degree d and only its stage j vertex has
in-degree d;

(iii) only its first stage vertices have in-degree 0 and only its last stage vertices
have out-degree 0.

Paz called the set of digraphs defined above prime graphs. For simplicity, we
sometimes write Xi,j for Xd,m

i,j . Several examples of prime graphs are depicted
in Figure 2.
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Fig. 2: several prime graphs

Definition 3.3 [31] The m-layered d-nary cross product family (CPF) is the
set of MINs which can be decomposed into the layered cross product of some
d-nary m-stage prime graphs.

CPF digraphs inherit from their prime factors some special symmetrical
properties.

Lemma 3.4 Let G be a CPF digraph. For any pair of first stage vertices (x, y)
in the same component of G and any pair of last stage vertices (z, w) in the
same component of G, there is an automorphism of G which swaps x and y and
swaps z and w.

Proof: We first observe that the assertion holds for prime graphs. But it is
easy to see that if πi is an automorphism of Gi for i = 1, 2, then the mapping
φ1 × π2 on V (G1)× V (G2) which sends vertex (v1, v2) to (φ1(v1), φ2(v2)) is an
automorphism of G1 ×G2. This proves the claim. 2

The next lemma slightly generalizes the Theorem 5 of [35].

Lemma 3.5 Each digraph G ∈ CPF corresponds to a channel graph C(G)
which is the channel graph of each component of G.
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Proof: Observe that the components of any prime graph are isomorphic to
each other and so we have that the components of any CPF digraph must be
identical too. Thus we only need to show that any connected CPF has a channel
graph. It is an easy consequence of Lemma 3.4. It also follows from Lemma 3.2
and Lemma 3.3 since the components of prime graphs all have channel graphs. 2

Let us recall the basic result in the decomposition theory of Paz [31]. We
also include an alternative proof for completeness.

Theorem 3.1 ([31] Theorem 1) Let G =
∏

0≤i<j≤m (Xd,m
i,j )fi,j be a factor-

ization of a CPF digraph G. The multiplicities of the prime factors appeared
in this expression, namely the fi,j’s, are uniquely determined by the topological
structure of G.

Proof: We say that a parameter of G is characteristic if it only relies on the
topology of G. We aims at proving that all the fi,j ’s are characteristic.

By Lemma 3.2, we know that G has df0,m components, which means that
f0,m is characteristic.

Let 0 < i < j < m. Combining Lemma 3.3 and Lemma 3.2, we can write
the common channel graph of any component of Gi,j as

Ci,j =
∏

1≤k<l≤j−i

(Xd,j−i+1
k,l )fi−1+k,i−1+l .

From the above expression we can easily determine that the out-degree of the
source vertex of Ci,j is equal to

d

∑
1<l≤j−i

fi,i−1+l ,

which in turn tells us that

di,j =
∑

1<l≤j−i

fi,i−1+l

is characteristic. The fact that fi,j is characteristic for 0 < i < j < m then
results from the observation fi,j = di,j − di,j−1 for j− 1 > i and fi,i+1 = di,i+1.

Finally, we deduce from Lemma 3.1 that G has stage-degree sequence (a1,
· · · , am−1; b1, · · · , bm−1), where ai =

∏
i<j≤m dfi,j and bi =

∏
0≤j<i dfj,i for

i = 1, · · · ,m − 1. By now we get that, for i = 1, · · · , m − 1,
∑

i<j≤m fi,j and∑
i<j<m fi,j ,

∑
0≤j<i fj,i and

∑
0<j<i fj,i are all characteristic. Consequently,

we have both fi,m and f0,i are characteristic for each i = 1, 2, · · · ,m − 1, and
thus we are done. 2

The above theorem of Paz provides new insight into the problem of checking
equivalence among CPF digraphs, namely it can be reduced to finding good
decomposition algorithm. The next lemma points out that BPN is a subfamily
of the class of CPF digraphs, which then indicates that LCP may be a powerful
tool to study the equivalence relation among BPNs. See [9, 31] for some effort
in this direction, where they demonstrated that several specific BPNs are CPFs.

Lemma 3.6 BPN ⊆ CPF.
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Proof: Given a BPN, say G = G(d, n, m, π), where π is a partition of E into
l ≤ n nonempty parts, say E1, E2, · · · , El, we can properly label the vertices
of G so that Vi is bit-j connected to Vi+1 when Ei ∈ Ej . For any j ∈ {1,
2, · · · , l} with Ej = {Et1 , Et2 , · · · , Ethj

}, t1 < t2 < · · · < thj
, we set Gj =

Xd,m
0,t1

× (
∏hj−1

i=2 Xd,m
ti,ti+1

)×Xd,m
thj

,m. For j = l + 1, · · · , n, we define Gj = Xd,m
0,m .

A typical Gj for j ≤ l together with its LCP decomposition is shown in the
following figure.
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Fig. 3: A typical Gj

For each Gj , j = 1, 2 · · · , n, we can label its vertices with elements from Zd

so that (x, i)(x, i+1) is an arc in Ei(Gj) for each x ∈ Zd and i = 1, 2, · · · , m−1.
By establishing the bijection from V (G) to V (G1)× V (G2)× · · ·×V (Gn) which
sends the vertex in G with label (x1x2 · · ·xn, i) to an element of V (G1)× V (G2)×
· · · × V (Gn) with the component in V (Gj) being the vertex of Gj having label
(xj , i) for each j, we can verify that G = G1 ×G2 × · · · ×Gn. This shows that
G is in the cross product family and then finishes the proof. 2

Now we arrive at our extension of the main result of [35]. We remark that
each member of CPF has a stage-degree sequence as each prime graph does.

Theorem 3.2 Assume that G and G1 are two m-layered CPF digraph with the
same degree sequence and the same number of first-stage vertices. Then G and
G1 are isomorphic if and only if C(G) and C(G1) are isomorphic.

Proof: We only need to prove the ”if” part. We assume that G =
∏

0≤i<j≤m

(Xd,m
i,j )fi,j and G1 =

∏
0≤i<j≤m (Xd,m

i,j )gi,j . By examining the proof of Theorem
3.1, we know that C(G) = C(G1) implies that fi,j = gi,j for 0 < i < j < m.
Furthermore, the fact that G and G1 possess the same degree sequence gives
fi,m = gi,m and f0,i = g0,i for 0 < i < m. The above arguments already tell us
that any component of G is isomorphic with any component of G1. Finally, as
G and G1 have the same number of first-stage vertices, they consist of the same
number of components. This then gives the result. 2

Observing the regular structure of the channel graphs associated with a
BPN, one may wonder that whether such a phenomenon is actually significant
enough to indicate the BPN structure. As we shall see immediately, it is indeed
the case.

Theorem 3.3 An m-stage MIN digraph G of degree d and uniform stage size
dn is a bit permutation network if and only if for any 1 ≤ i < j ≤ n, there is a d-
nary channel graph <i,j which is the common channel graph of each component
of Gi,j.
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Proof: The forward direction follows from Lemmas 3.2, 3.3, and 3.6.
To establish the backward direction we make use of Theorem 2.3, which

requires us to check the properties R(∗, ∗) and Q(∗, ∗), or R(∗, ∗) properties and
the full-access property, in view of Lemma 2.2.

Clearly, for a component of a full subdigraph of G to own a channel graph
it must have the full access property. Therefore, it remains to show that G has
the R(∗, ∗) properties. Because G has the full access property and is of degree
d, the R(i, i + 1) property, i = 1, 2, · · · , m− 1, of G is obvious.

Take a full subdigraph of G, say Gi,j , such that j − i > 1 and the compo-
nents of Gi+1,j have a common size dt for some integer t. Our task in the next
paragraph is to demonstrate that the components of Gi,j also have a common
size which is either dt or dt+1. Note that this argument to be presented enables
us to finish the proof of the theorem by induction on j − i.

Let C1, C2 · · · , Cdn−t be the components of Gi+1,j . For any vertex x ∈ Vi, we
refer to the set of components of Gi+1,j which intersect with the out-neighbors
of x as Γ(x). If Γ(x) consists of a single components, say C, of Gi+1,j , then from
the full access property of G we deduce that x is in a component of Gi,j of size
the same as that of C, namely dt. Consider the other case that Γ(x) = {Cp1 ,
Cp2 , · · · , Cps} where s > 1. Note that for any 1 ≤ k ≤ s, Ik = {y : xy ∈ E(G),
y ∈ Cpk

} must have cardinality less than d, as G is of degree d and s > 1. Fur-
ther recall that each vertex in Ik has full access to the vertices of Vj ∩Cpk

. Now,
by choosing a vertex y ∈ Vj ∩ Cpk

and looking at the channel graph CG(x, y),
which should be d-nary as is assumed, we find that Ik is a singleton set for each
k and henceforth s = d as x has out-degree d. As a result, we know that there
are dt+1 vertices in Vj to which x has access. Using the full access property
of G again, we get that x is in a component of Gi+1,j of size dt+1. After the
analysis of the above two cases, we come to the conclusion that each component
of Gi,j is of size either dt or dt+1. We want to show that these two cases cannot
happen simultaneously which will end the proof of the required result. Assume
the contrary, we have x, x1 ∈ Vi with Γ(x) = {C} and Γ(x1) = {Cp1 , · · · , Cpd

}.
Pick a vertex y ∈ Vj ∩C and a vertex y1 ∈ Vj ∩Cp1 . Considering the full access
property of G, we find that x has out-degree d in CG(x, y) and out-degree 1
in CG(x, y1), which means that CG(x, y) cannot be isomorphic to CG(x, y1),
contradicting the assumption of the theorem. 2

Recalling Theorem 3.2, we know that all UPFA networks with the only
exception of the Omega network are not BPNs. Further notice that the channel
graphs between two vertices of a UPFA digraph appear rather regularly in the
sense that they are always either an empty graph or a path. Then does this
contradict with Theorem 3.3? We comment that there is not any contradiction
at all, as the uniformity assumption made in Theorem 3.3 is imposed on the
channel graphs of components of the full subdigraphs.

The following theorem gives us insight into the BPN family through revealing
its LCP decomposition structure.

Theorem 3.4 An MIN digraph of degree d and size dn is a BPN if and only if
it is a CPF.

Proof: The necessity part is just Lemma 3.6. The sufficiency part follows from
Lemma 3.1, Lemma 3.5, and Theorem 3.3. 2
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According to Theorem 3.1, a CPF is uniquely determined by the multiplic-
ities of its prime factors. Meanwhile, Lemma 3.1 suggests a method to add
suitable restrictions on these multiplicities to guarantee a CPF of degree d,
namely a BPN. These considerations motivate us to list the following lemma,
which together with Theorem 2.4 and Lemma 3.6 will lead to another proof
(understanding) of Theorem 3.4 and from whose proof we can see clearly the
connection between the characteristic partition of a BPN and its multiplicity
parameters in the LCP decomposition. We mention that in Lemma 3.7 the
condition (i) means the corresponding BPN has size dn while the condition (ii)
means that the BPN is of degree d.

Lemma 3.7 Let F be the set of nonnegative integer vectors (fi,j)0≤i<j≤m such
that

(i)
∑

0<i≤m f0,i = n;

(ii) for each 0 < i < m,
∑

i<j≤m fi,j =
∑

0≤j<i fj,i = 1.

Then the cardinality of F is equal to the number of partitions of m− 1 objects
into no more than n parts.

Proof: By virtue of condition (ii), there is a partial order on {1, 2, · · · ,m− 1}
specified by the rule that x covers y if and only if there is z such that fx,z

= fz,y = 1. In fact, condition (ii) says that such a partial ordered set is the
disjoint union of several chains. But condition (i) means that there can be no
more than n chains. The correspondence between the set F and the partial
ordered set gives the result. 2

Theorem 3.5 neighbour-swapping invariant property

Corollary 3.1 (Theorem 13 of [9]) There are totally n ↓ nonisomorphic (2n +
1)-stage CPF digraph G of degree d and size dn such that both G1,n+1 and
Gn+1,2n+1 are the Omega network.

Proof: By Theorem 3.4 and our assumption on G, we know that each G thus
specified is in fact a BPN and hence can be represented as G(d, n, m; π) for a
partition π of E into no more than n parts. But G1,n+1 = Gn+1,2n+1 is the
Omega network means that both the first n edge stages and the last n edge
stages are partitioned into n equivalent classes. Consequently, the number re-
quired is the number of bijections from the first n edge stages to the last n edge
stages (an equivalence class under relation π consists of an edge stage in the
first n edge stages and its image under the bijection.). 2

4 Some Remarks

In some sense, it is a global property for a digraph to be a BPN and some
confusion in the literature arose because the authors assumed carelessly that a
digraph having a local structure of BPN everywhere must be a BPN. In fact
we agree to the concluding remark of [22] that the topological structure within
MINs is much more complicated than what is mentioned in the earlier literature.
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Note that our definition of bit permutation networks is slightly different from
that of Chang, Hwang and Tong. We have put emphasis on the existence of a
proper labeling of all the vertices of G. This may make it clearer that the bit
permutation class of networks includes all networks having a definite topology.
Indeed, the permutation σ’s appearing in the definition depend on the choice of
a suitable labeling for the vertices. If G is a digraph with no vertex labels or the
vertices are improperly labeled, then we could not readily find the permutations
fitting into the definition. In such case we can not tell whether a given digraph
is a bit permutation network or not. This is explained in the following figure.

s

-

-
-

s-

3
3

-

s
-
-

3

-s
3

00 00 00
01 01 01

01
00

10 10 10 10
11 11 11 11

Fig. 4(a) Fig. 4(b)

Clearly the two digraphs displayed above are topologically equivalent. Figure
4(a) is a bit permutation network with σ = (0, 2), but there is no permutation
compatible with the connection scheme and the labeling depicted by Fig. 4(b)
(Look at the vertex (0, 0) in the first stage for this claim).

Let l > m be two positive integers. For any l-stage MIN digraph, its first
m stages and the last l −m stages induce an m-stage MIN digraph G1 and an
(l−m)-stage MIN digraph G2 respectively. We can regard G as being obtained
from a concatenation of G1 and G2 through overlapping the last stage of G1

and the first stage of G2. In view of this, we see that the topology of G is
determined by the topology of G1 and G2 and, in addition, by the overlapping
relation between G1 and G2. In fact, the associated one to one mapping from
the last stage of G1 to the first stage of G2, called concatenating mapping in
[22], will affect a lot the topology of the concatenation of G1 and G2.

Hu, Shen, and Yang [22] have studied a special class of networks, namely,
the ∆⊕∆

′
networks, which are the set of networks obtained by concatenating

two Omega equivalent networks. When confined to bit permutation networks,
however, we should be cautious with the mappings. Since the permutation σ’s
in a bit permutation network are label-dependent, it is not difficult to imag-
ine that the combination of two bit permutation networks with an arbitrary
mapping is not necessarily a bit permutation networks. That is, using our
notation, the concatenation of G(d, n,m; σ1, σ2, · · · , σm−1) and G(d, n, l −m +
1); σm, σm+1, · · · , σl−1) is not necessarily isomorphic to G(d, n, l; σ1, σ2, · · · , σl−1).
This suggests that the asserted improvement of a result in [22] by Chang et al.
[12] does not hold. Calamoneri and Massini [9] also tried to improve the result
of Hu et al.. However, they have implicitly assumed that all concatenations of
two Omega-equivalent networks must be a CPF. But we have shown in Section
3 that this assumption is just equivalent to assuming that all such concatenated
digraphs are BPNs, which is not true in general.

It is known that the banyan property together with the buddy property (or
the P (i, i+1) property) does not ensure an Omega equivalent network [1, 4]. In
fact, it does not ensure even a bit permutation network, as a BPN with banyan
property must be an Omega network. Therefore the proof of Corollary 7 in
[12] is not correct. In fact the claim of the corollary, namely any (n + 1)-stage
network satisfying the banyan property and P (i, i + 1) and P (1, ∗) property is
in the Omega equivalent class, does not hold. For a counterexample, let Hn,
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n ≥ 3, be the digraph obtained from G(2, n, n+1; n, n−1, · · · , 1) by exchanging
the successors of (0, · · · , 0, 0, 0, 1) and (0, · · · , 0, 1, 0, 1) in Vn, then Hn is not a
bit permutation network and thus is not in the Omega equivalent class (use
Theorem 2.2 and verify that H does not satisfy Q(n − 1, n + 1).) The figure
below is a drawing of H3 and one can look at the two vertices with a circle to
know that it does not have the Q(2, 4) property.
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Fig. 5: H3Generally, one can check that the local structure of Hn is almost the same as
that of a BPN. In fact, for n > 3, Hn satisfies all the properties P (i, j), Q(i, j)
and R(i, j) for 1 ≤ i ≤ j ≤ n + 1, (i, j) 6= (n − 1, n + 1) (but does violate
P (n − 1, n + 1), Q(n − 1, n + 1), R(n − 1, n + 1).) The result for H3 is a bit
different from that of Hn, n > 3. This phenomenon warns that we have to be
careful in asserting that a digraph is a BPN even when we have collected many
local evidence.

Calamoneri and Massini [9] used the criterion established by Bermond et al.
[6] to verify their layered cross product representation of Ω-equivalent classes.
As our main results generalize the criterion of Bermond et al., we can get the
layered cross product representation for general BPN parallel to the approach
in [9].

Hotzel [18] claimed that the Omega equivalent class is largely determined
by their automorphisms. This is a rather vague assertion. Can we clarify it by
getting more insight into the BPN structure? To what direction can we establish
result to clarify this point and support this assertion? What is the counterpart
of the conjecture of Hotzel for BPN or more generally for CPF?

How to extend the argument for Theorem 3.3 to get a characterization of
CPF digraphs?

Since there have been much work on decomposing graphs into prime factors
in various sense (see [25]), it is possible that some existing techniques can be
adapted to study the LCP decomposition. By Theorem 3.1 and Theorem 3.4,
the work in that direction can contribute to solving problems about BPN, such
as understanding the complexity of checking equivalence and devising better
equivalence-checking algorithms.
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