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Abstract. For any positive number k and for any hypergraph H with
vertex set V(H) and edge set E(H) ⊆ 2V(H), we call U ⊆ V(H) a
k-antimatching of H provided for every matching F ⊆ E(H) it holds
rankA[U,F ] ≤ k, where A is the V(H) × E(H) (0, 1) matrix whose
(v, e)-entry is 1 if and only if v ∈ e. Consider a finite poset P with a
unique maximal element and having a rooted tree as its Hasse diagram.
Let H be the hypergraph with V(H) = P and with E(H) being the set of
all down-sets of P. Let µ be a submodular function defined on 2V(H) such
that µ(V(H)) ≥ d+(ℓ− 1)c for a positive integer ℓ and two nonnegative
reals d and c. For any nonnegative reals d1, . . . , dℓ with

∑ℓ
i=1 di = d, we

show that either there is a matching {D1, . . . , Dℓ} of H with µ(Di) ≥ di
for all i, or there is a 1-antimatching C of H such that µ(C) ≥ c. We
establish a countable version of this result by assuming further that µ
satisfies the weak Fatou property and reverse Fatou property. We propose
a conjecture on a possible extension of our result from 1-antimatching
to general k-antimatching.

Keywords: (α, β) down-set · anticore · BBT spanning tree · pseu-
dorandom · weighted hypergraph.
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1 Introduction

1.1 Matching and antimatching

Let F be a field, let V and E be two sets, and let M ∈ FV×E . Take a positive inte-
ger k. For any subset E of 2E , we can consider V = {A ⊆ V : rankF(M [A,B]) ≤
k, ∀B ∈ E}. Do you think that there may exist some kind of duality between E
and V? If so, in which sense can you say that E and V correlate with each other?
To make life easier, let us move to a special case where M is a zero-one matrix,
namely the incidence matrix of a hypergraph.

Let H be a hypergraph, which consists of its vertex set V(H) and edge set
E(H) ⊆ 2V(H). To emphasize that we are considering a hypergraph, we often call
each edge of the hypergraph H a hyperedge of H. When we require ∅ ∈ E(H),
the hypergraph H is called a paved space in measure theory [13, Chapter 3].
For each positive integer k, a k-matching of H is a set of k disjoint hyperedges
of H, while a k-antimatching of H is a subset C of V(H) which is disjoint
from at least one member of any (k + 1)-matching of H [60]. Note that a k-
antimatching is just a set which cannot be a transversal of any (k+1)-matching.
The matching number of H is the largest size of a matching of H, which
we denote by ν(H). For each B ⊆ V(H), let H[B] be the hypergraph with
V(H[B]) = B and E(H[B]) = {A ∩ B : A ∈ E(H)} \ {∅} ⊆ 2B . Clearly, if
∅ ∈ E(H), then ν(H) = ν(H[V(H)]) + 1. Note that C is a k-antimatching of
H if and only if ν(H[C]) ≤ k. It is also not hard to check that the set E of all
matchings and the set V of all k-antimatchings of H addressed here form a dual
pair as described in the opening paragraph.

Dualities/reciprocities/complementarities are ubiquitous in sciences and math-
ematics [4,6,39]. But more often we see concepts which seem to have some weak-
ened version of duality or orthogonality [57, §2.3]. The most famous example may
be various uncertainty principles between signal duration in the time domain and
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signal bandwidth in the frequency domain, which have both product version and
sum version [21,41,47]. Let us see if some uncertainty relation between matching
and antimatching can be established in some situations.

Example 1. Let G be a graph, namely a pair (V(G),E(G)) where E(G) ⊆
(
V(G)

2

)
.

For each v ∈ V(G), the star at v of G is the set {e ∈ E(G) : v ∈ e}, which
we denote by StG(v). We construct a hypergraph HG such that V(HG) = E(G)
and E(HG) = {StG(v) : v ∈ V(G)}. If G has at most one isolated vertex,
namely a vertex v with StG(v) = ∅, then there is a natural bijection from the
family of independent sets of G to the set of matchings of HG which sends
S ⊆ V(G) to {StG(v) : v ∈ S}. It is also easy to check that a maximum size
1-antimatching of HG corresponds to the set of all edges inside a maximum size
clique of G. If G is a perfect graph, we surely know that its independence number
times its clique number is no smaller than its number of vertices, which can be
interpreted as some uncertainty inequality between the sizes of a matching and
a 1-antimatching. Indeed, this characterizes perfect graphs [36].

A digraph Γ has a vertex set V(Γ ) and an arc set A(Γ ) ⊆ V(Γ )×V(Γ ). We
say that x can reach y in a digraph Γ if there is a path from x to y in Γ. For
any x ∈ V(Γ ), the up-set of x in Γ , denoted by x ↑Γ , is the set of all vertices of
Γ which can reach x; the down-set of x in Γ , denoted by x ↓Γ , is the set of all
vertices of Γ which can be reached by x. Note that x ∈ (x ↑Γ )∩(x ↓Γ ). In general,
for any W ⊆ V(Γ ), we let W ↑Γ= ∪x∈Wx ↑Γ and W ↓Γ= ∪x∈Wx ↓Γ ; We call
W an up-set of Γ provided W = W ↑Γ and we call it a down-set of Γ provided
W = W ↓Γ [12, p. 20]. In graphical models, an up-set is called an ancestral set
or an upper set, while a down-set is called a descendant set or a lower set [40].
In topological dynamics, an up-set of a Boolean algebra is called a Furstenberg
family [3]. For each digraph Γ , we define its down-set hypergraph, denoted by
HΓ , to be the hypergraph with V(HΓ ) = V(Γ ) such that D ∈ E(HΓ ) if and only
if D is a down-set of Γ. Given a topological space, we can view all its open sets as
hyperedges and thus get a hypergraph. In this sense, a down-set hypergraph is
often known as an Alexandroff space [8], which is a topological space in which the
intersection of arbitrary family of open sets is still open. In combinatorics, down-
set hypergraphs appear in the context of poset antimatroid or poset greedoid or
poset convex geometry, which is a fundamental class of antimatroids and convex
geometries [15,34]. Finally, we mention that down-set hypergraphs play a key
role in the work of lattice representations [24,48].

Recall that a poset is just a transitive acyclic digraph Γ , namely y ∈ x ↑Γ
and x ∈ y ↑Γ imply that x = y, while y ∈ x ↑Γ and z ∈ y ↑Γ imply z ∈ x ↑Γ . A
rooted tree poset is a poset T in which 1) there is a special root vertex r with
r ↓T= V(T ), 2) for every x ∈ V(T ), the number of paths in T leading from r to
x is finite, and 3) (x ↓T ) ∩ (y ↓T ) equals x ↓T , y ↓T , or ∅, for all x, y ∈ V(T ). A
ray in a rooted tree poset is a maximal chain in the poset. A ray either forms
a finite path which starts from the root and ends at a leaf (a minimal element
in the poset), or forms an infinite path starting at the root. An end in a rooted
tree poset is a set of the form R \ U where R is a ray and U is an up-set. A
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rooted tree [35,38] is the Hasse diagram of a rooted tree poset, which is an
out-tree rooted at the maximum element of the poset, also known as the root
of the rooted tree; In other words, a rooted tree poset is simply the transitive
closure of a rooted tree. When drawing a rooted tree without indicating its root,
we follow the convention that all arcs go downwards and so the highest vertex
in the figure is regarded as the root. For example, Fig. 1 demonstrates a tree
rooted at r. When we talk about a chain, a ray, or an end of a rooted tree, we
mean a one in its poset.

r

a b c

Fig. 1. A tree T rooted at r.

Example 2. For a rooted tree T and a positive integer k, a k-antimatching of
HT is a subset of a union of at most k rays, or equivalently, a union of at most
k chains.

1.2 Width and height of a weighted rooted tree

According to Talagrand [54, p. 5], besides the fact that it is much easier to find
the crux of the matter in a simple structure than in a complicated one, there
are not so many really basic structures, so one can hope that they will remain
of interest for a very long time. The simple structure of our concern is the set
of rooted trees as discussed in Example 2. A weighted hypergraph is a pair
(H,µ) where H is a hypergraph and µ is a map from 2V(H) to R which is known
as a weighting function. Similarly, we define weighted digraphs, weighted
graphs and their weighting functions. The most usual weighting function is the
counting measure, which maps a set to its size. Due to the analogy between
counting and measure, it is an active area to extend results from combinatorics
to continuous combinatorics [19,32]; Moreover, as pointed out by Lovász [37], it
deserves to replace linear functions by submodular functions in many combina-
torial studies and see what will happen. Motivated by previous work in [9,53],
we obtain an uncertainty relation for a rooted tree weighted by a signed mea-
sure [60, Theorem 1]. This paper aims to generalize that result from measures to
submodular functions. Before stating our main result, we need to develop some
more definitions.

For any positive integer k, we write [k] for the set of the first k positive
integers and we use ∆k−1 to designate the (k − 1)-dimensional probability sim-
plex, namely ∆k−1 = {(δ1, . . . , δk) :

∑
i∈[k] δi = 1, δi ≥ 0,∀i ∈ [k]}. Consider a

weighted hypergraph (H,µ). A k-matching of H is a (d1, . . . , dk)-matching in
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(H,µ) if its elements can be enumerated as D1, . . . , Dk such that µ(Di) ≥ di for
i ∈ [k].

Definition 1. Let (H,µ) be a weighted hypergraph.

– For any positive integer k and any nonnegative real d, we say that (H,µ) is
(d, k)-fat provided for any (δ1, . . . , δk) ∈ ∆k−1, (H,µ) has a (dδ1, . . . , dδk)-
matching.

– For any positive integer k, the k-width of (H,µ) is the supremum of the set
of those reals d such that (H,µ) is (d, k)-fat.

– For any positive integer t and any nonnegative real c, we say that (H,µ) is
(c, t)-tall provided we can find a t-antimatching C of H such that µ(C) ≥ c.

– For any positive integer t, the t-height of (H,µ) is the supremum of the set
of those reals c such that (H,µ) is (c, t)-tall.

Example 3. Let T be the rooted tree depicted in Fig. 2 and let µ be the counting
measure on V(T ). The set of blue vertices and the set of green vertices are both
down-sets of T and hence hyperedges of HT . The 2-matching formed by them
indeed gives rise to a (4, 4)-matching of (HT , µ). One can check that (HT , µ) is
(7, 2)-fat and (3, 1)-tall.

Fig. 2. A rooted tree T ; See Example 3.

Example 4. Let T be the rooted tree on three vertices with two leaves x and y.
Let d = 2

3 and c = 1
3 . Let ∆ be the set of probability measures on V(T ) and

let Leb be the Lebesgue measure on ∆. Let X := {µ ∈ ∆ : (HT , µ) is (c, 1)-tall}
and Y := {µ ∈ ∆ : (HT , µ) is (d, 2)-fat}. We can calculate that Leb(X) =
Leb(∆)− Leb

(
{µ ∈ ∆ : µ(x) + µ(r) < 1

3 , µ(y) + µ(r) < 1
3}

)
= Leb(∆) and that

Leb(Y ) = Leb
(
{µ ∈ ∆ : max{µ(x), µ(y)} ≥ 2

3 ,min{µ(x), µ(y)} ≥ 1
3}

)
= 0. For

each positive integer k, we are wondering what are the expected k-width and
expected k-height of (HT , µ) when µ runs through all probability measures in
∆.

In mathematics and its applications, we discuss various interesting set func-
tions, say measures, capacities and others [23]. Let X be a set and let µ be a
function from 2X to R . The function µ is said to be increasing if µ(A) ≤ µ(B)
whenever A ⊆ B. If µ is increasing and grounded, that is, µ(∅) = 0, it is called
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a capacity or a cooperative game [23, p. 27]. For any t ≥ 2, we say that µ is
t-alternating if for all A1, . . . , At ∈ 2X ,

µ(

t∩
i=1

Ai) ≤
∑

∅̸=I⊆[t]

(−1)|I|+1µ(
∪
i∈I

Ai),

and we say that µ is t-monotone if −µ is t-alternating. A 2-monotone func-
tion is called supermodular and a 2-alternating function is submodular. We
mention that entropy functions [20], polymatroid rank functions [16], and con-
nectivity functions [27] are some well-known examples of submodular functions.
Besides them, we also encounter submodular functions in many new contexts
[25, Theorem 7]. We call µ a subadditive function if

µ(A) + µ(B) ≥ µ(A ∪B) (1)

holds for all disjoint sets A,B ⊆ X. Taking A = B = ∅ in Eq. (1) shows
that µ(∅) ≥ 0 for all subadditive functions µ. Important classes of subadditive
functions include the set of outer measures [56, §1.7] and the class of submeasures
[55]. We call µ a superadditive function provided −µ is subadditive, and we
call µ an additive function if it is both subadditive and superadditive. We call
µ a weakly submodular function if

µ(A) + µ(B) ≥ µ(A ∪B) + µ(A ∩B) = µ(A ∪B) + µ(∅) (2)

holds for all disjoint subsets A and B of X. If µ is weakly submodular and
µ(∅) ≥ 0, then µ is subadditive. A submodular capacity defined on a finite set
is a polymatroid. We say that µ has the weak Fatou property provided

lim sup
n→∞

µ(Xn) ≥ µ(X)

for every sequence X1 ⊆ X2 ⊆ · · · of subsets of X such that X = ∪∞
n=1Xn =

limn→∞ Xn. We say that µ has the reverse Fatou property if

µ(lim sup
n→∞

Xn) ≥ lim sup
n→∞

µ(Xn)

for any sequence (Xn) of subsets of X. We call µ an F -continuous function if
it satisfies both the weak Fatou property and the reverse Fatou property. Note
that a finite measure µ is basically just an F -continuous additive function – more
precisely, we only need to define µ on a σ-algebra instead of the whole powerset
of X.

Example 5. Let X = {a, b} and let µ be the set function on X such that
µ(∅) = 0, µ(a) = µ(b) = 2 and µ(X) = 1. Clearly, µ is submodular. Consider a
sequence {Xn}n∈N of subset of X, where Xn = {a} if n is even and Xn = {b}
otherwise. Then µ(lim supn→∞ Xn) = µ(X) = 1 and lim supn→∞(µ(Xn)) =
lim supn→∞ 2 = 2. This means that µ does not satisfy the reverse Fatou prop-
erty.
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Theorem 1. [60, Theorem 1] Let T be a countable rooted tree and let µ be an
additive and σ-additive function on 2V(T ). Let k be a positive integer and let c, d
be two positive reals such that

µ(V(T )) ≥ d+ (k − 1)c. (3)

Then (HT , µ) is either (d, k)-fat or (c, 1)-tall or both.

Tightness of the bound in Theorem 1 is discussed in [60, Example 1] while
the failure of generalizing Theorem 1 from rooted tree poset to general poset is
reported in [60, Example 3]. How about considering other kinds of set functions?

Theorem 2. Let T be a finite rooted tree and let µ be a submodular function on
2V(T ) satisfying µ(∅) ≥ 0. Let k be a positive integer and let c, d be two positive
reals such that (3) holds.

1. (HT , µ) is either (d, k)-fat or (c, 1)-tall or both.
2. If µ(C) < c for every end C of T , then (HT , µ) is (d, k)-fat.

After presenting the above strengthening of Theorem 1 for finite trees, we
should also list the following natural extension of [60, Conjecture 1].

Conjecture 1. Let t be a positive integer. If we replace (3) in Theorem 2 by the
condition of µ(V(T )) ≥ d+ ⌈k−1

t ⌉c, then (HT , µ) is either (d, k)-fat or (c, t)-tall
or both.

The next example means that µ(∅) ≥ 0 is necessary for the truth of Theo-
rem 2.

Example 6. Consider the rooted tree as displayed in Fig. 1. Define a function
µ on 2V(T ) such that µ(A) = µ(A ∪ {r}) = 10(|A| − 1) for all A ⊆ {a, b, c}.
One can check that µ is a ∞-alternating function but µ(∅) < 0. Let c = 1 and
d1 = d2 = 5. Note that

µ(V(T )) = 20 ≥ c+ d1 + d2 = 11.

But, neither can you find a chain C with µ(C) ≥ 1, nor can you find two disjoint
down-sets D1 and D2 such that µ(D1) ≥ 5 and µ(D2) ≥ 5.

Example 7. Let T be a rooted tree which is not a directed path, that is, T has
at least two rays. Let µ : 2V(T ) → R be the set function such that

µ(X) =

{
1 if N ∩X is a nonempty end of T for every nonempty end N of T ;
0 otherwise.

Note that µ is basically a unanimity game [23, p. 42] and so is ∞-monotone. For
every positive reals d and c and integer k ≥ 2, the weighted rooted tree (T, µ) is
neither (d, k)-fat nor (c, 1)-tall.
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Question 1. Does Theorem 2 still hold when we replace the assumption of µ
being submodular by µ being weakly submodular or even just subadditive?

There are many ways to add continuity assumptions to guarantee the tran-
sition from finite to infinite. In Theorem 1, we do not require the weighting
function µ to be increasing but in the following variant we do not require the
weighting function µ to be additive.

Theorem 3. Let (T, µ) be a weighted rooted tree. Assume that V(T ) is countably
infinite, and that µ is submodular, F -continuous and satisfies µ(∅) ≥ 0 and
µ(D ↓T ) ≥ µ(D) for all D ⊆ V(T ). Let k be a positive integer and c, d be two
positive reals such that (3) holds.

1. (HT , µ) is either (d, k)-fat or (c, 1)-tall or both.
2. If T does not have any saturated chain C with µ(C) ≥ c, then (HT , µ) is

(d, k)-fat.

Recall that the Hewitt-Yosida Theorem claims a unique decomposition of
any additive function into a sum of a F -continuous additive function (measure)
and a discontinuous additive function [33, Theorem 8.16]. Also note that the
relationship between submeasures and measures can be quite complicated [55].
In view of Example 5 and Theorem 2, it is natural to wonder if we can drop/relax
the continuity assumption on µ from Theorem 3. For any set X, an ultrafilter
on X is a function ϕ from 2X to {0, 1} such that ϕ(∅) = 0, ϕ(X) = 1 and
ϕ(Y ∪ Z) = ϕ(Y ) + ϕ(Z)− ϕ(Y ∩ Z) – Here we are talking about the filters as
invented by Cartan (1937) instead of the filters as introduced by Kolmogorov
(1941) and Wiener (1949). It is clear that the bigness defined by ultrafilter is
robust under partitioning, that is, for any partition of X into finite many parts,
eaxctly one part will be mapped by the ultrafilter to 1. An ultrafilter on X is
principal provided there is x ∈ X such that ϕ(Y ) = 1 if and only if x ∈ Y An
easy consequence of Zorn’s Lemma is that there exists a non-principal ultrafilter
ϕ on any infinite set X, namely ϕ(Y ) = 0 for all finite subsets Y of X [12, p.
245, Exercise 10.8] [45, 7.5.17].

Example 8. Let X be the set of all positive integers and take x ∈ X. Let T be
the rooted tree in which x is bigger than y for all y ∈ X \ {x} and any two
elements in X \ {x} are incomparable. Let µ be a non-principal ultrafilter on X.
Surely, µ is additive but not F -continuous: Taking An = [n] for all n shows that
the weak Fatou property fails while taking An = X \ [n] for all n shows that
the reverse Fatou property fails. For the weighted rooted tree (T, µ), every chain
has weight 0 and, for every two disjoint down-sets A and B in T , it must hold
either µ(A) = 0 or µ(B) = 0. Hence, though µ(V(HT )) = 1 > 3

4 = 2
4 + (2− 1) 14 ,

(HT , µ) has neither ( 14 ,
1
4 )-matching nor 1-antimatching of weight at least 1

4 .

In Section 2 we provide a proof of Theorems 2 and 3. The proof is divided
in two steps: For the first step (Section 2.1), we focus on (α, β) down-sets and
use combinatorial arguments to get Theorem 4 and then Theorem 2; In the
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second step (Section 2.2), combining Theorem 2 with some continuity arguments,
including those preliminary work in getting Lemmas 1 and 2, we will derive
Theorem 3. We remark that throughout our proof, we appeal to properties of
submodular functions in Eqs. (6) to (8). So far, we do not see how to go around
those arguments to get any positive result about Question 1.

In Theorem 3 we have to impose additional continuity requirement on infinite
weighted trees to get our uncertainty relation. As seen in Example 5, we do not
have this continuity condition in the finite case and so we are wondering if there
should be some other better reason behind to guarantee the uncertainty relation.
This motivates us to formulate Question 2 in Section 3. Moreover, we discuss
there how the knowledge on anticores can help us go further from Theorems 2
and 3. Section 3 also reviews some simple facts on anticores for the convenience
of readers. Especially, we explain how Theorem 5 there can imply Theorem 2.

Section 4 is motivated by some previous work in Ramsey theory [7,9] and
connects to the existence problem for normal spanning trees and BBT spanning
trees. The work there directly follows from Theorems 2 and 3. Section 5 contains
two simple applications of Theorem 1 and so the weighting functions there are
additive.

2 Up and down in a rooted tree

2.1 Finite tree

Definition 2. Let (Γ, µ) be a weighted digraph. For any two real numbers α
and β, we say that a down-set D of Γ is an (α, β) down-set of (Γ, µ) provided
µ(D) ≥ β and µ(D ↑Γ ) ≤ α+ β.

Example 9. Let T and µ be what are given in Fig. 2 and Example 3. One can

check that µ( ) = 4 ≥ 3 and µ( ) = 6 ≤ 3+3. Therefore, is a (3, 3)

down-set in (T, µ).

For each digraph Γ and v ∈ V(Γ ), let us use Γ+(v) for the set of out-
neighbors of v in Γ , namely Γ+(v) = {w ∈ V(Γ ) : vw ∈ A(Γ )}. Of course, we
have v ↓Γ⊇ Γ+(v) for all v ∈ V(Γ ).

Theorem 4. Let T be a finite rooted tree and let µ be a submodular function on
2V(T ) with µ(∅) ≥ 0. Let α and β be two nonnegative reals such that µ(V(T )) ≥
α+β and µ(L) ≤ α for all rays L of T . Then the weighted rooted tree (T, µ) has
an (α, β) down-set.

Proof. We intend to find a down-set D of T such that µ(D) ≥ β and µ(D ↑T ) ≤
α + β. We will demonstrate its existence by an induction on |V(T )|. Let r be
the root of T.

If |V(T )| = 1, then we have 0 ≥ µ(r ↑T ) − α = µ(V(T )) − α ≥ β ≥ 0,
which forces β = 0. Therefore, we have µ(r) = µ(V(T )) ≥ α + β ≥ β and
µ(r ↑T ) ≤ α = α+ β. This means that we can take D = {r}.
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Assume now |V(T )| > 1 and that the result holds when |V(T )| is smaller.
Take x ∈ T+(r) and let X := x ↓T . There are three cases to consider.

Case 1. µ(X) ≥ β and µ(X ∪ {r}) ≤ α+ β.
Take D = X, which is a down-set of T . Then µ(D) = µ(X) ≥ β and

µ(D ↑T ) = µ(X ∪ {r}) ≤ α+ β.

Case 2. µ(X) ≥ β and µ(X ∪ {r}) > α+ β.
Define a submodular function µ′ on 2X by putting

µ′(A) =

{
µ(A ∪ {r}) if x ∈ A ⊆ X;
µ(A) if A ⊆ X \ {x}.

Let T ′ be the subtree of T induced by X. For each ray L′ of T ′, L′∪{r} is a ray of
T and so we have µ′(L′) = µ(L′ ∪ {r}) ≤ α. Further note that µ′(∅) = µ(∅) ≥ 0,
and that

µ′(V(T ′)) = µ′(X) = µ(X ∪ {r}) > α+ β. (4)

By our induction hypothesis for (T ′, µ′), we can find a down-set D of T ′ such
that

µ′(D) ≥ β and µ′(D ↑T ′) ≤ α+ β. (5)

Comparing (5) with (4) yields D ↑T ′⊊ X = x ↓T and so x /∈ D follows. We now
see that D = D ↓T satisfies µ(D) = µ′(D) ≥ β and µ(D ↑T ) = µ′(D ↑T ′) ≤
α+ β, as wanted.

Case 3. µ(X) < β.
Let T ′ be the tree obtained from T by deleting X. Let µ′ be the function on

2V(T ′) satisfying µ′(A) = µ(A ∪ X) − µ(X) for all A ⊆ V(T ′). First of all, we
have µ′(∅) = 0. For any A,B ⊆ V(T ′), we verify that

µ′(A ∪B) + µ′(A ∩B)

=
(
µ(A ∪B ∪X)− µ(X)

)
+
(
µ((A ∩B) ∪X)− µ(X)

)
≤µ(A ∪X) + µ(B ∪X)− 2µ(X) (6)
=µ′(A) + µ′(B),

showing that µ′ is submodular. Moreover, for any leaf u of T ′, we see that

µ′(u ↑T ′) =µ(u ↑T ′ ∪X)− µ(X)

=µ(u ↑T ∪X)− µ(X)

≤(µ(u ↑T ) + µ(X)− µ(∅))− µ(X) (7)
=µ(u ↑T )− µ(∅)
≤µ(u ↑T )
≤α.
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Letting β′ := β−µ(X) > 0, it is clear that µ′(V(T ′)) = µ(V(T ′)∪X)−µ(X) =
µ(V(T ))− µ(X) ≥ α+ β − µ(X) = α+ β′. These facts together then enables us
apply the induction hypothesis on (T ′, µ′) to get a down-set D′ of T ′ such that

µ′(D′) ≥ β′ and µ′(D′ ↑T ′) ≤ α+ β′.

Take D := D′ ∪X, which is surely a down-set of T . It follows that

µ(D) = µ(D′ ∪X) = µ′(D′) + µ(X) ≥ β′ + µ(X) = β

and

µ(D ↑T ) = µ(D′ ↑T ′ ∪X) = µ′(D′ ↑T ′) + µ(X) ≤ α+ β′ + µ(X) = α+ β.

This finishes the proof. ⊓⊔

Proof (Proof of Theorem 2). Let r be the root of T . We will proceed with an
induction on k. Surely, we only need to prove the second reading as it implies
the first claim.

When k = 1, we can see that the down-set V(T ) satisfies µ(V(T )) ≥ d and
thus (T, µ) is (d, 1)-fat. This tells us that the base case holds true.

Assume now k ≥ 2 and the result holds for smaller k. Let d1, . . . , dk be k
nonnegative reals such that

∑k
i=1 di = d. We have to find k disjoint down-sets

D1, . . . , Dk of T such that µ(Di) ≥ di for all i ∈ [k].
Applying Theorem 4 for α = c and β = dk yields a down-set D of T satisfying

µ(D) ≥ β = dk and µ(D ↑T ) ≤ α+β = c+dk. Consider the submodular function
µ′ on 2V(T ) such that µ′(A) := µ

(
A \ (D ↑T )

)
for all A ⊆ V(T ). Observe that

(k − 2)c+

k−1∑
i=1

di ≤µ(V(T ))− (c+ dk)

≤µ(V(T ))− µ(D ↑T )
≤µ

(
V(T ) \ (D ↑T )

)
− µ(∅) (8)

≤µ
(
V(T ) \ (D ↑T )

)
=µ′(V(T )).

We are ready to invoke our induction hypothesis to find k − 1 down-sets of T ,
say D′

1, . . . , D
′
k−1, such that µ′(D′

i) ≥ di holds for all i ∈ [k − 1]. For i ∈ [k],
define

Di :=

{
D′

i \ (D ↑T ) if i ∈ [k − 1];
D if i = k.

Clearly, D1, . . . , Dk are pairwise disjoint sets. Note that µ(Dk) ≥ dk, and that
for i ∈ [k − 1],

µ(Di) = µ
(
D′

i \ (D ↑T )
)
= µ′(D′

i) ≥ di.

To verify that D1, . . . , Dk are what we need, it remains to show that Di is a
down-set of T for every i ∈ [k− 1]. Pick i ∈ [k− 1] and x ∈ Di ↓T⊆ D′

i ↓T= D′
i.
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Then there exists x′ ∈ Di such that x ∈ x′ ↓T . From x′ ∈ Di = D′
i \ (D ↑T ) we

derive that (x′ ↓T )∩D = ∅; and so x ∈ x′ ↓T implies x /∈ D ↑T . We now see that
x ∈ D′

i \ (D ↑T ) = Di. This shows that Di is a down-set of T , as required. ⊓⊔

We assume that our input is a finite rooted tree and a function f ∈ RV(T ). We
use µ for the additive function such that µ(A) =

∑
x∈A f(x) for all A ⊆ V(T ).

We further assume that (3) holds and let d1, . . . , dk be k nonnegative reals such
that

∑k
i=1 di = d. The following three observations ensure that there is a linear

time algorithm to find either an end C of T with µ(C) ≥ c or k disjoint down-sets
D1, . . . , Dk of T such that µ(Di) ≥ di for all i ∈ [k]:

(i) There is an algorithm that finds an end C of T such that µ(C) ≥ µ(C ′) for
all ends C ′ in linear time.

(ii) Write DS(T, µ, α, β) for the problem of finding an (α, β)-down set in T .
If (T, µ) and two reals α, β satisfy the conditions in Theorem 4, there is
an algorithm solving DS(T, µ, α, β) in linear time. Indeed, according to the
proof of Theorem 4, we can reduce DS(T, µ, α, β) to DS(T ′, µ′, α′, β′) for
some rooted tree T ′ with |V(T ′)| < |V(T )| in constant time.

(iii) If µ(C) < c for all ends C in T , there is an algorithm that finds a (d1, . . . , dk)-
matching of (HT , µ) in O(k|V(T )|) time (by using (ii) k times).

2.2 Infinite tree

Let T be a rooted tree with a root r. A rake in T is a subset W of V (T ) that
is the union of two sets W0 and W1, called its handle and its brush respectively,
such that W0 is a saturated chain in T and W1 is either empty or of the form
w ↓T where w is the minimum element in W1. Note that if the handle of a rake
is an infinite chain then its brush must be an empty set. For each nonempty rake
W , let h(W ) denote the unique maximum element of W. Let N stand for the set
of positive integers. Let T 0 := {r}, let T i :=

∪
v∈T i−1 T+(v) and T<i :=

∪i−1
j=0 T

j

for all i ∈ N .

Lemma 1. Let T be a rooted tree. For each i ∈ N, let Ri be a rake in T such
that |Ri ∩ T j | ≤ 1 for all j ∈ [i]. Then there exists an increasing map ϕ ∈ NN

such that lim sup
i→∞

Rϕ(i) is a saturated chain in T .

Proof. Let R0 := lim sup
i→∞

Ri. If R0 is a chain in T , then ϕ can be chosen as the

identity map. Otherise, we have R0 ̸= ∅ and so τ1 := min{i : T i∩R0 ̸= ∅} < ∞.
Choose v1 ∈ T τ1 ∩R0, let N1 = {i ∈ N : v1 = h(Ri)} and let ϕ1 be the unique
order-preserving bijection from N to N1. Let R1 := lim sup

i→∞
Rϕ1(i). If R1 is a

chain in T , then ϕ can be chosen to be ϕ1. Otherwise, we can find τ2 > τ1 and
v2 ∈ R1 ∩ T τ2 , and then let N2 = {i ∈ N1 : {v2} = T τ2 ∩Ri} and let ϕ2 be the
unique increasing bijection from N to N2. Let R2 := lim sup

i→∞
Rϕ2(i). If R2 is a

chain in T , then ϕ can be chosen to be ϕ2. Otherwise, we continue as before and
repeat this procedure as far as we can. If we cannot stop at some finite moment
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t to get the required map ϕ = ϕt, we then must have found an infinite chain
v1, v2, . . . of vertices of T and an infinite filtration N ⊇ N1 ⊇ N2 ⊇ · · · of infinite
subsets of N. Surely, we can find an increasing map ϕ ∈ NN such that ϕ(i) ∈ Ni

for all i ∈ N. It is not difficult to see that lim sup
i→∞

Rϕ(i), which coincides with

lim
i→∞

Rϕ(i) and contains {vi : i ∈ N}, is an infinite saturated chain in T , finishing
the proof. ⊓⊔

Lemma 2. Let (T, µ) be a weighted rooted tree on countably many vertices such
that µ has the weak Fatou property. For any ϵ ≥ 0 and any n ∈ N, there is an
up-set F of T such that F ⊆ T<n+1, |F | < ∞, and µ(F ∪ (

∪
u∈F∩Tn u ↓T )) ≥

µ(V(T ))− ϵ.

Proof. Let M be the set of minimal elements of T which fall into T<n. Note that
M corresponds to the set of rays of T which are disjoint from Tn. Since M ∪Tn

is countable, its elements can be enumerated as v1, v2, . . .. For each v ∈ M ∪Tn,
we define the rake Rv to be the union of v ↑T and v ↓T . Let Aℓ :=

∪ℓ
k=1 Rvk

for ℓ ≤ |M ∪ Tn|. If M ∪ Tn is indeed a finite set, say of size m, we make
the convention that Aℓ := Am for all ℓ > m. Clearly, (Aℓ)ℓ∈N is an increasing
sequence of sets and lim

ℓ→∞
Aℓ = V(T ). Due to the weak Fatou property of µ,

there exists a positive integer N such that µ(AN ) ≥ µ(V(T ))− ϵ. Surely, we can
take F to be AN ∩ T<n+1, completing the proof. ⊓⊔

Proof (Proof of Theorem 3). Let d1, . . . , dk be k nonnegative reals with d =∑k
i=1 di. Let us assume that (HT , µ) does not contain any (d1, . . . , dk)-matching

and turn to show that we can find a saturated chain C of T such that µ(C) ≥ c.

Let r be the root of T. Let (ϵn)n∈N be a sequence of positive reals such that
limn→∞ ϵn = 0. By Lemma 2, for each n ∈ N there exists a finite subset Fn of
T<n+1 such that Fn = Fn ↑T , µ(Fn ∪ (

∪
u∈Fn∩Tn u ↓T )) ≥ µ(V(T ))− ϵn.

Pick n ∈ N. We consider the finite subdigraph Tn of T induced by Fn.
Surely, Tn is a rooted tree rooted at r. For any A ⊆ Fn, let Ã represent the set
A ∪ (

∪
v∈A∩Tn v ↓T ). Define a function µn from 2Fn to R by setting µn(A) =

µ(Ã) for all A ⊆ Fn = V(Tn). We now apply Theorem 2 on (Tn, µn) and see
that, we either have a (d1, . . . , dk)-matching in (HTn

, µn) or an end Cn of Tn

with µn(Cn) ≥ c − ϵn. Assume, for sake of contradiction, that the former case
happens. This means that we have k disjoint down-sets D1, . . . , Dk of Tn such
that µn(Di) ≥ di for i ∈ [k]. It follows that D̃1 ↓T , . . . , D̃k ↓T are k disjoint
down-sets of T , such that, thanks to the increasing property of µ, µ(D̃i ↓T ) ≥
µ(D̃i) = µn(Di) ≥ di for all i ∈ [k]. This contradicts our assumption that (HT , µ)
does not contain any (d1, . . . , dk)-matching. Therefore, the aserted set Cn must
exist and we can set Rn := C̃n. It is easy to see that Rn is a rake of T satisfying
µ(Rn) ≥ c− ϵn and |Rn ∩ Tm| ≤ 1 for all m ∈ [n].
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Finally, we use Lemma 1 to obtain the existence of an increasing map ϕ from
N to itself such that C := lim sup

n→∞
Rϕ(n) is a saturated chain in T . It follows that

µ(C) =µ(lim sup
n→∞

Rϕ(n))

≥ lim sup
n→∞

µ(Rϕ(n)) (Reverse Fatou)

= lim
n→∞

µ(Rϕ(n))

≥ lim
n→∞

(c− ϵϕ(n))

=c,

which is the end of the proof. ⊓⊔

To finish off, we mention that an infinite counterpart of Theorem 4 can be
established exactly in the same way as we deduce Theorem 3 from Theorem 2.

3 Anticore and base polyhedron

Let X be a countable set. Let MX be the set of functions µ from 2X to R such
that the following hold:

1. µ(X) ≥ 0;
2. For every rooted tree T with V(T ) = X and every nonnegative reals c and d

and positive integer k with µ(X) ≥ d+ (k − 1)c, (HT , µ) is either (d, k)-fat
or (c, 1)-tall or both.

Question 2. How to characterize/understand MX? Is it closed under the taking
sum operation?

Here is a very simple observation, which says that to determine MX essen-
tially reduces to an understanding of the minimal elements in MX .

Observation 1. Let X be a countable set and µ, µ′ be set functions on X with
µ(X) = µ′(X). If µ′ ∈ MX and µ′ ≤ µ, then µ ∈ MX .

By Theorem 2, for a finite set X, MX contains the set of all additive functions
on 2X . Therefore, we are interested in those functions which dominate some
additive functions. It turns out that this is already considered a lot by people of
various backgrounds.

Let X be a set and let τ be a function from 2X to R. The core of τ is the
set of additive functions µ on 2X such that f(A) ≥ τ(A) for all A ⊆ X and
f(X) = τ(X); The anticore of τ , is the set of additive functions µ on 2X such
that

µ(A) ≤ τ(A)

for all A ⊆ X and
µ(X) = τ(X).
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If X is a finite set, the anticore of τ is also known as the base polyhedron of
τ , thanks to its connection to matroid base polyhedron [16,22]. Since these two
concepts are dual to each other and so results about one can easily be translated
to results about the other, we will focus on anticore in this section. Note that
when we refer to a result on anticores from some literature, we may really mean
that that literature reports a counterpart result on cores.

We assume that X is a finite set of size n. It is well-known that the base
polyhedron of a set function τ on X is nonempty whenever τ(∅) ≥ 0 and τ is
submodular [42, Proposition 4.4]. Indeed, it coincides with the convex hull of
those marginal worth distributions of τ and has the so-called Shapley value of τ
as its center of gravity [52, Theorem 3, Theorem 5]! We recall below a nice and
short argument of displaying the nonemptiness of the anticore [52, Theorem 4].
For any permutation v = (v1, . . . , vn) of the n elements of X, we can define the
marginal worth distribution y of τ to be the additive function y = yτ,v such that
y(vi) = τ(Fi)− τ(Fi−1), where we use Fi for {v1, . . . , vi} for any i ∈ [n] and use
F0 for ∅. An inductive argument on |A| easily demonstrates that y(A) ≤ τ(A)
for all A ⊆ X and thus y lies in the anticore of τ . The base case follows from
τ(∅) ≥ 0 = y(∅). If A is nonempty and i is the maximum integer such that
vi ∈ A, we have

y(A) =y(A \ {vi}) + y(vi)

≤τ(A \ {vi}) + y(vi) (By induction assumption)
=τ(A \ {vi}) + τ(Fi)− τ(Fi−1)

=τ(A ∩ Fi−1) + τ(A ∪ Fi−1)− τ(Fi−1)

≤τ(A). (By submodularity of τ)

In light of Observation 1, we now see that to prove Theorem 2 it suffices to verify
it in the special case that µ is a signed measure, namely an additive function. In
the conference version of our paper, we do prepare this signed measure version
already [60, Theorem 1]. We choose to establish Theorem 2 in Section 2 via a
different approach as we think that Theorem 4 may be of independent interest.

Observation 1 enables us get something more than Theorem 2. Let X be a
finite set. A balancing sequence γ on 2X is a sequence of nonnegative reals
γA, A ∈ 2X , such that

∑
i∈A∈2X γA = 1 for all i ∈ X. A necessary condition for

a map µ from 2X to R to have a nonempty anticore is

µ(X) ≤
∑
A⊆X

γAµ(A) (9)
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for all balancing sequences γ on 2X . Indeed, if f is in the anticore of µ, then

µ(X) =f(X)

=
∑
i∈X

f(i)

=
∑
i∈X

(
∑

i∈A⊆X

γA)f(i) + γ∅f(∅)

=
∑
A⊆X

γAf(A)

≤
∑
A⊆X

γAµ(A).

The well-known Bondareva–Shapley Theorem [30, Theorem 1.1] claims that a
set function µ on a finite set X has a nonempty anticore if and only if (9) holds.

Theorem 5. Let T be a finite rooted tree and let µ be a function on 2V(T ) for
which (9) holds for all balancing sequences γ on 2X . For any positive integer
k and positive reals d and c such that (3) holds, (HT , µ) is either (d, k)-fat or
(c, 1)-tall or both.

Proof. According to the Bondareva–Shapley Theorem [1,17], the anticore of µ is
nonempty and so we can pick a signed measure f from it. By Theorem 1, (HT , f)
is either (d, k)-fat or (c, 1)-tall or both. Since f is dominated by µ, Observation 1
tells us that (HT , µ) is either (d, k)-fat or (c, 1)-tall or both. ⊓⊔

We should indicate here how to view Theorem 2 as a special case of Theo-
rem 5. For any finite set X and any function µ from 2X to R, its Lovász extension,
denoted µ̂, is the function from RX to R such that µ̂(g) =

∑
i∈[n] g(vi)(µ(Si)−

µ(Si−1)), where v1, . . . , vn is a permutation of X satisfying g(v1) ≥ g(v2) ≥
· · · ≥ g(vn), S0 = ∅, S1 = {v1}, . . . , Sn = {v1, . . . , vn}. Clearly, µ̂ is positively
homogeneous, namely µ̂(cg) = cµ̂(g) for all nonnegative real c. Moreover, if µ is
submodular, µ̂ is the support function of the base polyhedron of µ [42, Proposi-
tion 4.5] and hence is a convex function on RX [42, Theorem 4.16]. Therefore, on
the condition that µ(∅) ≥ 0 and µ being submodular, it holds for any balancing
sequence γ on 2X that

µ(X) =µ̂(1X)

=µ̂(
∑

A∈2X\{∅}

γA1A)

≤
∑

A∈2X\{∅}

γAµ̂(1A) (Convexity and positive homogeneity of µ̂)

=
∑

A∈2X\{∅}

γAµ(A)

≤
∑

A∈2X

γAµ(A). (µ(∅) ≥ 0)
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This gives (9) and so we have confirmed that Theorem 2 can be read from
Theorem 5.

For a set function on a general set X, the nonemptiness of its anticore can
be characterized analogous to the Bondareva–Shapley Theorem [29, p. 230] [46,
Theorem 8] [50, p. 2]. More results on anticore of infinite games can be found
in [18, Theorem 10][30, Theorem 6.1]. Although an element in the anticore is
additive, we may not know for sure that it is inside MX and this then makes
it difficult to apply Observation 1 and Theorems 1 and 3 to earn more knowl-
edge about MX . However, people have studied the concept of the σ-core of a
set function, which is the set of σ-additive functions in the core. Note that an
additive function which is σ-additive must be F -continuous. It thus looks inter-
esting to see if any results from [10,29,31,43,44,49,51] can be used to combine
Observation 1 and Theorems 1 and 3 to generate more members of MX for a
countably infinite set X. We mention that Lovász extension is a finite version
of Choquet integral [11] and that a set function is submodular if and only if its
Choquet integral is convex [5, Theorem 1].

4 Path and pseudorandom graph

Ben-Eliezer, Krivelevich and Sudakov [7, Definition 4.1] define a digraph Γ to be
d-pseudorandom if for every two disjoint sets A,B ⊆ V(Γ ) such that |A|, |B| ≥ d,
there is at least one arc of Γ going from A to B. In the same spirit, we call a
weighted graph (G,µ) (d1, . . . , dk)-pseudorandom if for every k disjoint sets
D1, . . . , Dk ⊆ V(G) such that µ(Di) ≥ di for all i ∈ [k], there is at least one
edge of G connecting Di and Dj for some {i, j} ∈

(
[k]
2

)
. It is known that every d-

pseudorandom digraph on n vertices contains a directed path of length n−2d+1
[7, Lemma 4.4] [58, Proposition 4.1]. Here is a counterpart for pseudorandom
weighted graphs.

Theorem 6. Let k > 1 be an integer and let d1, . . . , dk, c be k + 1 positive
reals. Let (G,µ) be a finite connected weighted graph. We assume that µ is
submodular, µ(∅) ≥ 0 and µ(V(G)) ≥

∑k
i=1 di+(k−1)c. If (G,µ) is (d1, . . . , dk)-

pseudorandom, then there exists a path P of G such that µ(P ) ≥ c.

Proof. Run the depth-first search (DFS) algorithm on G, we will get a corre-
sponding depth-first search rooted tree T . Applying Theorem 2 on (T, µ) and
parameters d1, . . . , dk, c, we will either find a path P with µ(P ) ≥ c or k disjoint
down-sets D1, . . . , Dk such that µ(Di) ≥ di for all i ∈ [k]. By the property of
DFS algorithm [2, Lemma 5.3], there is no edge between disjoint down-sets of
T . Since (G,µ) is (d1, . . . , dk)-pseudorandom, we see that the only possibility is
that the first case happens. ⊓⊔

Let G be a connnected graph. A spanning rooted tree of G is a rooted
tree T satisfying V(T ) = V(G) and xy ∈ E(G) whenever x ∈ T+(y).

Definition 3. Let G be a connected graph. A BBT spanning tree of G is a
spanning rooted tree T of G such that
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1) If x ∈ y ↓T and xy ∈ E(G), then x ∈ T+(y);
2) If x ∈ T+(x′), y ∈ T+(y′) and xy ∈ E(G), then either x′ ∈ y′ ↓T or

y′ ∈ x′ ↓T .
We adopt the name of BBT spanning tree here as this construction is essentially
used by Bonamy, Bousquet, and Thomassé in their proof of [9, Theorem 6].
Example 10. Let G be the grid graph with vertex set Z×Z in which two vertices
are adjacent if and only if their difference is one of the four elements, (0,±1)
and (±1, 0). We display a BBT spanning tree T of G in Fig. 3. Note that T is
an infinite caterpillar, its central stalk marked in red is swirling around the root
of T , and each vertex outside of the stalk is connected in T to the vertex on the
stalk that is adjacent to it in G and is closest to the root along the stalk. The
stalk walks to the west for two steps, then to the north for two steps, then to
the east for four steps, then to the south for four steps, then to the west for six
steps, then to the north for six steps, then to the east for eight steps, and so on.

· · · · · ·

...

...

r

Fig. 3. A BBT spanning tree of the infinite grid graph; See Example 10.

Let G be a graph. For every r, v ∈ V(G), an induced path from r to v
in G is a finite vertex sequence v1 = r, v2, . . . , vℓ = v such that vivj ∈ E(G)
if and only if i, j ∈ [ℓ] and |i − j| = 1; We denote the set of induced paths
from r to v by IPG(r, v), write IPG(r) for

∪
v∈V(G) IPG(r, v) and then use the

notation IPG for
∪

r∈V(G) IPG(r). In the sequel, we always assume that V(G) is
equipped with a well order <, namely a total order in which each nonempty set
has a least element. This allows us define a partial order ≺ on IPG such that
(v1, . . . , vk) ≺ (u1, . . . , us) if and only if there exists t ≤ min(k, s) such that
vi = ui for i ∈ [t− 1] and vt < ut. We say that (v1, . . . , vk) is an initial segment
of (u1, . . . , us) if k ≤ s and ui = vi for i ∈ [k]. Note that two distinct elements in
IPG are incomparable with respect to ≺ if and only if one is an initial segment
of the other. If V(G) is a finite set, (IPG(r, v),≺) itself surely still forms a well
order. The following result generalizes the idea of [9, Lemma 2].
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Lemma 3. Let G be a connected graph and let r ∈ V(G). We assume that for
every v ∈ V(G), the total order (IPG(r, v),≺) has a smallest element, which we
denote by PG(r, v). Then G has a BBT spanning tree rooted at r.

Proof. We first show that if PG(r, v) = (v1, v2, . . . , vk+1) for some positive integer
k, then PG(r, vk) = (v1, . . . , vk). If this were not true, let us assume

PG(r, vk) = (u1, . . . , uℓ) ≺ (v1, . . . , vk). (10)

If vk+1 /∈ {u1, . . . , uℓ}, we see that (u1, . . . , uℓ, vk+1) ≺ (v1, v2, . . . , vk+1), violat-
ing the definition of PG(r, v). If vk+1 ∈ {u1, . . . , uℓ}, then there is an m ∈ [ℓ] such
that vk+1 = um and then (u1, . . . , um) ∈ IPG(r, vk+1). From vk+1 /∈ {v1, . . . , vk}
and (10), we conclude that (u1, . . . , um) ≺ (v1, v2, . . . , vk+1), yielding again a
contradiction with the definition of PG(r, v).

Given the fact as illustrated above, we can build a spanning rooted tree T
of G as follows. For every v ∈ V(G) \ {r}, we consider PG(r, v), say PG(r, v) =
(v1, v2, . . . , vk), and then add (vk, vk−1) to the arc set of T . It is easy to see that
what we obtain is really a rooted spanning tree of G with root r. It remains to
check that it is a BBT spanning tree of G. Condition 1) in Definition 3 trivially
holds as all arcs of T come from induced paths in G. To check condition 2) in
Definition 3, we assume that PG(r, x) = (v1, . . . , vk), PG(r, y) = (w1, . . . , ws),
xy ∈ E(G), k, s > 1, and we aim to demonstrate that either vk−1 ∈ ws−1 ↓T or
ws−1 ∈ vk−1 ↓T .

Let q := max{i ∈ N : vi = wi} ≥ 1. We want to show that q ≥ min{k −
1, s− 1}. By way of contradiction, assume q < min{k − 1, s− 1}. Observe that
{v1, . . . , vk} ∩ {w1, . . . , ws} = {v1, . . . , vq}. Without loss of generality, assume
that vq+1 < wq+1. Let t be the minimum positive integer i such that viws ∈
E(G), which is well-defined owing to the assumption of xy ∈ E(G). Note that
t ≥ q + 1. Then we see that (v1, . . . , vt, ws) ≺ (w1, . . . , ws−1, ws) in IPG(r, y),
contradicting the assumption that PG(r, y) = (w1, . . . , ws−1, ws). ⊓⊔

Example 11. In Fig. 4, we draw a graph G whose vertices are ordered as the
usual order for nonnegative integers. Note that (IPG(0, 1),≺) does not have any
smallest element. However, it has a BBT spanning tree rooted at 0 as indicated
in boldface in Fig. 4.

0 2 4 6 8 10

1

3 5 7 9 11 · · ·

· · ·

Fig. 4. An infinite graph G and one of its BBT spanning trees.
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Bonamy, Bousquet, and Thomassé make use of [9, Lemma 2] and [9, Lemma
3] to derive [9, Theorem 6]. Accordingly, we now employ Lemma 3 and Theorem 2
to establish Theorem 7. Let G be a graph. For any X ⊆ V(G), the closed
neighborhood of X in G, denoted by NG[X], is the set of vertices of G which
are either in X or adjacent to some elements of X.

Theorem 7. Let k > 1 be an integer and let d1, . . . , dk, c be k + 1 positive
reals. Let (G,µ) be a finite connected weighted graph which is (d1, . . . , dk)-
pseudorandom. We assume that µ is submodular, µ(∅) ≥ 0 and

max{µ(X) : |V(G) \X| ≤ 1} ≥
k∑

i=1

di + (k − 1)c. (11)

Then there exist two subsets B and C of V(G) such that C ⊆ B ⊆ NG[C], G[C]
is a path and µ(B) ≥ c.

Proof. As G is a finite graph, Lemma 3 allows us choose a BBT spanning tree
T of G rooted at any specified vertex. If the maximum value on the left hand
side of (11) is achieved at X = V(T ), we select r arbitrarily to be the root of T
and, for any X ⊆ V(T ), let

℧X :=


{r} ∪

( ∪
x∈X

T+(x)
)

if r ∈ X;∪
x∈X

T+(x) if r /∈ X.

Otherwise, we assume that the root r of the BBT spanning tree T is a vertex
such that X = V(T ) \ {r} is a maximizer of the left hand side of (11), and, for
any X ⊆ V(T ), let

℧X :=
∪
x∈X

T+(x).

Define a submodular function λ on V(T ) by setting

λ(X) := µ(℧X).

Note that λ(∅) = µ(∅) ≥ 0 and λ(V(T )) = max{µ(X) : |V(G) \ X| ≤ 1} ≥∑k
i=1 di + (k − 1)c.
Let us show that it is impossible for (HT , λ) to have a (d1, . . . , dk)-matching.

Otherwise, T has k ≥ 2 disjoint down-sets D1, . . . , Dk satisfying µ(℧Di
) ≥ di

for i ∈ [k]. As (G,µ) is (d1, . . . , dk)-pseudorandom, there exist i ̸= j and an edge
xy ∈ E(G) such that x ∈ ℧Di

and y ∈ ℧Dj
. We have x′ ∈ Di and y′ ∈ Dj such

that x ∈ T+(x′) and y ∈ T+(y′). Since T is a BBT spanning tree of G, we may
assume that y′ ∈ x′ ↓T⊆ Di, which is absurd as Di and Dj cannot include a
common element y′!

Hence, by applying Theorem 2 on the weighted rooted tree (T, λ), we see
that T has a saturated chain C with λ(C) ≥ c. Putting B = ℧C then finishes
the proof. ⊓⊔
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Remark 1. – The step of going from finite to infinite in Section 2.2 is not hard
but also not totally trivial; A recent work in the same direction is to get a
Gomory-Hu tree of an infinite graph [26].

– A normal spanning tree of a graph G is a spanning rooted tree T of G in
which (x ↓T )∩ (y ↓T ) ̸= ∅ whenever xy ∈ E(G). Jung [28] proved that every
countable connected graph has a normal spanning tree [14, Theorem 8.2.4];
Surely, when the graph is finite, a normal spanning tree is just a depth-first
search tree. Based on any normal spanning tree of a countable connected
graph, we can use Theorem 3 to get an infinite counterpart of Theorem 6.

– In order to emulate the proof of Theorem 7 to get a counterpart for countably
infinite graphs, we should go to Theorem 3 and we need to guarantee that
every countable connected graph has a BBT spanning tree. We [59] have
found that every connected graph has a BBT spanning tree and so such a
counterpart does exist.

5 Additive function

In the conference version of this work, we report [60, Corollary 1, Corollary
2] without proof due to the constraint on paper length. It turns out that the
statement of those two corollaries are not accurate and we correct them in this
final section.

Let P be a finite poset. For any r, x ∈ P, let CHP (r, x) denote the set of
saturated chains of P from r to x and we write CHP (r) for

∪
x∈P CHP (r, x).

The elements from CHP (r) form a poset in which A > B if and only if A ⊊ B.

Theorem 8. Let P be a countable poset, let r ∈ P and let µ be an additive
and σ-additive function on 2P . For every x ∈ P , we assume that |CHP (r, x)| is
finite and denote it by nx. For any k+1 nonnegative reals c, d1, . . . , dk satisfying
(k − 1)c +

∑k
i=1 dk ≤ µ(r ↓P ), either there exists a saturated chain C of r ↓P

such that
∑

u∈C
µ(u)
nu

≥ c, or there exist pairwise disjoint down-sets D1, . . . , Dk

of CHP (r) such that
∑

u∈Di

µ(u)
nu

≥ di for all i ∈ [k].

Proof. Construct a rooted tree T on the vertex set V(T ) := CHP (r) with an arc
from A to B if and only if A ⊆ B and |B \ A| = 1. Note that {r} is the root of
T. Define an additive funcion λ on 2V(T ) such that

λ(A) =
µ(x)

nx

for all A ∈ CHP (r, x). An application of Theorem 1 on the weighted rooted tree
(T, λ) yields the result. ⊓⊔

For a tree G and W ⊆ V(G), we write ConvG(W ) for the union of all paths
in G connecting vertices of W.

Theorem 9. Let V be a countable set, let k ≥ 2 be an integer, and let µ be
an additive and σ-additive function on 2V . Let G be a tree with V(G) = V and
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let W ⊆ V(G). Let d1, . . . , dk, c be k + 1 positive reals such that µ(V(G)) ≥∑k
i=1 di+(k−1)c. Then there are either k disjoint subsets D1, . . . , Dk such that

µ(Di) ≥ di and G−Di is a tree containing W for all i ∈ [k], or there is a path
P in G− ConvG(W ) such that max{µ(P ), µ(ConvG(W ) ∪ P )} ≥ c.

Proof. Shrink ConvG(W ) into a vertex r to get a new tree G′ from G. Orient
each edge of G′ so that every arc will go towards r and we thus get a rooted tree
T . Define λ to be the additive function on 2V(T ) such that

λ(X) =

{
µ(X) if r /∈ X ⊆ V(T );

µ
(
(X \ {r}) ∪W

)
if r ∈ X ⊆ V(T ).

By virtue of Theorem 1, either (HT , λ) is (d, k)-fat or T has an end C such that
λ(C) ≥ c. This implies our claim, as desired. ⊓⊔
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