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Abstract

For a finite metric space on X, its Lipschitz polytope is the intersection
of a hyperplane in RX and the set of 1-Lipschitz functions on itself. We
show that the Lipschitz polytope of a metric space is a zonotope if and
only if the metric is a tree metric and we characterize the pairs of X-trees
from which we generate combinatorially equivalent Lipschitz polytopes.
For every tree metric, we give an explicit anti-isomorphism between the
face poset of its Lipschitz polytope and the flow poset of its underlying X-
tree. We find a relation between flow posets of graphs and corresponding
Albanese tori and provide an explicit realization of all flow posets of graphs
through orthogonal projection of Lipschitz polytopes of tree metrics up
to anti-isomorphism. For each tree metric D, we find a natural weight
assignment to the edges of the 1-skeleton graph of the Lipschitz polytope
of D so that there is a natural isometric embedding from D to the weighted
1-skeleton graph. For Lipschitz polytopes of tree metrics, we obtain sharp
upper and lower bound on their face numbers and characterize all their
simple vertices. We compute the Ehrhart polynomials and volumes of
skew Lipschitz polytopes of tree metrics. Finally, inspired by the definition
from Loebl, Nešetřil and Reed of integral Lipschitz height and based on
the concept of Lipschitz polytope, we suggest a study of Lipschitz height
and scale-invariant Lipschitz height.

Keywords: combinatorial flow, face poset, isometric embedding, Lip-
schitz height, phylogenetic tree, zonotope.
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1 Introduction

We write Z for the set of all integers, R for the set of all reals, R≥0 for the set
of all nonnegative reals and R>0 the set of all positive reals. A metric space is
a pair (X,D), where X is a set and D is a map from X ×X to R≥0 such that{

D(x, x) = 0,
D(x, y) + D(z, y) ≥ D(x, z),

(1)

for all x, y, z ∈ X, in which case D is called a metric on X [DL97]. Note that a
metric D is necessarily symmetric, that is, D(x, z) = D(z, x) holds for all x, z ∈
X, as putting y := x in (1) yields that D(z, x) = D(x, x) + D(z, x) ≥ D(x, z)
holds for all x, z ∈ X [DHK+12, p. 14]. The metric D is proper provided
D(x, y) > 0 whenever x 6= y. Both Z and R are often assigned the metric space
structure with the metric D such that D(x, y) = |x−y|. For any c ∈ R≥0, a map
f from a metric space (X,D) to another metric space (X ′,D′) is c-Lipschitz
provided D′(f(x), f(y)) ≤ cD(x, y) for all x, y ∈ X. For any metric space
(X,D), a Lipschitz function on it is a Lipschitz map from (X,D) to the set of
reals.

In the active research field of Lipschitz functions on graphs and metric spa-
ces [Ost13, Wea99], an interesting problem is to characterize the graphs with
extremal average range of their Lipschitz functions [LNR03, WXZ16]. The idea
is that the shape of the graph or metric space should be reflected in the set
of Lipschitz functions on it. To push this idea further, for any set X and any
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matrix D ∈ RX×X≥0 , where D(a, a) = 0 for all a ∈ X, we define the Lipschitz
polytope with respect to (X,D) to be

LD = {f ∈ RX :
∑
x∈X

f(x) = 0, f(x)− f(y) ≤ D(x, y),∀x, y ∈ X}

and, for any x ∈ X, we define the skew Lipschitz polytope of (X,D) with respect
to x to be

LxD = {f ∈ RX : f(x) = 0, f(y)− f(z) ≤ D(y, z) for all y, z ∈ X}. (2)

Let pXx be the linear map from RX to itself such that for every f ∈ RX and
y ∈ X,

pXx (f)(y) = f(y)− f(x). (3)

Remark 1.1. Note that the kernel of the linear map pXx is the 1-dimension
subspace of RX consisting of constant functions and this subspace is the ort-
hogonal complement of the subspace {f ∈ RX :

∑
y∈X f(y) = 0} which the

Lipschitz polytope LD lies in. It is then easy to check that the linear map pXx
induces a volume-preserving bijection from LD to LxD, meaning that LD and LxD
are affinely equivalent for all x ∈ X and Vol(LD) = Vol(LxD).

Let (X,D) be a metric space. For any f ∈ LD, we define the tight digraph
for f, denoted T D(f), to be the digraph with vertex set X and arc set

AD(f) = {(a, b) ∈ X ×X : f(a)− f(b) = D(a, b), a 6= b}. (4)

For any face F of LD, both T D(f) and AD(f) take constant values when f runs
through the relative interior of F, and we will thus denote these two constant
values by T D(F ) and AD(F ). Especially, we call T D(F ) the tight digraph for F.
We mention that the role of tight digraph for the study of Lipschitz polytope
is similar to the role of the so-called tight-equality graph in the study of tight
span [DHK+12, §5.3], and their generalization called tight configuration is a
fundamental concept for the study of general point configurations [WX17].

Example 1.2. Let (X,D) be a metric space, let x ∈ X and set sx :=
∑
z∈X D(x, z).

For any y ∈ X, let

x−(y) := D(x, y)− sx
|X|

and x+(y) :=
sx
|X|
−D(x, y).

It is easy to see that the functions x+ and x− are elements of LD. If sx > 0,

we have two measures µ0 and µ1 on X where µ0(z) = D(x,z)
sx

and µ1(z) = 1
|X|

for all z ∈ X. It turns out that the total variation distance [LPW09, Chapter 4]
between µ0 and µ1 is given by

max
A⊆X

|
∑
z∈A

µ0(z)−
∑
z∈A

µ1(z)| =
∑
z∈X |µ0(z)− µ1(z)|

2
=

2

4

∑
z∈X
|D(x, z)

sx
− 1

|X|
| = |x

+ − x−

4sx
|1,
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that is, it is equal to the L1-norm of x+−x−
4sx

. Moreover, when D is a proper

metric, the tight digraph T D(x−) is the digraph on vertex set X with arc set
AD(x−) = {−→yx : y ∈ X \ {x}}, and the tight digraph T D(x+) is the digraph on
vertex set X with arc set AD(x+) = {−→xy : y ∈ X \ {x}}.

For a finite metric space (X,D) and any f ∈ LD, we have −f ∈ LD and

max
x∈X
|f(x)| ≤ max

x,y∈X
D(x, y).

This means that both LD and LxD are centrally symmetric polytopes, namely
bounded polyhedra which contain a point that bisects every maximal line seg-
ment passing through it. In the rich theory of polytopes [Zie95], even centrally
symmetric polytopes are far from well understood. Will the desire to understand
Lipschitz polytopes launch us into any adventure?

After our previous work on Lipschitz functions in [WXZ16], we learn some
more background of Lipschitz polytopes. Let (X,D) be a metric space. To bet-
ter understand this metric space, it is useful to consider its canonical embeddings
into some natural Banach spaces [Zat08]. For each x ∈ X, the Lipschitz space
Lipx(X,D) of (X,D) with respect to x ∈ X is the space of Lipschitz functions
on X which vanish at x equipped with the Lipschitz norm [Wea99]. We let
Lip0(X,D) be the space of Lipschitz functions on X which sum to 0 equipped
with the Lipschitz norm. The dual normed space of Lipx(X,D) is called the
Lipschitz-free space of (X,D) with respect to x ∈ X [GK03] while the dual
normed space of Lip0(X,D) is called the Kantorovich-Rubinstein (KR) normed
space of (X,D) [Kat88, MPV08], which is related with the Monge-Kantorovich
transportation problem [Ver13]. Note that LxD is the unit ball of Lipx(X,D)
and LD is the unit ball of Lip0(X,D). Vershik [Ver15] called the unit ball of
the KR normed space of (X,D) the fundamental polytope of (X,D) and ad-
vocated a further study of many problems about fundamental polytopes, say
the combinatorial structure of fundamental polytopes and a classification of fi-
nite metric spaces via the combinatorics of the fundamental polytopes, beyond
some existing researches [MPV08, Zat08]. The Lipschitz polytope and funda-
mental polytope of the same metric space are polar dual to each other while
the Lipschitz polytope allows a more direct description. See Example 8.7 and
Figure 6 for a small example of these two polytopes. Should this connection to
Lipschitz space, Lipschitz-free space and KR normed space promise some nice
mathematics structures to be discovered behind the Lipschitz polytopes?

Some progresses have been obtained after the paper of Vershik [Ver15]. In
[GP17], Gordon and Petrov gave an upper and lower bound on the total number
of combinatorial equivalent classes of Lipschitz polytopes of metric spaces of any
fixed size; they also determined the face vectors of Lipschitz polytopes for generic
metrics (see the beginning of § 10). In [DH16], Delucchi and Hoessly studied
the fundamental polytopes of tree metrics and derived the face vectors of them
in some concrete cases. More recently, Jevtić, Jelić and Živaljević [JJv17] found
out a close relationship between the cyclohedron (Bott-Taubes polytope) and
the fundamental polytope of any generic metric. We will provide a systematic
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study on Lipschitz polytopes of tree metrics in this paper and report our study
on the stratification of (directed) metric spaces through Lipschitz polytopes in
another paper [WX17].

Besides Lipschitz polytope and fundamental polytope, an important geome-
trical construction associated with a finite metric space is a polytopal complex
called the tight span [CL94, Dre84, Isb64]. There exists a natural injective pro-
jection from the tight span to the Lipschitz polytope of the same finite metric
space which maps vertices to vertices; see § 8. Moreover, it turns out that
the study of tight span and Lipschitz polytope do have some close connections
[WX17]. Tight span is an important tool in the study of phylogenetic combina-
torics [DHK+12, SS03, Ste16], a research direction for recovering evolutionary
trees and evolutionary networks. Especially, when the metric space is a tree
metric, its tight span is really THE tree [Dre84]! The distinguished role of tree
structure in phylogenetic combinatorics suggests us to start from tree metrics in
our course of studying Lipschitz polytopes. Indeed, in the study of Lipschitz-free
spaces, some special interests have already been centered around tree metrics
[DKP16, God10].

The main object of this essay is the Lipschitz polytopes of tree metrics and
we organize the rest of the paper as follows. In § 2 we recall some basic concepts
and definitions that will be needed in the paper. In § 3 we reveal the close rela-
tionship between tree metrics and zonotopes; see Theorem 3.4 and Remark 3.5.
Furthermore, making use of the connections between zonotopes and realizable
oriented matroids, we determine in § 4 the situations when two tree metrics
have combinatorially equivalent Lipschitz polytopes; see Theorem 4.8. In § 5.1,
we report that one can determine a phylogenetic tree by “watching” the shape
of flood tides on it (Remark 5.6); in § 5.2 we find out a connection between
tight digraphs of faces of Lipschitz polytopes and tight digraphs of combinato-
rial flows (Lemma 5.7) and then are able to provide an explicit anti-isomorphism
between the flow poset and the face poset of the Lipschitz polytope of an X-tree
(Theorem 5.9). We relate flow posets to Albanese tori in § 6, which enables us
to show that, roughly speaking, two tree metrics have combinatorially equiva-
lent Lipschitz polytopes if and only if they have the same Albanese tori; see
Theorem 4.8 and Corollary 6.3. The main result of § 7 is that the face poset
of orthogonal projections of Lipschitz polytopes of tree metrics can realize all
possible flow posets of graphs; see Theorem 7.2. In § 8, we display a natu-
ral projection from the tight span into the corresponding Lipschitz polytope
and show that there is an isometric embedding of a tree metric (X,D) into a
weighted network constructed from the 1-skeleton of the Lipschitz polytope of
(X,D). We present in § 9 sharp upper and lower bounds on the face numbers of
Lipschitz polytopes of tree metrics; see Theorem 9.9. Our § 10 is devoted to a
characterization of those simple vertices of Lipschitz polytopes of tree metrics;
see Theorem 10.2. In § 11 we calculate the Ehrhart polynomials and volumes
of skew Lipschitz polytopes of tree metrics. Finally, in § 12, we return to the
concept of Lipschitz height of a graph, which is a parameter of some interest in
the study of graph-indexed random walk [LNR03] and also the topic on which
we start our journey on Lipschitz functions [WXZ16]. We define variants of
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Lipschitz height there for general metric spaces to capture their combinatorial
shadow. We prove Theorem 12.3, an analogue of the main result from [WXZ16]
for tree metrics, and then end the paper with a conjecture, Conjecture 12.5.

2 Preliminaries

2.1 Vector configurations and oriented matroids Let E be a set. A
signed subset of E is a pair Σ = (Σ+,Σ−) satisfying Σ+∪Σ− ⊆ E and Σ+∩Σ− =
∅. We call Σ+ and Σ− the positive part and the negative part of Σ = (Σ+,Σ−),
respectively. The underlying set of a signed subset Σ of E, denoted by Σ, is
Σ+ ∪ Σ−. For any F ⊆ E, the reorientation of Σ on F , denoted by −FΣ, is
the signed subset of E whose positive part is (Σ+ \ F ) ∪ (Σ− ∩ F ) and whose
negative part is (Σ− \ F ) ∪ (Σ+ ∩ F ). If S is a set of signed subsets of E, we
call S′ = {−FΣ : Σ ∈ S} a set obtained from S by the reorientation on F and
call S and S′ reorientation equivalent. The set of all signed subsets of E has a
natural partial order structure ≤ such that, for each two signed subsets Σ and
∆ of E, Σ ≤ ∆ if and only if Σ+ ⊆ ∆+ and Σ− ⊆ ∆− hold. For any f ∈ RE ,
its signed support, denoted by f , is the signed subset of E whose positive part
is {e ∈ E : f(e) > 0} and whose negative part is {e ∈ E : f(e) < 0}.

Let X be a finite set. We always view RX as the Hilbert space endowed
with the inner product 〈·, ·〉 that 〈f, g〉 =

∑
x∈X f(x)g(x) for f, g ∈ RX . For

each subspace W of RX , denote by W⊥ the orthogonal complement of W in
RX . For any finite index set E, any map from E to RX is called an E-indexed
vector configuration in RX . Let A be an E-indexed vector configuration in
RX . Note that this map A naturally corresponds to a map from X × E to R
that sends (x, e) ∈ X × E to A(e)(x). This suggests to define the conjugate of
A to be the X-indexed vector configuration in RE , denoted by A>, such that
A>(x)(e) = A(e)(x) for all (x, e) ∈ X×E. Considering a linear extension of the
map A, we can send f ∈ RE to A f ∈ RX , where

A f =
∑
e∈E

f(e)A(e).

We write kerA for {f ∈ RE : A f = 0 ∈ RX} and we write imA for {A f :
f ∈ RE}. Note that kerA is a subspace of RE , imA is a subspace of RX ,
and dim kerA+ dim imA = |E|. Let VA = {f : f ∈ kerA}. We call the
pair MA = (E,VA) the oriented matroid of A [BLVS+99], which forms an
interesting combinatorial abstraction of the linear dependence relationship and
the chirality in the vector configuration A. For the oriented matroid M =
(E,V), its underlying matroid, denoted by M, is the pair (E,V), where V =
{Σ : Σ ∈ V}, which characterizes only linear dependence relationship. The
set VA is known as the set of vectors of MA. It has a natural partial order
structure ≤ inherited from that on the set of all signed subsets of E and has
(∅, ∅) as the unique minimum element. Every atom of VA, namely an element
which covers (∅, ∅) in VA, is called a circuit of MA. The set of all circuits
of MA are characterized by the so-called circuit axioms of oriented matroids

6



[BLVS+99, Definition 3.2.1]. If C is the set of all circuits of an oriented matroid
M, we call C = {Σ : Σ ∈ C} the set of circuits of the matroid M. If B
is an E-indexed vector configuration in RY such that kerA and kerB are the
orthogonal complements to each other in RE , namely

imA> = (kerA)⊥ = kerB (5)

in RE , thenMB is called the dual oriented matroid ofMA and is often directly
denoted by M∗A to signify the fact that it is independent with the choice of B
but totally determined by (5) [BK92, Example 5.9]. A vector ofM∗A is called a
covector ofMA and we denote by V∗(MA) the set of covectors ofMA, namely
V∗(MA) = V(M∗A). Equipped with the natural partial order structure on it,
V∗(MA) = V(M∗A) is known as the face poset of the oriented matroid MA.
Note that, as suggested by (5), for any vector configuration A in RX , the set

{f : f ∈ imA}

corresponds to the set of vectors of an oriented matroid on X. For an E-indexed
vector configuration A in RX and an F -indexed vector configuration B in RY ,
we call the two oriented matroids MA and MB isomorphic provided there is a
bijection f from E to F and a subset F ′ of F such that (Σ+,Σ−) ∈ VA if and
only if −F ′

(
f(Σ+), f(Σ−)

)
∈ VB, where f(S) is a shorthand for {f(e) : e ∈ S}.

Up to isomorphism, an oriented matroid uniquely determines its dual oriented
matroid, namelyMA =MB impliesM∗A =M∗B [BLVS+99, Proposition 3.4.1].
The oriented matroids of real vector configurations as introduced above are
called realizable oriented matroids; the readers should go to [BK92, BLVS+99,
Bok06] for the theory of general oriented matroids.

We call A = (v1, . . . , vm) a multiplicity-free vector configuration provided we

cannot find any {i, j} ∈
({1,...,m}

2

)
such that vi and vj are parallel, namely are

linearly dependent. We call two vector configurations B in RX and B′ in RX
′

∗-equivalent if there exists an invertible linear map g from RX to RX
′

such that
for any nonzero vector B(i) in B we can find a nonzero vector B′(i′) in B′ such
that g

(
B(i)

)
is parallel to B′(i′) and for any nonzero vector B′(j′) in B′ we

can find a nonzero vector B(j) in B such that g−1
(
B′(j′)

)
is parallel to B(j).

Surely, every vector configuration is ∗-equivalent with a multiplicity-free vector
configuration.

Lemma 2.1. [BEZ90, Theorem 6.14] [BLVS+99, Theorem 4.2.14] Let A and
B be multiplicity-free vector configurations. ThenMA andMB are isomorphic
oriented matroids if and only if V∗(MA) and V∗(MB) are isomorphic posets.

2.2 Polytopes, face posets and 1-skeleton graphs Every hyperplane H
in RX divides it into three parts, H itself and the two connected components
of RX \H. We call the two components the open half spaces for H and the
complement of any open half space for H a closed half space for H. Let P
be a polyhedron in RX . We call the hyperplane H a dividing hyperplane of P
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if P is contained in a closed half space for H. A face of P is the nonempty
intersection of P with a closed half space for one of its dividing hyperplanes.
The definition here for faces of polyhedra indeed corresponds to that of exposed
faces of general convex sets [Lau13, p. 33]. But polyhedra only have exposed
faces [Lau13, Lemma 4.2, Proposition 4.3] and so we do not bother to give
the general definition. The face poset of P is the set F(P ) ordered under the
inclusion relationship, namely, F1 ≤ F2 if and only if F1 ⊆ F2. We say that
two points x and y in P are equivalent provided every dividing hyperplane for
P either contains both of them or contains none of them. We thus partition P
into its equivalent classes, which we call cells. Note that a face of P is the closed
closure of a cell of P in the Euclidean topology for RX . If F is a face of P , then
P is the closed closure of a unique cell C and we call the set of points in C the
relative interior of F . For any f ∈ P , let us write [f ]P for the minimum face of
P that contains f . Note that [f ]P = F if and only if f is in the relative interior
of F . Every point of P which form a 0-dimensional face of P is called a vertex
of P. If P is a polytope, i.e., a bounded polyhedron, then the minimal elements
of F(P ) must be singleton sets consisting of vertices of P . Two polyhedra with
isomorphic face posets are called combinatorially equivalent or having the same
combinatorial type. For any polytope P, its 1-skeleton graph, denoted by SGP , is
the graph which has the 0-dimensional faces of P as vertices, has 1-dimensional
faces of P as edges and the endpoints of each 1-dimensional face in the graph
are the two 0-dimensional faces contained in it. A vertex of a d-dimensional
polytope P is simple if it has degree d in SGP .

Let P be a polytope in RX . For any f ∈ RX , the face of P determined by f
is

{g ∈ P : 〈g, f〉 ≥ 〈g′, f〉,∀g′ ∈ P},

which we denote by Fmax(P, f). We call f ∈ RX a normal to F ∈ F(P )
provided F = Fmax(P, f). For each F ∈ F(P ), let

NP (F ) := {f ∈ RX : F ⊆ Fmax(P, f)},

and call it the outer normal cone of P with respect to F . We remark that the
set of normals to every face F ∈ F(P ) is nonempty, which is the relative interior
of NP (F ) [DCP11, §1.2.4]. The outer normal fan of P in RX , denoted by NP

[DLRS10, Definition 2.1.8] [LR08] [Zie95, Example 7.3], consists of all those
NP (F ) for F ∈ F(P ). The normal poset of P , denoted by N (P ), has NP as its
elements where N1 ≤ N2 in N (P ) if and only if N1 is a subset of N2. Because the
map from F(P ) to N (P ) that sends F to NP (F ) is a bijection which reverses
the inclusion relationship, the normal poset of P is anti-isomorphic with the
face poset of P , and so isomorphic with the face poset of the polar of P [Bar02,
Chapter VI, Theorem (1.3)]. Note that two polytopes sharing the same outer
normal fan surely have the same normal poset and hence are combinatorially
equivalent. The next remark tells us that the face poset, the normal poset and
the poset of tight digraphs are basically the same thing for Lipschitz polytopes.
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Remark 2.2. Let (X,D) be a metric space, let P = LD ⊆ RX , and let f ∈ P.
Let

g =
∑

(a,b)∈AD(f)

ca,b(χa − χb)

where ca,b > 0 for all (a, b) ∈ AD(f). Then

[f ]P = Fmax(P, g). (6)

For any x ∈ X and the two elements x−, x+ defined in Example 1.2, (6)
allows us to check that [x−]P = {x−} and [x+]P = {x+}, namely both x− and
x+ are vertices of P.

A zonotope is the image of a hypercube under an affine transformation;
that is, it is the vector sum, also known as the Minkowski sum [Agn13], of a
sequence of line segments in an Euclidean space. Zonotopes have many equi-
valent definitions/characterizations, say the supports of box splines and others
[BLVS+99, Bol69, DCP11, DL97]. Zonotopes have played a central role in the
recently established theory of arithmetic matroids and arithmetic Tutte polyno-
mials [ACH15, DM12]. Here is one of many interesting properties of zonotopes.

Lemma 2.3. [BEZ90, Theorem 6.14] Let P and P ′ be two zonotopes. If SGP

and SGP ′ are isomorphic as graphs, then F(P ) and F(P ′) are isomorphic as
posets.

For v1, . . . , vm ∈ RX , we often write A = (v1, . . . , vm) to mean that A is a
vector configuration in RX indexed by E = {1, . . . ,m} which sends i to vi for
all i ∈ E. We use Z(A) or Z(v1, . . . , vm) for the zonotope

{t1v1 + · · · tmvm : 0 ≤ ti ≤ 1, i = 1, . . . ,m}

and we use Z(±A) or Z(±v1, . . . ,±vm) for

Z(v1,−v1, . . . , vm,−vm) = {t1v1 + · · · tmvm : −1 ≤ ti ≤ 1, i = 1, . . . ,m}.

We call Z(A) the zonotope generated by A .

Remark 2.4. Note that Z(±A) = 2Z(A)−
∑m
i=1 vi and so Z(A) and Z(±A)

have the same combinatorial type.

Real hyperplane arrangements, zonotopes and vector configurations are dif-
ferent guises of the structure of realizable oriented matroids [BLVS+99]. As-
sociated with the zonotope Z(A) = Z(v1, . . . , vm) is the central hyperplane
arrangement HA given by the hyperplanes orthogonal to one of the nonzero
vectors from {v1, . . . , vm}. The regions of HA are naturally identified with the
elements of imA>. The normal fan of a zonotope is equal to the fan of the
corresponding hyperplane arrangement [DCP11, Theorem 2.41][McM71, p. 94]
[Zie95, Theorem 7.16]. These simple considerations then suggest the following
useful fact.
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Proposition 2.5. [BLVS+99, Proposition 2.2.2, Corollary 2.2.3] Let A be a
vector configuration in RX . Then the face poset V∗(MA) of the oriented matroid
MA and the face poset of the zonotope Z(A) are anti-isomorphic.

Remark 2.6. Checking (5) and the definition of covectors, it follows from Pro-
position 2.5 that the zonotopes of two ∗-equivalent vector configurations have the
same combinatorial type [McM71, p. 92]. This gives a better understanding of
Remark 2.4.

We say that two subsets S1 and S2 of RX are sign equivalent if there exists
a bijection f from S1 to S2 such that f(v) ∈ {±v} for all v ∈ S1.

Lemma 2.7. [Zie95, p. 206] Let P be a nonempty zonotope in RX . Then there
is a unique vector v ∈ P and, up to sign equivalence, a unique multiplicity-free
vector configurations {v1, . . . , vm} ⊆ RX such that P = v + Z(±v1, . . . ,±vm).

Proof. Let u1, . . . , un be the set of all vertices of P and let [A1, B1], . . . , [Am, Bm]
be a maximal nonparallel set of edges of P . It is easy to check that we should
take v =

∑n
i=1

ui
n and vi ∈ {Ai−Bi2 , Bi−Ai2 } for i = 1, . . . ,m.

For any zonotope P , we call the vector v claimed in Lemma 2.7 the center
of P , call the set of vectors {v1, . . . , vm} claimed in Lemma 2.7 the generators
of P and define the oriented matroid of P , denoted by MP , to be M(v1,...,vm).

Remark 2.8. For any vector configuration A and polytope P = Z(A), it holds
MP = MA if and only if A is a multiplicity-free. The zonotopes generated
by two ∗-equivalent vector configurations share the same oriented matroid up to
isomorphism.

2.3 Graphs, weighted X-networks and flow posets A digraph G con-
sists of a set V(G) of its vertices, a set A(G) of its arcs, and two maps from
A(G) to V(G), oG and tG. For each α ∈ A(G), we call oG(α) the origin of α
and tG(α) the terminus of α. A subgraph of a digraph G induced by W ⊆ V(G),
denoted by G[W ], is the digraph with vertex set W , arc set t−1

G (W ) ∩ o−1
G (W )

and the origin and terminus maps obtained by restricting those maps of G
on t−1

G (W ) ∩ o−1
G (W ). If the map (oG, tG) from A(G) to V(G) × V(G) is in-

jective, we will naturally identify every arc α with the pair
(

oG(α), tG(α)
)
. A

sequence of ` arcs in G, say P = (α1, . . . , α`), is a path of length ` in G, provided
oG(α1), . . . , oG(α`) are all different vertices, and oG(αi+1) = tG(αi) for all i sa-
tisfying 1 ≤ i ≤ `−1. We call oG(α1) the origin of P , tG(α`) the terminus of P ,
oG(α2), . . . , oG(α`) the interior vertices of P, and say that P runs from oG(α1)
to tG(α`); for easy of reference, we will write oG(P ) for oG(α1) and tG(P ) for
tG(α`). If oG(P ) = tG(P ), we say that the path P is a cycle.

A graph is a digraph G together with an involution of A(G) which sends
α ∈ A(G) to α ∈ A(G) such that oG(α) = tG(α) and tG(α) = oG(α). For each
α ∈ A(G), let [α] stand for the orbit {α, α} of the involution. Denote by E(G)
the set of orbits of the involution. For each edge e ∈ E(G), say e = {α, α}, we
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call oG(α) and tG(α), which may not be different, the endpoints of e, and we
write bdG(e) for the set {oG(α), tG(α)} of its endpoints and call it the boundary
of e. Therefore, a graph G consists of its vertex set V(G), edge set E(G), and

a map bdG from E(G) to
(

V(G)
1

)
∪
(

V(G)
2

)
that sends an edge to its endpoints.

A graph G is simple provided bdG is an injective map from E(G) to
(

V(G)
2

)
.

For a simple graph G, we also adopt the convention of writing an edge e as
uv when bdG(e) = {u, v}. The degree of v ∈ V(G) in a graph G, denoted by
degG(v), is the number of edges of G which has v as one of its endpoints, i.e.,
degG(v) = |{e ∈ E(G) : v ∈ bdG(e)}|. A partial orientation of G is a set
σ ⊆ A(G) such that |σ ∩ {α, α}| ≤ 1 for all α ∈ A(G). We sometimes identify
a partial orientation σ with the digraph (V(G), σ). If the partial orientation σ
attains its maximum possible size, namely, |σ| = |E(G)|, we call it an orientation
of G. The pair (G, σ) consisting of a graph G and an orientation σ of it is called
an oriented graph. A partial orientation of G also gives rise to a graph, that is,
the subgraph of G with vertex set V(G) and edge set {[α] : α ∈ σ}, which we
will denote by Gσ. If T is a tree and x is a vertex of T , we write

σ+
T,x (7)

for the orientation of T in which there is a path from x to v for all v ∈ V(T )
and we write

σ−T,x (8)

for the orientation of T in which there is a path from v to x for all v ∈ V(T ).
Let G be a graph and take U ⊆ V(G). Let u be an element disjoint from

V(G) and, for every x ∈ V(G), let

mU (x) =

{
x if x /∈ U ;
u if x ∈ U.

We now define G/U to be the graph with V(G/U) = (V(G)\U)∪{u}, E(G/U) =
E(G) and bdG/U (e) = {mU (x),mU (y)} for all e ∈ E(G/U) with bdG(e) =
{x, y}. That is, G/U is obtained from G by contracting all vertices inside U into
one vertex. When there is no danger of confusion, we will often directly name
this new vertex u of G/U as U. We illustrate this vertex-contracting operation
in Figure 1.

Let G be a graph. For any orientation σ of G, the incidence matrix of (G, σ),

denoted by IG,σ, is the σ-indexed vector configuration in RV(G) such that

IG,σ(α) = χoG(α) − χtG(α) ∈ {0,±1}V(G) ⊆ RV(G)

for all α ∈ σ. We write ∂G,σ for the conjugate of IG,σ, namely ∂G,σ = I>G,σ is
the V(G)-indexed vector configuration in Rσ such that

∂G,σ(v) =
∑

α∈o−1
G (v)∩σ

χα −
∑

α∈t−1
G (v)∩σ

χα ⊆ Rσ

11
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Figure 1: Three trees and the corresponding graphs after vertex-contraction.

for all v ∈ V(G). We call ker IG,σ the cycle space of (G, σ) and im ∂G,σ the cut
space of (G, σ), which are surely the orthogonal complements of each other in
Rσ. For any two orientations σ and σ′ of G, we can find a unique bijection π
from σ to σ′ such that π(α) = {α, α} ∩ σ′ for all α ∈ σ. This map π induces a

natural linear isomorphism Lπ from Rσ to Rσ
′

such that

(Lπf)(α) =

{
f(α) if α = π(α),
−f(α) if α = π(α),

for all f ∈ Rσ . Moreover, it is easy to check that Lπ maps ker IG,σ to ker IG,σ′

and maps im ∂G,σ to im ∂G,σ′ . So, different orientations ofG just give us different
coordinate systems and we will sometimes just call ker IG,σ and im ∂G,σ the
cycle space and the cut space of G. Considering this identification π between
σ and σ′ and using the reorientation on F ′ = {π(α) : π(α) 6= α}, we see that
MIG,σ andMIG,σ′ are isomorphic; surely, this is simply because Lπ induces an
isomorphism from ker IG,σ to kerIG,σ′ . Therefore, we will abbreviateMIG,σ as
MG and call it the oriented matroid of G. For any f ∈ ker IG,σ, its support f
can be encoded as a partial orientation σf of G such that σf = {α ∈ σ : f(α) >
0} ∪ {α : α ∈ σ, f(α) < 0}. We call σf a combinatorial flow of G, which is also
named as a cyclic partial orientation of G [Bol98, p. 372, Ex. 10]. It is obvious
that, for any f1, f2 ∈ ker IG,σ, f1 ≤ f2 if and only if σf1 ⊆ σf2 . A partial
orientations τ of G is a combinatorial flow if and only if, for every α ∈ τ , we can
find a cycle which contains α and falls into τ . Denote by CF(G) the poset of
all combinatorial flows of G ordered under the inclusion relationship, and call it
the flow poset of G. Clearly, CF(G) is just a coordinate-free description of the
poset V(MG).

Proposition 2.9. Let G be a graph and σ be any orientation of G. If A is
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a σ-indexed vector configuration such that kerA coincides with the cut space
im ∂G,σ = (ker IG,σ)⊥ of G, or equivalently, imA> coincides with the cycle space
ker IG,σ = (im ∂G,σ)⊥ of G, then the face poset of Z(A) is anti-isomorphic with
CF(G).

Proof. Note that CF(G) = V(MIG,σ ) = V∗(MA). An application of Proposi-
tion 2.5 completes the proof.

A network is a graph G together with a subset X of its vertex set which
can be reckoned as outlets and inlets. We will refer to (G,X) as an X-network
if all those vertices of G having degree at most two are contained in X. If G
itself is a tree, the X-network (G,X) is an X-tree. An X-tree (T,X) is called a
phylogenetic X-tree if X coincides with the set of vertices of degree at most one
in T . Let (G,X) be an X-network. A flow on (G,X) is a map f from A(G) to
R such that

• f(α) = −f(α) for all α ∈ A(G); and

•
∑
u=t(α) f(α) = 0 for all u ∈ V(G) \X.

The support of the flow f on (G,X) is the set {α ∈ A(G) : f(α) > 0}, which
we denote by supp(f). A subset of A(G) is called a combinatorial flow on the
X-network (G,X) if it is the support of some flow on it. We write CF(G,X)
for the poset of all combinatorial flows of (G,X). We call an orientation σ
of G which is also in CF(G,X) a full combinatorial flow on (G,X) and we
use CF∗(G,X) to denote the set of all full combinatorial flows on (G,X). It
is claimed that passing through single spaces to pairs of spaces as objects of
study was a great breakthrough in algebraic topology in the past [Sat99, p. 5].
Analogously, we believe that going to combinatorial flows of X-network (G,X)
from combinatorial flows of an ∅-network, say the graph G/X, should provide
insight and convenience, which we plan to discuss further elsewhere.

For any connected graph G and any function w ∈ RE(G)
>0 , we have the na-

tural shortest path metric DG,w defined on V(G) [Geo11, KKN15]. For any

connected X-network (G,X) and any w ∈ RE(G)
>0 , the triple (G,X,w) is a weig-

hted X-network and we let DG,X,w be the metric on X which is obtained from
DG,w by restricting its range to X×X. We say that (G,X,w) is a weighted net-
work representation of the metric DG,X,w. If w takes constant value 1, we use the
shorthand DG and DG,X for DG,w and DG,X,w, respectively. If T = (T,X) is an
X-tree and w is a positive weight function on E(T ), we call DT ,w a tree metric.
The relation between a metric space and its weighted network representation has
been examined seriously in phylogenetic combinatorics [DHK+12, SS03, Ste16].
Tree metrics have many local characterizations [DHK+12, SS03], including the
following four-point condition (4PC) characterization, which have been discove-
red independently several times by different authors [DHK+12, §3.1].

Lemma 2.10. [DHK+12, Theorem 3.1] Let (X,D) be a proper metric space.
Then, there exists a weighted X-tree (T,X,w) such that D = DT,X,w if and only
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if, for every four (not necessarily distinct) elements a, b, c, d ∈ X, the maximum
of the three numbers

D(a, d) + D(b, c),D(a, c) + D(b, d),D(a, b) + D(c, d)

is attained at least twice. Moreover, the weighted X-tree (T,X,w) that realizes
D is unique up to isomorphism.

3 Lipschitz polytopes and zonotopes

For any A ⊆ X, the characteristic vector of A with respect to X, denoted by
χA, is the element in RX such that

χA(x) =

{
1 if x ∈ A;
0 otherwise.

An ordered partition of a set X into two parts, say first A and then B, is called a
directed split of X and denoted by A ` B. A partition of a set X into two parts
A and B is called a split of X and denoted by A|B. We can think of A|B = B|A
as an element representing the set {A ` B,B ` A} and we call A|B the split
corresponding to the directed split A ` B. For a directed split s = A ` B of X,
the notation fs stands for the element of RX such that

fs(x) =

{ |B|
|X| if x ∈ A;
−|A|
|X| if x ∈ B.

(9)

That is,

fA`B =
|B|χA
|X|

− |A|χB
|X|

= χA −
|A|
|X|

= − fB`A .

For each split s = A|B = B|A of X, let Ds be the metric on X such that, for
all x, y ∈ X,

Ds(x, y) =

{
1 if |{x, y} ∩A| = 1;
0 otherwise.

We call Ds a split metric on X.

Remark 3.1. Let s = A|B be a split of a nonempty set X. Then LDs =
Z(± fA`B) = Z(fA`B , fB`A) is the line segment in RX connecting fA`B and
fB`A.

Let (T,X) be an X-tree. For every α ∈ A(T ), let{
̂oT,X(α) = {x ∈ X : DT

(
x, oT (α)

)
< DT

(
x, tT (α)

)
};

̂tT,X(α) = {x ∈ X : DT

(
x, oT (α)

)
> DT

(
x, tT (α)

)
}.

Then let
sT,Xα = ̂oT,X(α) ` ̂tT,X(α), (10)

which is surely a directed split of X. For the two directed splits sT,Xα and sT,Xα ,
we write sT,Xe for the corresponding split of X, where e = [α] = {α, α}.

14



Lemma 3.2. [McS34, Theorem 1] Let (X,DX) and (Y,DY ) be two proper me-
tric spaces such that X ⊆ Y and the restriction of DY on X × X equals DX .
Then every function f : X → R can be extended to a function f̃ : Y → R such

that f̃ |X = f and max{ |f̃(y1)−f̃(y2)|
DY (y1,y2) : y1 6= y2 ∈ Y } = max{ |f̃(x1)−f̃(x2)|

DX(x1,x2) : x1 6=
x2 ∈ X}.

Zonotopes possess a high degree of symmetry and so allow various local cha-
racterizations. The Alexandrov characterization of zonotopes, [Ale33] [Bol69,
Theorem 3.3] says that a polytope is a zonotope if and only if all its two-
dimensional faces are centrally symmetric. More generally, McMullen [McM70]
finds that for every d ≥ 4, a dimension-d polytope is a zonotope if and only if
all its j-faces are centrally symmetric for one j satisfying 2 ≤ j ≤ d− 2. As ob-
served by Witsenhausen [Wit78, Lemma 2] [Zie95, Exercise 7.5], Alexandrov’s
characterization leads to the conclusion that, if all the 3-dimensional projections
of a polytope P are zonotopes, then so is P . The next theorem suggests that
Witsenhausen’s observation may be viewed as a counterpart for Lemma 2.10.

Theorem 3.3. For every weighted X-tree (T,X,w), we have

LDT,X,w =
∑

e∈E(T )

w(e) LD
s
T,X
e

=
∑

α∈A(T )

w([α])Z(fsT,Xα
), (11)

which implies that the Lipschitz polytope of a tree metric is a zonotope.

Proof. By Remark 3.1, our task is to show

LDT,X,w =
∑

e∈E(T )

w(e) LD
s
T,X
e

.

Take any f ∈ LDT,X,w . By Lemma 3.2, we can fix a map f̃ on V(T )×V(T )

such that f̃ |X×X = f and

|f̃(a)− f̃(b)| ≤ DT,w(a, b) (12)

for all a, b ∈ V(T ). For each e = {
−→
ab,
−→
ba} ∈ E(T ), let

fe =
(
f̃(a)− f̃(b)

)
fA`B =

(
f̃(b)− f̃(a)

)
fB`A ∈ RX ,

where A ` B = sT,X−→
ab

, as defined in (10). By (12), fe ∈ Lw(e) D
s
T,X
e

= w(e) LD
s
T,X
e

holds. For any path P = (α1, . . . , α`) in the tree T with {oT (P ), tT (P )} ⊆ X,
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we have

f
(

oT (P )
)
− f

(
tT (P )

)
= f̃

(
oT (P )

)
− f̃

(
tT (P )

)
=

∑̀
i=1

(
f̃(oT (αi))− f̃(tT (αi))

)
(13)

=
∑̀
i=1

( ∑
e∈E(T )

fe(oT (αi))−
∑

e∈E(T )

fe(tT (αi))
)

=
∑

e∈E(T )

(
fe(oT (P ))− fe(tT (P ))

)
=

( ∑
e∈E(T )

fe
)(

oT (P )
)
−
( ∑
e∈E(T )

fe
)(

tT (P )
)
.

Since both f and
∑
e∈E(T ) fe are functions which sum to zero on X, (13) gives

f =
∑

e∈E(T )

fe

and henceforth

LDT,X,w ⊆
∑

e∈E(T )

Lw(e) D
s
T,X
e

=
∑

e∈E(T )

w(e) LD
s
T,X
e

. (14)

It is not difficult to verify that

DT,X,w =
∑

e∈E(T )

w(e) DsT,Xe

and so
LDT,X,w ⊇

∑
e∈E(T )

w(e) LD
s
T,X
e

(15)

follows. Now, (14) along with (15) implies what we want.

Theorem 3.4. Let (X,D) be a finite proper metric space. Then D is a tree
metric if and only if LD is a zonotope.

Proof. In view of Theorem 3.3, we only need to establish the backward direction.
We take arbitrarily U = {a, b, c, d} ∈

(
X
4

)
. Without loss of generality, we assume

that
D(a, d) + D(b, c) ≥ D(a, b) + D(c, d) (16)

and
D(a, c) + D(b, d) ≥ D(a, b) + D(c, d). (17)

By Lemma 2.10, it suffices to show that

D(a, d) + D(b, c) = D(a, c) + D(b, d). (18)
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Let D′ be the restriction of D on U × U. By Lemma 3.2, it holds that
LaD′ = pUa pU (LD), where pU : RX → RU is the map that sends f ∈ RX to
f |U , and pUa : RU → RU is as defined in (3). Note that both pUa and pU are
projection maps. Since we have assumed that LD is a zonotope, we now see
that so is LaD′ . Let

F

:= Fmax

(
LaD′ , χb − χa

)
= {f ∈ LD′ : f(a) = 0, f(b) = D(b, a)} (19)

= {f ∈ RU : f(a) = 0, f(b) = D(b, a), |f(c)− f(d)| ≤ D(c, d), |f(c)− f(a)| ≤ D(c, a),

|f(c)− f(b)| ≤ D(c, b), |f(d)− f(a)| ≤ D(d, a), |f(d)− f(b)| ≤ D(d, b)}.

As a face of the zonotope LaD′ , F must be centrally symmetric. Substituting
f(c) = x and f(d) = y into (19), we then see that

H := {(x, y) : |x− y| ≤ D(c, d), |x| ≤ D(c, a),

|x−D(b, a)| ≤ D(c, b), |y| ≤ D(d, a), |y −D(b, a)| ≤ D(d, b)}

should be a centrally symmetric subset of R2. Let

M0 = D(b, a)−D(c, b), M1 = D(c, a),

and

Ix = [max
(

D(b, a)−D(d, b), x−D(c, d)
)
,min

(
D(d, a), x+ D(c, d)

)
]

for all x ∈ [M0,M1]. Since D satisfies the triangle inequality, we can obtain

H = {(x, y) : x ∈ [M0,M1], y ∈ Ix}.

We further derive from the triangle inequality that{
IM0 = [D(b, a)−D(d, b),D(b, a)−D(c, b) + D(c, d)], by (16)
IM1 = [D(c, a)−D(c, d),D(d, a)], by (17).

Applying the triangle inequality again shows that both IM0 and IM1 are no-
nempty and hence, because H is centrally symmetric, IM0

and IM1
should be

of the same length. Comparing their lengths yields (18), as wanted.

Remark 3.5. Let (X ′,D′) be a metric space. For any x, y ∈ X ′, we say that
they are equivalent provided D′(x, y) = 0. Let X be the set of equivalence classes
in X ′ and let D be the proper metric on it such that D(u, v) takes the value
D′(x, y) for any x ∈ u and y ∈ v. Fix an x ∈ X ′ and let u be the equivalence

class containing x. Let π be the injective linear map from RX to RX
′

such
that π(χu) =

∑
x∈u χx. It is clear that π(LuD) = LxD′ . By Remark 1.1 and

Theorem 3.4, we obtain the equivalence of the following four claims:

• LD′ is a zonotope;
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• pX
′

x (LD′) = LxD′ = π(LuD) is a zonotope;

• LuD is a zonotope;

• D is a tree metric.

Remark 3.6. According to a result of Godard [God10, Theorem 4.2 “(1)⇐⇒(3)”],
a metric space (X,D) is a tree metric if and only if its Lipschitz-free space is
L1-embeddable and so, by [DL97, Theorem 8.3.2], if and only if LxD, where x
is any fixed element of X, is a zonotope. This line of arguments could pro-
vide another indirect proof of Theorem 3.3. Conversely, surely Theorem 3.3
can be used to prove [God10, Theorem 4.2] as well. We mention that another
proof of Theorem 3.3 is obtained by Delucchi and Hoessly [DH16, Theorem 3.5].
Theorem 3.4 is very close to [God10, Theorem 4.2]. Note that the backward di-
rection of Theorem 3.3 just corresponds to the implication of [God10, Theorem
4.2 “(1)=⇒(2)”]. We can even talk about directed metric space (by dropping the
symmetric condition for a metric space) and prove that the Lipschitz polytope
of a directed metric is a zonotope if and only if the directed metric is read from
a weighted directed X-tree [WX17].

4 Oriented matroids and face posets

For any x ∈ X and any directed split s of X, say s = A ` B, we define fs,x ∈ RX
by setting

fs,x =

{
−χB if x ∈ A;
χA if x ∈ B. (20)

Let (T,X) be an X-tree. For any x ∈ X and α ∈ A(T ), it follows from (10) and
(20) that

fsT,Xα ,x = − fsT,Xα ,x,

and it follows from (3), (9) and (20) that

pXx (fsT,Xα
) = fsT,Xα ,x .

Consequently, for any weighted X-tree (T,X,w) and x ∈ X, we can apply
Remark 3.1 and Theorem 3.3 to get

LxDT,X,w = Z
(
w([α]) fsT,Xα ,x : α ∈ A(T )

)
. (21)

Let (T,X) be an X-tree. Choose one x ∈ X and let σ = σ−T,x. Let DT,X,x

be the σ-indexed vector configuration in RX such that

DT,X,x(α) = fsT,Xα ,x (22)

for each α ∈ σ. From (21) we can believe that DT,X,x is a vector configuration

of special interest for our study of Lipschitz polytopes. Let PT,X,x = D>T,X,x be
the X-indexed vector configuration in Rσ. Note that

PT,X,x(y) = χY ∈ Rσ
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where Y is the set of arcs on the unique path from y to x in T. We call DT,X,x

the descendent matrix of (T,X) with origin x and PT,X,x the path matrix of
(T,X) with origin x. Using the terminology of phylogenetic combinatorics,
DT,X,x(α)(y) = PT,X,x(y)(α) = 1 if and only if the split x|y is compatible with

sT,X[α] .

Lemma 4.1. Let (T,X) be an X-tree, let x ∈ X and let σ = σ−T,x. Then

(imPT,X,x)⊥ = kerDT,X,x is equal to (ker IT/X,σ)⊥ = im ∂T/X,σ. More pre-
cisely, imPT,X,x and im ∂T/X,σ are the orthogonal complements to each other
in Rσ while dim imPT,X,x = |X| − 1 and dim im ∂T/X,σ = |E(T )| − |X| + 1 =
|V(T )| − |X|.

Proof. We directly write P for PT,X,x and ∂ for ∂T/X,σ. For each v ∈ V(T )\{x},
let αv denote the unique arc from o−1

T (v) ∩ σ.
For each v ∈ V(T/X), we have

∂(v) =

{ ∑
α∈o−1

T (v)∩σ χα −
∑
α∈t−1

T (v)∩σ χα if v ∈ V(T ) \X;∑
u∈X

∑
α∈o−1

T (u)∩σ χα −
∑
u∈X

∑
α∈t−1

T (u)∩σ χα if v = X.

Note that
∑
v∈V(T/X) ∂(v) = 0 ∈ Rσ and so

im ∂ = span{∂(v) : v ∈ V(T ) \X}. (23)

Let S be a subset of V(T )\X and assume that w is a vertex of shortest distance
to x among elements of S. We can check that ∂(w)(αw) = 1 and ∂(v)(αw) = 0
for all v ∈ S\{w}. This observation along with (23) implies dim im ∂ = |V(T )|−
|X|.

For every y ∈ X, we have P(y) = χPy ∈ Rσ, where Py is the set of arcs
on the unique path from y ∈ X to x ∈ X in T and so is the union of several
arc-disjoint cycles in T/X passing through X ∈ V(T/X). Note that P(x) = 0
and so

imP = span{P(y) : y ∈ X \ {x}}. (24)

Let S be a subset of X \ {x}. We assume that w is a vertex in T of largest
distance to x among elements of S. We can check that P(w)(αw) = 1 and
P(v)(αw) = 0 for all v ∈ S \ {w}. This observation along with (24) gives

dim imP = |X| − 1. (25)

For every y ∈ X and every v ∈ V(T ) \X, P(y) is in the cycle space of T/X
while ∂(v) is from the cut space of T/X an so P(y) and ∂(v) are orthogonal to
each other in Rσ. Since dim im ∂ + dim imP = (|V(T )| − |X|) + (|X| − 1) =
|E(T )| = |σ|, we see that imP is the cycle space of T/X and im ∂ coincides
with the cut space of T/X and so they are the orthogonal complements of each
other in Rσ, as wanted.
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Theorem 4.2. Let (T,X,w) be a weighted X-tree. Then,

MLDT,X,w
=M∗T/X , (26)

and the face poset of LDT,X,w is anti-isomorphic with CF(T/X).

Proof. Pick x ∈ X, let σ = σ−T,x and let A = DT,X,x be a σ-indexed vector con-

figuration in RX , which is multiplicity-free. In view of Remark 1.1, Remark 2.8
and (21), we know that

MLDT,X,w
=MLxDT,X,w

=MZ(A) =MA, (27)

and then, by Proposition 2.5, that the face poset of LDT,X,w is isomorphic with
the face poset of Z(A), namely

F(LDT,X,w) = F(Z(A)). (28)

By Lemma 4.1,
kerA = kerDT,X,x = (ker IT/X,σ)⊥. (29)

Thanks to (27) and (29), we obtain (26). By Proposition 2.9, (28) along with
(29) implies that F(LDT,X,w) is anti-isomorphic with CF(T/X).

Remark 4.3. Let (T,X) be an X-tree with |V(T )| ≥ 2..

(a) No vertex other than X could be a cut vertex of T/X. If (T,X) is a phylo-
genetic X-tree, then T/X has no cut vertices.

(b) All cycles of T/X pass through the vertex X. Moreover, X is the unique
vertex of T/X that falls into all cycles of T/X unless T is a star tree, i.e.,
a phylogenetic X-tree with exactly one interior vertex.

(c) Every phylogenetic X-tree T can be recovered from T/X as follows: If
|V(T/X)| ≤ 2, then T is the star tree with E(T ) = E(T/X); otherwise,
we find the unique vertex v of T/X satisfying the property claimed in (b),
for each edge e of T/X such that bdT/X(e) = {v, u} we add a new vertex
ve to T/X and change the endpoints of e to be u and ve, and finally delete
vertex v to get T .

For any two posets P and Q, we define their Cartesian product to be the
poset P ×Q on ground set {(p, q) : q ∈ P, q ∈ Q} such that (a, b) ≤ (c, d) if and
only if a ≤ c in P and b ≤ d in Q. For any two graphs G1 and G2, their disjoint
union is the graph G1 ∪G2 such that V(G1 ∪G2) is the disjoint union of V(G1)
and V(G2), E(G1 ∪G2) is the disjoint union of E(G1) and E(G2), and for every
e ∈ E(G1 ∪G2) it holds

bdG1∪G2
(e) =

{
bdG1

(e) if e ∈ E(G1);
bdG2

(e) if e ∈ E(G2).
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Remark 4.4. Let G1 and G2 be two graphs and let (v1, v2) ∈ V(G1)×V(G2).
Then CF

(
(G1 ∪G2)/{v1, v2}

)
is isomorphic with CF(G1)×CF(G2) as a poset.

Proposition 4.5. Let T1 be an X1-tree and T2 be an X2-tree. Take x1 ∈ X1

and x2 ∈ X2. We write x for the new vertex of T = (T1 ∪T2)/{x1, x2} obtained
by contracting {x1, x2}. For X =

(
X1 ∪X2 ∪ {x}

)
\ {x1, x2}, the face poset of

LDT,X is the product of the face posets of LDT1,X1
and LDT2,X2

.

Proof. It is a consequence of Theorem 4.2, Remark 4.3 and Remark 4.4.

Let (T,X) be an X-tree. We construct a graph G on the vertex set X where
uv ∈ E(G) if and only if u and v are two different elements from X such that the
path running from u to v in T has no interior vertices from X. Let X1, . . . , Xk

be all the maximal cliques of G. For i = 1, . . . , k, let Ti be the subgraph of
T induced by the set of vertices on paths in T connecting vertices in Xi and
thus we have a phylogenetic Xi-tree (Ti, Xi). We call (Ti, Xi), i = 1, . . . , k, the
set of phylogenetic trees generated by (T,X). For the example as displayed in
Figure 1, we can see that the phylogenetic trees generated by (T,X) are (T1, X1)
and (T2, X2), and that T/X =

(
(T1/X1) ∪ (T2/X2)

)
/{X1, X2}.

Remark 4.6. By virtue of Remark 4.4 and Proposition 4.5, the face poset of
LDT,X is the product of the face posets of the Lipschitz polytopes of those phylo-
genetic trees generated by (T,X).

Lemma 4.7. Let (T,X) be an X-tree and let (Ti, Xi), i = 1, . . . , k, be the set
of phylogenetic trees generated by (T,X). Then

(a) The oriented matroid structure of MTi/Xi for i = 1, . . . , k are uniquely
determined by the oriented matroid structure of MT/X .

(b) If k = 1, namely (T,X) is a phylogenetic tree, then the oriented matroid
structure of MT/X uniquely determines the graph structure of T .

Proof. (a). Let MT/X = (E,V) and MTi/Xi = (Ei,Vi) for i = 1, . . . , k. For
e, f ∈ E, we say that e and f are equivalent if there is a circuit Σ of MT/X

such that {e, f} ⊆ Σ+ ∪ Σ−. It is clear that the resulting equivalence classes of
E are just E1, . . . , Ek, and

Vi = {(Σ+ ∩ Ei,Σ− ∩ Ei) : Σ ∈ V}

for i = 1, . . . , k. This proves (a).
(b). Let MT/X = (E,V). Let C be the set of circuits of the underlying

matroid of MT/X . We can naturally assume E = E(T/X) = E(T ). Then each
set in C is the edge set of a cycle of T/X, or equivalently, edge set of a path of T
from X to X. Note that T is a two-vertex tree if and only if |E| = 1 and so the
result is trivial. Assume now |V(T )| ≥ 3. Let F = {e1, . . . , e|X|} ⊆ E be the
edges contained in exactly |X|−1 sets of C, which must be the edges of T which
are incident with leaves of T . We define a metric D on F by setting D(ei, ej)
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to be the size of the unique set in C containing ei and ej , for all ei, ej ∈ F . It
is obvious that (F,D) and (X,DT,X) are isometric metric spaces. So, in view
of Lemma 2.10, the structure of T is uniquely determined by (F,D), which has
been read from MT/X as above. The proof of (b) is now completed.

Theorem 4.8. Let (T,X) be an X-tree and (T ′, X ′) be an X ′-tree. Then, the
following hold:

(a) LDT,X and LDT ′,X′ are combinatorially equivalent if and only if T/X and
T ′/X ′ are isomorphic up to graph isomorphism.

(b) If we further assume that (T,X) and (T ′, X ′) are phylogenetic trees, then
CF(T/X) and CF(T ′/X ′) are combinatorially equivalent if and only if T
and T ′ are isomorphic as graphs.

Proof. The backward direction of (a) is due to Theorem 4.2 and the backward
direction of (b) is trivial. So, we only need to consider the forward direction of
(a) and (b).

We first prove (a). Assume that LDT,X and LDT ′,X′ are combinatorially
equivalent. As a consequence of Lemma 2.1, Proposition 2.5 and Theorem 3.3,
MLDT,X

is isomorphic withMLD
T ′,X′

. By Theorem 4.2, we then see thatMT/X

is isomorphic withMT ′/X′ . It is clear that our task now is to show thatMT/X

uniquely determines T/X. Let (Ti, Xi), i = 1, . . . , k, be the set of phylogene-
tic trees generated by (T,X). Then T/X = (∪ki=1Ti/Xi)/{X1, . . . , Xk}. By
Lemma 4.7(b), every phylogenetic tree (Ti, Xi) can be determined by MTi/Xi ;
by Lemma 4.7(a),MT/X determines the collection of oriented matroidsMTi/Xi ,
i = 1, . . . , k. This means that MT/X uniquely determines T/X and so we are
done.

We now turn to (b). Assume that CF(T/X) and CF(T ′/X ′) are isomorphic
posets. By Theorem 4.2, LDT,X and LDT ′,X′ are combinatorially equivalent; it
then follows from Lemma 2.1, Proposition 2.5 and Theorem 3.3 thatMLDT,X

is

isomorphic withMLD
T ′,X′

; now, applying Theorem 4.2 again yields thatMT/X

andMT ′/X′ are isomorphic; finally, Lemma 4.7(b) concludes the proof. Another
way to derive (b) is to make use of (a) and Remark 4.3(c).

Example 4.9. Let T be an X-tree with X = V(T ). Then LDT,X is affine
equivalent with the (|X|−1)-dimensional hypercube. This shows that the combi-
natorial type of LDT,X is not related to the structure of the tree. Note that what
we see here confirms Theorem 4.8(a) and also demonstrates that Theorem 4.8(b)
does not hold when we replace phylogenetic X-trees by general X-trees.

5 Face posets and flow posets

5.1 Some facts A ranked poset is a poset in which all maximal chains have
the same length. In a ranked poset, we define the rank of an element x to be
the length of its longest chains in which x is the biggest element. Note that a
minimal element in a ranked poset has rank 0. Let P be a ranked poset. The

22



maximum rank of the elements from P , if any, is called the dimension of this
poset and denoted by dim(P ).

Lemma 5.1. If (X,D) is a proper metric space, then F(LD) is a ranked poset
with dimension |X| − 1.

Proof. The face poset of LD is clearly a ranked poset in which the rank of a face
F is given by dim(F ). Since LD falls into {f ∈ RX :

∑
x∈X f(x) = 0}, it follows

dim
(
F(LD)

)
≤ |X| − 1. For a sufficiently small positive real number ε and any

fixed a ∈ X, the |X| vectors, ε(χa − χb), b ∈ X, is a set of affinely independent
points from LD, showing that the dimension of F(LD) is |X| − 1.

Let G be a graph. The zero-th Betti number b0(G) of G is the number of
connected components of G, and the first Betti number b1(G) of G, also called
the cyclomatic number of G, is the value |E(G)| − |V(G)| + b0(G). They are
known to be the ranks of the 0th and 1st homology groups of G, namely, the
number of 0-holes and 1-holes of G. For a digraph G, let b0(G) represent the
number of its weakly connected components.

Let G be a digraph and H a subgraph of G, which we record as H ≤ G.
We say that a path P of G is an ear of (G,H) if A(G) \ A(H) consists of all
those arcs from P and V(G) \ V(H) consists of all those interior vertices of P.
If both G and H are strongly connected and G 6= H, the Ear Decomposition
Theorem in the folklore [Bab06, Theorem 1.3][BM08, Proposition 5.11, Propo-
sition 5.12, Theorem 5.13] [LM01] says that we can find an ear P for (G,H)
and so the digraph J obtained from H by adding this ear is a minimal strongly
connected extension of H, meaning that I = J and I = H are the only possible
strongly connected digraphs satisfying H ≤ I ≤ J . Because of the pioneering
work of Whitney [Whi32] and Robbins [Rob39] on ear decompositions, an ear
decomposition is also known as a Whitney-Robbins synthesis.

Lemma 5.2. Let G be a graph. Then CF(G) is a ranked poset in which the
rank of each element σ ∈ CF(G) is given by b1(Gσ).

Proof. Let σ be a combinatorial flow on G. Assume that
(

V(G), σ
)

has c
strongly connected components and we take one vertex from each of them to
form a set V0 = {v1, . . . , vc}. Applying the Ear Decomposition Theorem, we
see that

σ0 < σ1 < · · · < σr (30)

is a saturated chain in CF(G) with σ as its top element if and only if, along
with the nested sequence of partial orientations of G,

∅ = σ0 ( σ1 ( · · · ( σr = σ,

there is a nested sequence of subsets of V(G), say

{v1, . . . , vc} = V0 ⊆ V1 ⊆ · · · ⊆ Vr = V(G)
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such that Gm is obtained from Gm−1 by adding an ear for m = 1, . . . , r, where
Gm = (Vm, σm) for m = 0, . . . , r. Note that the number of strongly connected
components of Gm, m = 0, . . . , r, is always c; while |A(Gm)| − |V(Gm)| =
1 + |A(Gm−1)| − |V(Gm−1)| for m = 1, . . . , r. This implies

r = r + |A(G0)| − |V(G0)|+ c

= |A(Gr)| − |V(Gr)|+ c

= |σ| − |V(G)|+ c

= b1(Gσ),

namely, the length of the saturated chain displayed in (30) is totally determined
by σ. We now find that CF(G) is a ranked poset in which σ ∈ CF(G) has rank
b1(Gσ).

Let (T,X) be an X-tree and let σ be a partial orientation of T . We define
(T,X)σ to be the subgraph of T such that V

(
(T,X)σ

)
= {bdT ([α]) : α ∈ σ}∪X

and E
(
(T,X)σ

)
= E(Tσ) = {[α] : α ∈ σ}.

Lemma 5.3. Let (T,X) be an X-tree. For each σ ∈ CF(T,X), it holds

b1

(
(T/X)σ

)
= |X| − b0

(
(T,X)σ

)
.

Proof. Let T1, . . . , Tk, k ≥ 1, be the connected components of (T,X)σ. For
i = 1, . . . , k, let Xi = V(Ti) ∩X. Then (T/X)σ is the graph obtained from the
disjoint union of T1/X1, . . . , Tk/Xk by contracting {X1, . . . , Xk}. We now find
that

b1((T/X)σ) =

k∑
i=1

b1(Ti/Xi)

=

k∑
i=1

(|E(Ti/Xi)| − |V(Ti/Xi)|+ 1)

=

k∑
i=1

(|E(Ti)| − (|V(Ti)| − |Xi|+ 1) + 1)

=

k∑
i=1

(|Xi| − 1)

= |X| − b0

(
(T,X)σ

)
,

finishing the proof.

Let T be an X-tree. Lemma 2.3 together with Theorem 3.3 claims that all
combinatorial information about the Lipschitz polytope of (T,X) is encoded in
the 1-skeleton graph SGLDT,X

. We adopt the shorthand SGT,X for SGLDT,X
.

Lemma 5.4. Let T be an X-tree. The graph SGT,X is isomorphic to the one
with CF∗(T,X) as vertex set where two full combinatorial flows are adjacent if
and only if they differ at exactly one edge of T .
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Proof. Apply Theorem 4.2, Lemma 5.2 and Lemma 5.3.

Remark 5.5. Let T be an X-tree and take σ ∈ CF∗(T,X). An arc α ∈ σ
is flippable for σ if σ4[α] =

(
σ \ {α}

)
∪ {α} ∈ CF∗(T,X). By Lemma 5.4,

viewing σ as a vertex of SGT,X , the degree of σ in SGT,X is exactly the number
of flippable arcs of σ.

Remark 5.6. According to Lemma 2.3, Theorem 3.3, Theorem 4.2, Theorem 4.8(b)
and Lemma 5.4, we conclude that a phylogenetic X-tree could be “seen” by wa-
tching its full combinatorial flows to the detail of knowing which two differ at
exactly one place.

5.2 An explicit anti-isomorphism In the rest of this section, for any
weightedX-tree (T,X,w), we try to derive an explicit anti-isomorphism between
the face poset of LDT,X,w and the flow poset CF(T,X).

Let (G,X) be an X-network. For every σ ∈ CF(G,X), we define its
tight digraph to be the digraph T G,X(σ) with vertex set X such that (a, b) ∈
A
(
T G,X(σ)

)
if and only if there is a path in (V(G), σ) from a to b. Let (G,w)

be a connected weighted graph and let a, b be two vertices of G. We say that
α ∈ A(G) supports traffic from a to b in (G,w) provided

DG,w(a, b) = DG,w

(
a, oG(α)

)
+ w

(
[α]
)

+ DG,w

(
tG(α), b

)
, (31)

and we designate by Pa,b(G,w) the set of all those arcs of G which support
traffic from a to b in (G,w).

Let G be a graph, let σ be a partial orientation of G, and let w ∈ RE(G)
>0 .

For any α ∈ A(G), we set

ˆ
α

wdσ =

 w([α]) if α ∈ σ;
−w([α]) if α ∈ σ;
0 else.

For any path P = (α1, . . . , α`) of G, the integral with respect to σ of the weight
function w along the path P is defined to be

∑̀
i=1

ˆ
αi

wdσ,

which we denote by
´
P
wdσ. We call the partial orientation σ a potential diffe-

rence with respect to (G,w) if there is a point f̃ ∈ RV(G) such that

w([α]) = f̃
(

o(α)
)
− f̃

(
t(α)

)
for all α ∈ σ.

Let (G,X,w) be a connected weighted X-network. Recall from (4) the
definition of the tight digraph of a point in the Lipschitz polytope. For the
metric space (X,DG,X,w), we often write the tight digraph operator T DG,X,w as
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T G,X,w and we use AG,X,w for ADG,X,w . For any f ∈ LDG,X,w , we define the
flow of (G,X) determined by f to be

ςG,X,wf := ∪(a,b)∈AG,X,w(f) Pa,b(G,w). (32)

For any F ∈ F(LDG,X,w), ςG,X,wf take constant value when f runs through

interior points of F, and we will record this common value as ςG,X,wF .

Lemma 5.7. Let (G,X,w) be a connected weighted X-network with X 6= ∅, let

F be a face of LDG,X,w and let σ = ςG,X,wF . Then the following hold:

(a) σ is a combinatorial flow on (G,X).

(b) T G,X(σ) = T G,X,w(F ).

(c) σ is a potential difference with respect to (G,w).

(d) Let f be an interior point of F and take a, b ∈ X which appear in the same
connected component of Gσ. Then

´
P
wdσ = f(a) − f(b) for any path in

Gσ leading from a to b.

(e) σ = ∪(a,b)∈A(T G,X(σ)) Pa,b(G,w).

Proof. Let f be a point in the relative interior of F . By Lemma 3.2, we can
extend this 1-Lipschitz function f on (X,DG,X,w) to be a 1-Lipschitz function

f̃ on
(

V(G),DG,w

)
.

x y

a

d

b

c

ᾱ

α

Figure 2: Opposite orientations on an edge induced by two directed paths.

We now try to establish claim (a), namely, σ ∈ CF(G,X). It is clear that
Pa,b(G,w) is a combinatorial flow on (G,X) for every (a, b) ∈ X ×X. So, our
task is to demonstrate that σ is a partial orientation of G. If this were not true,
we can find (a, b), (c, d) ∈ AG,X,w(F ) and α ∈ A(G) such that α ∈ Pa,b(G,w)
and α ∈ Pc,d(G,w). Let (x, y) = (t(α), o(α)); see Figure 2. We then obtain

DG,w(a, d) + DG,w(c, b) + 2 DG,w(x, y)

≤
(

DG,w(a, x) + DG,w(x, d)
)

+
(

DG,w(c, y) + DG,w(y, b)
)

+ 2 DG,w(x, y)

=
(

DG,w(a, x) + DG,w(x, y) + DG,w(y, b)
)

+
(

DG,w(c, y) + DG,w(y, x) + DG,w(x, d)
)

= DG,w(a, b) + DG,w(c, d)

=
(
f(a)− f(b)

)
+
(
f(c)− f(d)

)
=

(
f(a)− f(d)

)
+
(
f(c)− f(b)

)
≤ DG,w(a, d) + DG,w(c, b).

26



Since DG,w(x, y) = w([α]) > 0, the above inequality is impossible.
We continue to check claim (b), which is equivalent to A

(
T G,X(σ)

)
=

AG,X,w(f). If (u, v) ∈ AG,X,w(f), then Pu,v(G,w) ⊆ ςG,X,wf and so (u, v) ∈
A
(
T G,X(σ)

)
follows. Conversely, we assume (u, v) ∈ A

(
T G,X(σ)

)
⊆ X × X

and aim to show that

f(u)− f(v) = DG,X,w(u, v). (33)

Our assumption means that there is a path in(
V(G), σ

)
=
(

V(G),∪(a,b)∈AG,X,w(f) Pa,b(G,w)
)

leading from u ∈ X to v ∈ X, say (α1, α2, . . . , α`), where o(α0) = u, t(α1) =
o(α2), . . . , t(α`−1) = o(α`), t(α`) = v. For each i ∈ {1, . . . , `}, we can find
(ai, bi) ∈ AG,X,w(f) such that αi ∈ Pai,bi(G,w), and so, by (31) and the fact

that f̃ ∈ LDG,w , we derive

0 = DG,w(ai, bi)−
(
f(ai)− f(bi)

)
= DG,w

(
ai, o(αi)

)
+ w

(
[α]
)

+ DG,w

(
t(αi), bi

)
−
(
f̃(ai)− f̃(bi)

)
≥

(
f̃(ai)− f̃(o(αi))

)
+
(
f̃(t(αi))− f̃(bi)

)
−
(
f̃(ai)− f̃(bi)

)
+ w

(
[α]
)

= w
(
[α]
)
−
(
f̃(o(αi))− f̃(t(αi))

)
≥ DG,w

(
o(αi), t(αi)

)
−
(
f̃(o(αi))− f̃(t(αi))

)
≥ 0,

yielding

w
(
[α]
)

= DG,w

(
o(αi), t(αi)

)
= f̃

(
o(αi)

)
− f̃

(
t(αi)

)
. (34)

This gives

DG,w(u, v) = DG,w

(
o(α1), t(α`)

)
≤

∑̀
i=1

DG,w

(
o(αi), t(αi)

)
=

∑̀
i=1

(
f̃(o(αi))− f̃(t(αi))

)
= f̃

(
o(α1)

)
− f̃

(
t(α`)

)
= f̃(u)− f̃(v)

= f(u)− f(v)

≤ DG,w(u, v),

from which (33) follows, as wanted.
Finally, (34) establishes claim (c) and claim (d); while, by checking (32),

claim (b) implies claim (e).
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Let (G,X) be a connected X-network. For any w ∈ RE(G)
>0 , Lemma 5.7(a)

says that {ςG,X,wF : F ∈ F(LDG,X,w)}, which we denote by CF(G,X,w), is a
subset of CF(G,X) and inherits its natural poset structure.

Theorem 5.8. Let (G,X,w) be a connected weighted X-network. Then, the

map from F
(

LDG,X,w

)
to CF(G,X,w) which sends F to ςG,X,wF is an anti-

isomorphism from the face poset of LDG,X,w to the subposet CF(G,X,w) of the
flow poset CF(G,X).

Proof. For any two faces F and F ′ of LDG,X,w , it is clear that F ⊆ F ′ if and only

if AG,X,w(F ) ⊇ AG,X,w(F ′) and if and only if ςG,X,wF ⊇ ςG,X,wF ′ . Lemma 5.7(b)
says that the map from F(LDG,X,w) to CF(G,X,w) that sends F ∈ F(LDG,X,w)

to ςG,X,wF is an injective map and so the result follows.

Let (T,X,w) be a weighted X-tree. We recall our notation from (9) and
(10) and define for any α ∈ A(T ) that

fT,X,wα = w([α]) fsT,Xα
= w([α]) f ̂oT,X(α)` ̂tT,X(α)

∈ RX . (35)

Then, for every σ ⊆ A(T ), let

fT,X,wσ =
∑
α∈σ

fT,X,wα . (36)

Theorem 5.9. Let (T,X,w) be a weighted X-tree. Then, the map

ςT,X,w : F
(

LDT,X,w

)
→ CF(T,X) : F 7→ ςT,X,wF

and the map

[fT,X,w] : CF(T,X)→ F
(

LDT,X,w

)
: σ 7→ [fT,X,wσ ]LDT,X,w

are reverses to each other. This says that both ςT,X,w and [fT,X,w] give anti-
isomorphism between the face poset of the Lipschitz polytope LDT,X,w and the
flow poset CF(T,X), which further implies that the normal poset N (LDT,X,w)
and the flow poset CF(T,X) are isomorphic.

Proof. Take σ ∈ CF(T,X). Owing to Theorem 3.3, we see that fT,X,wσ ∈
LDT,X,w . In the light of Theorem 5.8, our task is to show ςT,X,wF = ςT,X,w

fT,X,wσ
= σ

where F = [fT,X,wσ ]LDT,X,w
.

Since T is acyclic, from σ ∈ CF(T,X) we derive that

σ = ∪
(a,b)∈A

(
T T,X(σ)

) Pa,b(T,w).

By (32), ςT,X,w
fT,X,wσ

is given by

∪(a,b)∈AT,X,w(fT,X,wσ ) Pa,b(T,w).
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Therefore, we are reduced to showing that the tight digraph of fT,X,wσ =
∑
α∈σ fT,X,wα

equals the tight digraph of σ. For any (a, b) ∈ X × X with a 6= b, (a, b) ∈
AT,X,w(fT,X,wσ ) holds if and only if∑

α∈σ
fT,X,wα (a)−

∑
α∈σ

fT,X,wα (b) = DT,X,w(a, b),

which, by the same process of getting (13), will be possible if and only if
Pa,b(T,w), the unique path from a to b in the tree T , is a subset of σ, that
is, if and only if (a, b) ∈ A

(
T T,X(σ)

)
. This completes the proof.

Remark 5.10. Let (T,X,w) be a weighted X-tree. In view of Theorem 5.9, we
will often identify the vertices of LDT,X,w with elements of CF∗(T,X). Especi-

ally, for each x ∈ X, σ+
T,x and σ−T,x defined in (7) and (8) will often be directly

viewed as corresponding vertices of LDT,X,w from now on. For the metric space
(X,DT,X,w), the elements x− and x+ introduced in Example 1.2 have been clai-
med to be vertices of LDT,X,w in Remark 2.2. We can check that the orientation

σ+
T,x corresponds to vertex x+ while orientation σ−T,x corresponds to vertex x−.

Question 5.11. Take a nonempty finite set X. Given an X-tree T , regardless
of in which way we assign positive weights to E(T ), the combinatorial type of the
resulting Lipschitz polytopes will keep the same. Is there any other X-network
sharing this property?

6 Albanese tori and flow posets

Let X be a finite set, and let Γ be a subgroup of ZX , which is often referred to
as a lattice. For each λ ∈ Γ, the Voronoi cell V (Γ, λ) is the set of points in RX
whose distance to λ is not greater than its distance to any other points in Γ.

Let G be a graph and fix an orientation σ of G. Let

H1(G,R) = ker(IG,σ),

and let
H1(G,Z) = ker(IG,σ) ∩ Zσ,

the latter being known as the lattice of integer flows of G. Let Rσ be the vector
space endowed with the scalar product 〈·, ·〉 such that 〈f, g〉 =

∑
α∈σ f(α)g(α).

The Albanese torus Alb(G) ofG is defined as Alb(G) = (H1(G,R)/H1(G,Z); 〈 , 〉)
with the flat metric derived from the scalar product 〈 , 〉 on Rσ [KS00, p. 94].
Note that dim Alb(G) = b1(G). For two graphs G1 and G2, we say Alb(G1)
and Alb(G2) are isomorphic, denoted as Alb(G1) ∼= Alb(G2), if there exists a
linear isomorphism f : Alb(G1) → Alb(G2) such that 〈x, y〉 = 〈f(x), f(y)〉 for
all x, y ∈ Alb(G1).

For every graph G, it follows from Proposition 2.9 that the flow poset CF(G)
can be realized as the face poset of a zonotope up to anti-isomorphism. Solving
a conjecture of Caporaso and Viviani [CV10, Conjecture 5.2.8] and answering a
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question of Bacher, La Harpe and Nagnibeda [BdlHN97], Amini [Ami10] proved
that there is an interesting explicit zonotope construction to realize any graph
flow poset.

Theorem 6.1. [Ami10, Theorem 1] Let G be a connected graph. Then the face
poset of V (H1(G,Z), 0) is anti-isomorphic with CF(G).

Let G be a graph. A bridge of G is one of its edges whose deletion from G
will increase the number of connected components. For any bridge uv of G, we
can delete the edge uv to form the graph G′ = G − uv and then contract the
two nonadjacent vertices u and v in G′ to obtain a new graph, which is said to
be the graph obtained from G by shrinking the edge uv.

For each graph G, we let G̃ be the graph obtained from G by shrinking all
the bridges of G. Assume that H1 and H2 are two graphs on disjoint vertex
sets, {v1, u1} ∈

(
V(H1)

2

)
and {v2, u2} ∈

(
V(H2)

2

)
. Then we say that ((H1 ∪

H2){v1,v2}){u1,u2} is a twisting of ((H1 ∪H2){v1,u2}){u1,v2}.
The equivalence (a)⇔(d) in Theorem 6.2 is known as the Torelli theorem for

graphs and proved by Caporaso and Viviani [CV10, Theorem 3.1.1]. Note that
Su and Wagner obtained a stronger result [SW10, Theorem 1] which could be
said to be the Torelli theorem for regular matroids.

Theorem 6.2. Let G1 and G2 be two connected graphs. Then the following are
equivalent:

(a) Alb(G1) ∼= Alb(G2).

(b) The two flow posets CF(G1) and CF(G2) are isomorphic.

(c) The oriented matroids MG̃1
and MG̃2

are isomorphic.

(d) The matroids MG̃1
and MG̃2

are isomorphic.

(e) The graph G̃1 is obtained from G̃2 by repeated twisting operations.

Proof. (a)⇒(b). If Alb(G1) ∼= Alb(G2), then V (H1(G1,Z), 0) and V (H1(G2,Z), 0)
are affinely equivalent, and are thus combinatorially equivalent. Applying The-
orem 6.1, we have CF(G1) ∼= CF(G2).

(b)⇔(c). Note that for a graph G, CF(G) = V(MG) = V(MG̃) = V∗(M∗
G̃

).
By Lemma 2.1, the posets CF(G1) and CF(G2) are isomorphic if and only
if M∗

G̃1
and M∗

G̃1
are isomorphic, which, by [BLVS+99, Proposition 3.4.1], is

equivalent to the fact that MG̃1
and MG̃1

are isomorphic.
(c)⇔(d). This is obvious.
(d)⇒(a). This is proved in [BdlHN97, Proposition 5]. Also see [CV10,

Proposition 3.1.3].
(d)⇔(e). This is Whitney’s Theorem [Whi33].

Corollary 6.3. Let (T1, X1) and (T2, X2) be two phylogenetic trees. Then T1

and T2 are isomorphic if and only if Alb(T1/X1) ∼= Alb(T2/X2).

Proof. Theorem 4.8(b) and Theorem 6.2 (a)⇔(b).
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7 Lipschitz polytopes of trees and flow posets of graphs

Let G be a connected graph with n vertices and m edges. In Theorem 6.1, we
see that CF(G) can be realized up to anti-isomorphism as the face poset of an
explicitly given zonotope living in Rm . This section aims to provide another
description of this poset CF(G) via a zonotope living in Rm−n+1 which are
precisely given in terms of the original graph G; see Theorem 7.2 and its proof.

A graph is reduced if its minimum degree is at least three. For any graph,
its flow poset must be isomorphic with the flow poset of a reduced graph or an
empty graph.

Definition 7.1 (Cleaving a graph into a tree). Let G be a connected re-
duced graph. Take U ⊆ E(G) such that (V(G),E(G) \ U) is a tree T . Let
Ü = {α ∈ A(G) : [α] ∈ U}. For each arc α ∈ Ü , create a new vertex vα and a
new edge eα such that the boundary of eα contains two different vertices oG(α)
and vα. Let

U = {vα : α ∈ Ü} = {vα, vα : [α] ∈ U}

and
U♦ = {

−−−−−→
oG(α)vα,

−−−−−−→
vα oG(α) : α ∈ Ü},

After adding the new vertex set U and new arc set U♦ to T , we get a new graph,
which is dubbed T̈. That is, A(T̈) is the disjoint union of A(T ) = A(G)\ Ü and
U♦, while V(T̈) coincides with V(G) ∪U = V(T ) ∪U . Considering that G is
reduced, T̈ is surely a phylogenetic U -tree. See Figure 3 for an illustration of
the above-mentioned process of cleaving G into the phylogenetic U -tree T̈.

a

cb

A graph G U = {ab, bc, ca}

β

δ

α

vαvβ

vβ

vδ

vα

vδ

U -tree T̈

Figure 3: Cleaving a reduced connected graph G into a phylogenetic U -tree T̈.

Theorem 7.2. We follow the notation and assumption in Definition 7.1. There
is an orthogonal projection p from RU to one of its subspaces of dimension |U |
such that the face poset of the polytope p(LDT̈,U

) is anti-isomorphic with CF(G).
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Proof. We divide the proof into five steps. At the beginning, we define explicitly
the projection p and then we show that F

(
p(LDT̈,U

)
)

is isomorphic to the face
posets of another four zonotopes in four steps. Indeed, the first four steps aim
to obtain that F

(
p(LDT̈,U

)
)

is isomorphic with F
(
Z(M ◦θ)

)
(See below for

the definition of M and θ). In the last step, we verify that F
(
Z(M ◦θ)

)
is

anti-isomorphic with CF(G), thus completing the proof.
Step 1. For any y = vα ∈ U , we directly write y for vα. More generally, for

any A ⊆ U , we use A to stand for the set {y : y ∈ A}. Let W1 = span{χy+χy :

y ∈ U } and W0 = span{χy − χy : y ∈ U } be two subspaces of RU . It is easy

to see that W1 = W⊥0 in RU and dimW1 = dimW0 = |Ü |
2 = |U |

2 = |U |. We let

p be the orthogonal projection from RU to W0 along the direction of W1.
We fix β ∈ Ü , let x = vβ ∈ U , σ = σ−

T̈,x
and write A for the descendent

matrix of (T̈,U ) with origin x, namely A = DT̈,U ,x is a σ-indexed vector

configuration in RU .
It follows from (21) and (22) that

LxDT̈,U
= Z(±A). (37)

Note that the constant function 1 = χU falls into W1. Henceforth, using the
notation introduced in (3), we have p ◦pU

x = p. It then follows from Remark 1.1
and (37) that

p(LDT̈,U
) = p ◦pU

x (LDT̈,U
) = p(LxDT̈,U

) = p
(
Z(±A)

)
= Z(±p ◦A).

By Remark 2.6, Z(±p ◦A) is combinatorially equivalent with Z
(

p ◦A
)
. So

far, we find that the face poset of p(LDT̈,U
) is isomorphic with the face poset of

Z
(

p ◦A
)
.

Step 2. For any A ⊆ U , we have

1

2
(χA − χA) +

1

2
(χA + χA) = χA ∈ RU ,

where 1
2 (χA − χA) ∈W0 and 1

2 (χA + χA) ∈W1, and consequently it holds

p(χA) =
1

2
(χA − χA). (38)

We write αx for the unique element in σ ∩ t−1

T̈
(x) and we write αy for the

unique element in σ ∩ o−1

T̈
(y) for every y ∈ U \{x}. Then we find that{

A(αy) = χy if y ∈ U \{x};
A(αy) = 1− χx if y = x.

(39)

Applying (38) and (39) yields{
p
(
A(αy)

)
= 1

2 (χy − χy
)

if y ∈ U \{x};
p
(
A(αy)

)
= − 1

2

(
χx − χx

)
if y = x.

(40)
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We fix an orientation λ of G satisfying λ \ Ü ⊆ σ and β ∈ λ. Consider the
injective map � from A(G) to A(T̈) given by

�(α) =

{
α if α ∈ A(G) \ Ü = A(T );
−−−−−→
vα tG(α) if α ∈ Ü .

Let λ̈ = {�(α) : α ∈ λ} ⊆ A(T̈). Note that the restriction of � on λ, denoted
by θ, is a bijection from λ to λ̈.

For every u ∈ U , we denote vα by u0 and vα by u1, where α is the only
element in u ∩ λ. For example, [β]1 = x and [β]0 = x. One can see that

λ̈ = (λ \ U♦) ∪ {αu1
: u ∈ U} = (σ \ U♦) ∪ {αu1

: u ∈ U} ⊆ σ. (41)

Restricting A on λ̈ ⊆ σ, we obtain a λ̈-indexed vector configuration Ä in
RU . As a consequence of Remark 2.6, (40) and (41), Z(p ◦A) is combinatorially
equivalent with Z(B), where B = p ◦Ä is a λ̈-indexed vector configuration in
W0.

Step 3. Define C : RU →W0 ⊂ RU such that

C(f) =
∑
u∈U

f(u)

2
(χu1 − χu0) (42)

for all f ∈ RU . Since { 1
2 (χu1 − χu0) : u ∈ U} is a basis of W0, C is a linear

isomorphism from RU to W0 and so we arrive at

MB =MM

where M = C−1 B is the λ̈-indexed vector configuration in RU which sends
α ∈ λ̈ to C−1 B(α) ∈ RU . It follows from Proposition 2.5 that Z(B) and Z(M)
are combinatorially equivalent.

Step 4. Surely, Z(M) and Z(M ◦θ) are the same zonotope in RU . So, we
can focus on M ◦θ, which is a λ-indexed vector configuration in RU .

Step 5. To conclude the proof, we need to verify that the face poset of
Z(M ◦θ) is anti-isomorphic with CF(G). By Proposition 2.9, our task is to
show that im(M ◦θ)> is the cycle space of G.

For every z, w ∈ V(T̈), let Pz,y denote the set of arcs on the unique path

from z to y in T̈ . For every α ∈ λ̈, let Dα be the set of elements z ∈ U such
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that Pz,x contains α. In view of (22), (38) and (42), for each α ∈ λ,

M ◦θ(α) = C−1 B(θ(α))

= C−1 p
(
Ä(θ(α))

)
= C−1

( ∑
u∈U

u∩Dθ(α)={u1}

1

2
(χu1 − χu0) +

∑
u∈U

u∩Dθ(α)={u0}

1

2
(χu0 − χu1)

)
=

∑
u∈U

u∩Dθ(α)={u1}

χu −
∑
u∈U

u∩Dθ(α)={u0}

χu

=
∑
u∈U

θ(α)∈Pu1,u0

χu −
∑
u∈U

θ(α)∈Pu0,u1

χu

∈ RU .

Therefore, as a U -indexed vector configuration in Rλ, (M ◦θ)> sends u ∈ U to
χA0

u
− χA1

u
, where A0

u = {θ−1(γ) : γ ∈ Pu1,u0
∩ λ̈} and A1

u = {θ−1(γ) : γ ∈
Pu0,u1 ∩ λ̈}. For each u ∈ U, χA0

u
− χA1

u
∈ Rλ is nothing but the fundamental

cycle of G corresponding to the tree T and the only arc in u ∩ λ. This proves
that im(M ◦θ)> is the cycle space of G, as was to be shown.

8 Isometric embeddings

A metric pair (Y,X,D) is a metric space (Y,D) together with a subset X ⊂ Y
which has a metric space structure by restricting the map D to X×X. A metric
space M is called an injective metric space, or an absolute 1-Lipschitz retract
[Lan13, Proposition 2.2], provided that for every metric pair (Y,X,D) and every
1-Lipschitz map g from X to M , we can find a 1-Lipschitz map f from Y to M
that is an extension of g. Note that Lemma 3.2 just says that the real line is an
injective metric space. It is known that every metric space (X,D) possesses an
injective hull, namely a smallest injective metric space containing an isometric
copy of (X,D) [Isb64, Dre84]. Following Dress [Dre84], we call the injective hull
of a metric space its tight span.

For any two points f, g ∈ RX , the L∞-distance between them is the L∞-
norm of f − g, namely, |f − g|∞ := supx∈X |f(x)− g(x)|. For any metric space
(X,D), the following set{

f ∈ RX : f(x) = sup
y∈X
{D(x, y)− f(y)},∀x ∈ X

}
endowed with the L∞-distance is the tight span of (X,D) and will be denoted
by TX,D [CL94, Dre84, Isb64].

Let (X,D) be a metric space. For each x ∈ X, we define the Kuratowski
map kD;x ∈ RX by putting

kD;x(y) = D(x, y)
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for all y ∈ X. It is clear that the mapping κ : (X,D) → TX,D : x 7→ kD;x is
an isometric embedding. For every f ∈ TX,D, it holds [DHK+12, Proposition
5.2(ii)]

sup{f(y)−D(x, y) : y ∈ X} = f(x)

for all x ∈ X. Especially, this implies that

f(y)− f(x) ≤ D(x, y) (43)

for f ∈ TX,D and x, y ∈ X. To see (43) directly, we assume for contradiction that
there exist x, y ∈ X such that f(x) − f(y) > D(x, y), and then, by definition,
we can find y′ ∈ X such that f(x)− (D(x, y′)−f(y′)) < (f(x)−f(y))−D(x, y),
implying f(y) < D(x, y′) − D(x, y) − f(y′) ≤ D(y, y′) − f(y′), a contradiction
with f ∈ TX,D.

For a finite set X, we use qX for the linear transformation on RX such that,
for every f ∈ RX and x ∈ X,

qX(f)(x) = f(x)−
∑
y∈X f(y)

|X|
.

Note that qX is an orthogonal projection of RX along the subspace of constant
functions to its orthogonal complement. This together with (43) shows that

qX(TX,D) ⊆ LD (44)

for every finite metric space (X,D).

Proposition 8.1. Let (X,D) be a finite metric space. Then qX induces an
injective map from TX,D to LD. Moreover, qX(kD,x) is a vertex of LD for all
x ∈ X.

Proof. It is clear that no two different points from TX,D can have the same
image under the map qX . The first claim thus follows from (44).

For each x ∈ X, let fx := 1− |X|χx ∈ RX . Then for each p ∈ LD,

〈fx, p〉 =
∑
y∈X

(
p(y)− p(x)

)
≤

∑
y∈X

D(x, y),

with equality if and only if p(y)− p(x) = D(x, y) for all y ∈ X and if and only
if p = qX(kD,x). This proves the second claim.

For any two full orientations σ1 and σ2 of a graph G, we define their sepa-
ration set S(σ1, σ2) to be {e ∈ E(G), e ∩ σ1 6= e ∩ σ2}.

Lemma 8.2. Let (T,X) be an X-tree. For any σ1, σ2 ∈ V(SGT,X) = CF∗(T,X),
DSGT,X (σ1, σ2) = |S(σ1, σ2)|, and so the diameter of SGT,X is exactly |E(T )|.
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Proof. Lemma 5.4 and [BLVS+99, Proposition 4.2.3].

Let (T,X,w) be a weighted X-tree. For each edge e of SGT,X,w, according
to Theorem 3.3, there exists a unique edge e′ = eT,X ∈ E(T ) such that the

1-face of LDT,X,w that corresponds to e is a translation of w(e′) LD
s
T,X
e′

in RX .

We let wT,X ∈ RE(SGT,X,w)
>0 be the function such that wT,X(e) = w(eT,X) for

every e ∈ E(SGT,X,w). We write w(T ) for
∑
e∈E(T ) w(e). To proceed with the

next lemma, the reader may like to review our convention from Remark 5.10.

Lemma 8.3. Let (T,X,w) be a weighted X-tree. In the weighted graph (SGT,X,w, wT,X),
it holds for any a, b ∈ X that{

DSGT,X,w,wT,X (σ+
T,a, σ

+
T,b) = DSGT,X,w,wT,X (σ−T,a, σ

−
T,b) = DT,w(a, b),

DSGT,X,w,wT,X (σ+
T,a, σ

−
T,b) = DSGT,X,w,wT,X (σ−T,a, σ

+
T,b) = w(T )−DT,w(a, b).

Proof. By Lemma 8.2 and the definition of wT,X ,

DSGT,X,w,wT,X (σ1, σ2) =
∑

e∈S(σ1,σ2)

w(e)

for all σ1, σ2 ∈ V(SGT,X,w). Note that S(σ+
T,a, σ

+
T,b) = S(σ−T,a, σ

−
T,b) consists of

all the edges on the unique path of T connecting a and b, and S(σ+
T,a, σ

−
T,b) =

S(σ−T,a, σ
+
T,b) is the complement of S(σ+

T,a, σ
+
T,b) = S(σ−T,a, σ

−
T,b) in E(T ). The

result thus follows.

Figure 4 is a graphical presentation of Lemma 8.3. Note that, taking a = b
in Lemma 8.3, we see that

DSGT,X,w,wT,X (σ+
T,a, σ

−
T,a) = DSGT,X,w,wT,X (σ+

T,b, σ
−
T,b) = w(T )

and so the weighted 4-cycle in Figure 4 can be embedded into (SGT,X,w, wT,X)
isometrically.

σ+
T,a

σ+
T,b

σ−T,b

σ−T,a

w(T )−DT,w(a, b)

w(T )−DT,w(a, b)

DT,w(a, b) DT,w(a, b)

Figure 4: An isometry from the metric of a weighted 4-cycle to DSGT,X,w,wT,X .

Theorem 8.4. For each weighted X-tree (T,X,w), there exist two isometric
embeddings of (X,DT,X,w) into the weighted graph (SGT,X,w, wT,X).
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v0 v1 v2 v3

f0 0 1 0 -1
f1 1 0 -1 0
f2 0 -1 0 1
f3 -1 0 1 0
f4 1/2 -1/2 1/2 -1/2
f5 -1/2 1/2 -1/2 1/2

Table 1: Coordinates of vertices of LDG in Figure 5.

Proof. Lemma 8.3 shows that the map from x ∈ X to σ+
T,x is an isometric

embedding of (X,DT,X,w) into the weighted graph (SGLDT,X,w
, wT,X), and the

map from x ∈ X to σ−T,x is another isometric embedding of (X,DT,X,w) into the
weighted graph (SGLDT,X,w

, wT,X).

Question 8.5. For any weighted X-tree (T,X,w) and x ∈ X, Remark 5.10
claims that the orientation σ−T,x actually corresponds to the vertex x− = qX(kDT,X,w,x)
of LDT,X,w . For which metric space (X,D) can we find a weight function w′ on
E(SGLD) such that the map from x ∈ X to x− = qX(kD,x) induces an isometric
embedding of (X,D) into (V(SGLD

),DSGLD
,w′)?

v1 v2

v3v0

The 4-cycle graph G

f0

f1

f2

f3

f4

f5

The Lipschitz polytope L = LDG

Figure 5: An isometric embedding from DG to DSGL
(Example 8.6).

Example 8.6. Let X = {v0, v1, v2, v3}. On the left of Figure 5, we draw the
4-cycle graph G with V(G) = X; on the right of Figure 5, we depict the Lipschitz
polytope L = LDG . The vertex set of L is Y = {f0, . . . , f5} and their coordinates
are given in Table 1. Note that DG is not any tree metric while fi = qX(kD,vi)
for i = 0, 1, 2, 3. We can check that the map from X to Y, sending vi ∈ X to
fi ∈ Y , 0 ≤ i ≤ 3, is an isometric embedding of (X,DG) into (Y,DSGL

).
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Example 8.7. On the left of Figure 6, we display a 4-cycle graph G with
V(G) = X = {v0, v1, v2, v3} and with a non-constant weight function w. Note
that DG,w is not any tree metric. In the middle of Figure 6 we draw the Lip-
schitz polytope LDG,w whose set of vertices is Y = {fi : 0 ≤ i ≤ 11}. The
coordinates of those functions from Y are listed in Table 2. For i = 0, 1, 2, 3, we

have qX(kDG,w,vi) = fi. Let w′ ∈ RE(SGLDG,w
)

be the weight function which as-
signs weight 1 to edges f0f1, f1f8, f8f4, f4f5, f5f9, f9f0 and assigns weight 1

2 to
the remaining edges. Then the map from X to Y , sending vi to fi, 0 ≤ i ≤ 3, is
an isometric embedding of (X,DG,w) to (Y,DSGLDG,w

,w′). The polar of LDG,w ,

which is just the fundamental polytope of DG,w, is demonstrated on the right of

Figure 6. Since each vertex f of L∆
DG,w corresponds to a facet F of LDG,w , we

label the vertex f of L∆
DG,w by ADG,w(F ), the arc set of the corresponding tight

digraph.

v2

v1 v0

v3

1

1

1

2

A weighted 4-cycle graph (G,w)

f8

f9

f5

f4

f0

f1

f6

f3 f10

f7

f2 f11

LDG,w

v1v2 v3v0

v0v3 v2v1

v1v0

v2v3

v0v1

v3v2

L∆
DG,w

Figure 6: A graph metric space (V(G),DG,w), its Lipschitz polytope and fun-
damental polytope. See Example 8.7 for relevant isometry and tight digraphs.

9 Face vectors

For a ranked poset P , the Whitney number Wi(P ) of P refers to the number of
rank-i elements in P and the face vector, also known as f -vector, of P is

W(P ) =
(

W0(P ), . . . ,Wdim(P )(P )
)
.

For any polytope P , we also use Wi(P ) for the number of i-faces of P, which
clearly coincides with Wi(F(P )).
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v0 v1 v2 v3

f0 -1 0 1 0
f1 0 -1 0 1
f2 3/4 -1/4 -5/4 3/4
f3 -1/4 3/4 3/4 -5/4
f4 1 0 -1 0
f5 0 1 0 -1
f6 0 0 1 -1
f7 0 0 -1 1
f8 1/2 -1/2 1/2 -1/2
f9 -1/2 1/2 -1/2 1/2
f10 -3/4 1/4 5/4 -3/4
f11 1/4 -3/4 -3/4 5/4

Table 2: Coordinates of vertices of LDG,w in Figure 6.

This section aims to understand the face vectors of the face poset of the
Lipschitz polytope of a tree metric. For a weighted X-tree (T,X,w), Theo-
rem 4.2 tells us that F(LDT,X,w) is determined by (T,X) or T/X. So, we will
sometimes simply talk about F(LDT,X,w) and Wi(F(LDT,X,w)) as the face poset
and the Whitney numbers of the X-tree (T,X) or the graph T/X. Lemma 9.1
says that the degree sequence of a phylogenetic tree determines the number of
vertices of the corresponding Lipschitz polytope while Lemma 9.4 asserts that
the Whitney numbers of binary phylogenetic X-trees is solely determined by
|X|. Via repeated applications of Lemma 5.3, we will reach the main goal of
this section, Theorem 9.9, which gives lower bound and upper bound estimates
of the Whitney numbers of X-trees and phylogenetic X-trees.

Note that a partial orientation σ of T lies inside CF(T,X) if and only if every
arc α ∈ σ belongs to a path P in T that runs from an element of X to another
element of X and satisfies P ⊆ σ. Let σ be a partial orientation of an X-tree T.
We say that a vertex v ∈ V(T ) is good with respect to X for σ provided either
v ∈ X or v /∈

(
∪α∈σ oG(α)

)
4
(
∪α∈σ tG(α)

)
. Note that σ ∈ CF(T,X) if and

only if all vertices of T are good with respect to X for σ.
For the X-tree (T,X), the arc set of T/X coincides with the arc set of T

and so there is a one-to-one correspondence between partial orientations of T
and partial orientations of T/X. Although CF(T,X) is the same as CF(T/X)
as a set/poset, when we call a partial orientation an element from CF(T,X) we
are emphasizing that we will make use of the boundary map on T , instead of
the boundary map on T/X, for relevant analysis. We may prefer to work on the
tree T than the graph T/X simply because the tree structure of T is simpler to
visualize than the structure of T/X.

For any tree T , we write L(T ) for the set of leaves of T, that is, L(T ) =
{v ∈ V(T ) : degT (v) = 1}. For a metric space consisting of one point, its
Lipschitz polytope also has one point and so one vertex. This means that the
formula in Lemma 9.1 cannot be applied to the case of |X| = 1. A star tree is a
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phylogenetic X-tree with exactly one interior vertex. Note that a star tree has
at least three leaves. As with many simple results on trees, the next result is
also proved with a simple idea as explained by Steel in [Ste16, p. 4].

Lemma 9.1. Let X be a set of size at least two and let T be a phylogene-
tic X-tree. Then the number of vertices of LDT,X , namely, W0(LDT,X ), is

2
∏
v∈V(T )\X(2degT (v)−1 − 1).

Proof. By Theorem 4.2, Lemma 5.2 and Lemma 5.3, what we intend to count is
the size of CF∗(T,X). We use induction on the size of V(T )\L(T ) = V(T )\X.
When |V(T ) \ X| = 0, it is trivial to see that | CF∗(T,X)| = 2, as claimed.
When |V(T ) \X| = 1, namely, when T is a star tree, | CF∗(T,X)| = 2|X|− 2 =
2
∏
v∈V(T )\X(2degT (v)−1 − 1), also as claimed. Now assume that T has k ≥ 2

interior vertices and our formula holds when k is smaller. The set of interior
vertices of T, namely V(T ) \ X, induces a subtree of T and we choose a leaf
b of this subtree. Let T ′ be the subtree of T obtained by removing the set B
of all leaves of T adjacent to b. Since T ′ only has k − 1 interior vertices, we
can use induction hypothesis to see that it, as a phylogenetic X ′-tree where
X ′ = (X \B) ∪ {b}, has in total

2
∏

w∈V(T )\(X∪{b})

(2degT (w)−1 − 1)

full combinatorial flows. As a combinatorial flow on (T,X), there should be both
incoming and outgoing arcs at b and so we see that for any full combinatorial
flow σ′ of (T ′, X ′), there are exactly 2degT (b)−1 − 1 ways to extend it to a full
combinatorial flow on (T,X), which is the way to choose a suitable orientation
for each of those degT (b) − 1 edges connecting a leaf to b in T . Since every
full combinatorial flow on (T,X) must come from a full combinatorial flow on
(T ′, X ′) in this way, we get the required result.

For any two positive integers n and m, let tn,m =
(
n−m
m

)
. By an m-

subdivision of a tree T we mean a set T = {T1, . . . , Tm} of subtrees of T such
that V(T1), . . . ,V(Tm) are disjoint subsets of V(T ), ∪mi=1 L(Ti) = L(T ), and

L(Ti) ∈
(L(T )
≥2

)
for i ∈ {1, . . . ,m}. Note that this concept of m-subdivision is

very similar to the concept of convex-state character of a phylogenetic tree stu-
died in phylogenetic combinatorics [KS17, Ste92]. Indeed, [Ste92, Proposition
1(4)] is a result quite similar to the following Lemma 9.2 on m-subdivisions.

Lemma 9.2. Let n ≥ 2 and m ≥ 1 be two integers. For every n-leaf binary
tree, the number of its m-subdivisions is tn−2,m−1 =

(
n−m−1
m−1

)
.

Proof. Denote the number of m-subdivisions of a given n-leaf binary tree T
by cn,m(T ). We need to show that cn,m(T ) is totally determined by n and m
and will indeed equal to tn−2,m−1. When m > n

2 , it is clear that cn,m(T ) =
tn−2,m−1 = 0. Accordingly, we shall always assume below m ≤ bn2 c.

We do induction on n. When n = 2, m can only be 1 and T must be the
two-vertex tree. So cn,m(T ) = tn−2,m−1 = 1. When n = 3, m also can only
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take value 1 while T is a star tree with three leaves. We hence find cn,m(T ) =
tn−2,m−1 = 1.

Assume now n > 3 and the result holds for smaller n. Let T be a binary
tree with n leaves and hence n − 2 ≥ 2 interior vertices. Then the subtree of
T induced by its interior vertices has a leaf b. Let b′ be the interior vertex of
T which is adjacent to b in T and let c1 and c2 be the vertices other than b
which are adjacent to b′ in T . Since T is binary, there are exactly two leaves
a1, a2 of T which are adjacent to b. Let S be the set of m-subdivisions of T,
which is the disjoint union of S1 and S2, where S1 represent the set of those m-
subdivisions T of T in which the subtree induced by {a1, a2, b} is an element and
S1 represent the set of those m-subdivisions T of T in which the subtree induced
by {a1, a2, b} is not any element. Let T ′ be the binary tree obtained from T by
deleting vertices a1, a2, b and b′ and adding a new edge connecting c1 and c2, and
let T ′′ be the binary tree obtained from T by deleting vertices a1 and a2. The size
of S1 is cn−2,m−1(T ′), which is equal to tn−4,m−2 by induction assumption; The
size of S2 is cn−1,m(T ′′), which is equal to tn−3,m−1 by induction assumption.
For n ≥ 4 and m ≤ bn2 c, we can check that

tn−2,m−1 = tn−4,m−2 + tn−3,m−1.

This proves cn,m(T ) = |S| = |S1|+ |S2| = tn−2,m−1, as desired.

Remark 9.3. Note that tn,m is the number of sequences of 1’s and 2’s that
sums to n and has m appearances of 2 and hence

bn2 c∑
m=0

tn,m

counts the number of walks of length n from u to u in the digraph shown in
Figure 7. The digraph in Figure 7 represents the famous golden mean shift and
it is known that the number of walks of length n from u to u in it is the (n+1)th
Fibonacci number; see [LM95, Example 4.14]. Considering that every n-leaf
binary tree has n − 2 interior vertices, we are thus wondering if there should
exist a simple bijective proof of Lemma 9.2.

u v

Figure 7: Graph for the golden mean shift.

Let T be a tree with maximum degree at most three. If T is not binary, we
can find a vertex v with degree two and choose one of its adjacent vertices, say,
u. We shrink the edge uv and the resulting graph will have one less degree-two
vertex. By a series of such shrinking operation, we will finally obtain from T a
binary tree, which is unique up to isomorphism and will be referred to as the
binary tree presented in T.
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Lemma 9.4. Let n be a positive integer, let X be a set of n ≥ 2 elements and
let T be a binary phylogenetic X-tree. For any nonnegative integer i, it holds
that

Wi =

+∞∑
m=1

2m3n−m−i−1

(
n− i− 2

m− 1

)(
n

n+m− i− 1

)
,

where Wi denotes the number of i-faces of the Lipschitz polytope of DT,X .

Proof. Let σ be a combinatorial flow on (T,X) such that

i = b0

(
(T,X)σ

)
− 1. (45)

Let us assume that among all the connected components of (T,X)σ, exactly m
of them, say (T1, X1), . . . , (Tm, Xm), are not isolated vertices, where |X1| ≥
|X2| ≥ · · · ≥ |Xm|. Let k =

∑m
j=1 |Xj | and note that (T,X)σ has exactly

n − k isolated vertices. It follows from (45) that (n − k) + m = i + 1 and so
k = n+m− i− 1.

By Theorem 4.2, Lemma 5.2 and Lemma 5.3, Wi is the number of com-
binatorial flows σ on (T,X) such that (45) holds. Fix the number m of the
weakly connected components of (T,X)σ with size greater than one. There are(
n
k

)
=
(

n
n+m−i−1

)
ways to choose a set S of n − k leaves as isolated vertices in

(T,X)σ.
We delete vertex set S from T to get another tree and then look at the

binary tree T ′ presented by it. In an obvious way, the components of Tσ which
contain nonempty edge sets give rise to an m-subdivision T = {T1, . . . , Tm} of
T ′. By Lemma 9.2, the number ofm-subdivisions of T ′ is tk−2,m−1 =

(
k−m−1
m−1

)
=(

n−i−2
m−1

)
.

For any such m-subdivision T = {T1, . . . , Tm} of T ′, we consider the binary
trees T ′1, . . . , T

′
m presented by T1, . . . , Tm and we can assume that T ′j has |Xj |

leaves for j = 1, . . . ,m. Recall that a binary tree with r leaves has r− 2 interior
vertices. By the proof of Lemma 9.1, we thus see that the number of full
combinatorial flows on the binary phylogenetic tree T ′j is 2 · (22 − 1)|Xj |−2 =

2 · 3|Xj |−2. This means that the number of such possible σ which corresponds
to this same m-subdivision T of T ′ is

m∏
j=1

2 · 3|Xj |−2 = 2m · 3|X1|+···+|Xm|−2m = 2m · 3k−2m = 2m · 3n−m−i−1.

To sum up, we now find that the total number of combinatorial flows on
(T,X) fulfilling (45) is

+∞∑
m=1

2m3n−m−i−1

(
n− i− 2

m− 1

)(
n

n+m− i− 1

)
,

as desired.
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Let (T,X) be an X-tree. A quartet of (T,X) is a partition ab|cd of a four
element subset {a, b, c, d} of X such that the path connecting a and b in T is
vertex-disjoint with the path connecting c and d in T [DHK+12, § 2.4]. We use
q(T,X) to denote the number of quartets of (T,X). Assume that |X| ≥ 4 and
T is a phylogenetic X-tree. By Theorem 4.2, Lemma 5.2 and Lemma 5.3, we
can obtain

W|X|−3(LDT ) = |X|(|X| − 1)(|X| − 2) + 4q(T,X). (46)

Example 9.5. Figure 8 shows two different 4-nary phylogenetic X-trees T1 and
T2 with |X| = 10 leaves. We can directly check that q(T1, X) = 166 and
q(T2, X) = 162 and so, by (46), W7(LDT1

) 6= W7(LDT2
). This example says

that in general the face vector of the Lipschitz polytope of a phylogenetic X-tree
T is not determined by the degree sequence of T . Note that Lemma 9.1 and
Lemma 9.4 suggest some nice cases in which we can really read some informa-
tion of the face vectors from the degree sequences.

T1 T2

Figure 8: Two non-isomorphic 4-nary phylogenetic X-trees with |X| = 10.

By Theorem 4.2 and Remark 4.6, for the study of combinatorial type of the
Lipschitz polytopes of tree metrics, we shall be concerned with all phylogenetic
trees. Lemma 9.1 is a result in this direction about the number of vertices.
With the help of Lemma 9.2, we determine explicitly in Lemma 9.4 the whole
face vectors for the Lipschitz polytopes coming from binary phylogenetic trees.
Example 9.5 indicates the subtlety of pursuing a general explicit formula for
all phylogenetic trees. In the remainder of this section, let us turn to establish
extremal results instead.

Lemma 9.6. Let T and T ′ be two X-trees such that T is obtained from T ′ by
shrinking an edge. Then W(LDT ′,X ) 6= W(LDT,X ) and Wi(LDT ′,X ) ≥Wi(LDT,X )
for all i satisfying 0 ≤ i ≤ |X| − 1 = dim(LDT,X ) = dim(LDT ′,X ).

Proof. Let e = uv be the edge of T ′ such that T is obtained from T ′ by shrinking
e. We denote the vertex of T which corresponds to the set {u, v} by w. Note
that {u, v} ∩ X has size at most 1 and that w should be the unique element
in {u, v} ∩ X when {u, v} ∩ X is nonempty. Let Eu = {e′ ∈ E(T ′) : u ∈
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bdT ′(e
′), v /∈ bdT ′(e

′)} and Ev = {e′ ∈ E(T ′) : v ∈ bdT ′(e
′), u /∈ bdT ′(e

′)}.
Note that E(T ) = E(T ′) \ {e} and A(T ) = A(T ′) \ {−→uv,−→vu}.

By Theorem 4.2, Lemma 5.2 and Lemma 5.3, we need to find an injective
map π from CF(T,X) to CF(T ′, X) which preserves the rank and also show
that this map is not a bijection. Take σ ∈ CF(T,X). Let us construct π(σ) ∈
CF(T ′, X) such that b0

(
(T,X)σ

)
= b0

(
(T ′, X)π(σ)

)
and π(σ) ∩A(T ) = σ.

Case 1. Either w = u ∈ X or w = v ∈ X.
Without loss of generality, assume that w = u ∈ X. If σ ∩ Ev = ∅, we let

π(σ) = σ. If σ ∩Ev 6= ∅, we let π(σ) = σ ∪−→uv provided there exists α ∈ σ such
that oG(α) = v and let π(σ) = σ ∪ −→vu otherwise.

Case 2. {u, v} ∩X = ∅, to wit, w /∈ V(T ).
Since σ is good at w /∈ X, there are α, β ∈ Eu ∪ Ev such that oT (α) = w

and tT (α) = w. Due to the symmetry between u and v, we need only consider
the following two cases.

Case 2.1. [α] ∈ Eu, [β] ∈ Ev.
Let γ = −→vu be the arc in e that goes from v to u and let π(σ) = σ ∪ {γ}.
Case 2.2. α, β ∈ Eu, σ ∩ Ev = ∅.
Let π(σ) = σ.
Since we have obtained the required map π from CF(T,X) to CF(T ′, X),

which must be injective, we see that W(LDT ′,X ) −W(LDT,X ) is nonnegative
componentwise.

To show that W(LDT ′,X ) 6= W(LDT,X ), it remains to show that the sum of
entries in W(LDT ′,X ) is bigger than the sum of entries in W(LDT ′,X ). Therefore,
we just need to find a σ ∈ CF(T,X) and at least two different flows σ′ ∈
CF(T ′, X) such that σ′ ∩ A(T ) = σ. As both T and T ′ are X-trees, we may
assume that degT ′(u) ≥ 3. This enables the existence of σ ∈ CF(T,X) such that
σ ∩Eu contains both incoming and outgoing arcs at w. In the case that v ∈ X,
it is easy to see that σ, σ ∪ {−→uv} and σ ∪ {−→vu} could all be our σ′. Otherwise,
we have degT ′(v) ≥ 3 as well and so we could assume in addition that σ ∩ Ev
contains both incoming and outgoing arcs at w. This again guarantees that
σ, σ∪{−→uv} and σ∪{−→vu} could all be chosen as σ′ for this suitable σ, completing
the proof.

Lemma 9.7. Let n ≥ 3 and let (T,X) be a star tree on n+ 1 vertices. Then

Wi(LDT,X ) =

{ (
n
i

)
(2n−i − 2) if i = 0, . . . , n− 2;

1 if i = n− 1.

Proof. For any σ ∈ CF(T,X), it clearly holds

b0

(
(T,X)σ

)
=

{
n− |σ| = n if |σ| = 0;
n− |σ|+ 1 if |σ| = 2, . . . , n.

Accordingly, an application of Theorem 4.2, Lemma 5.2 and Lemma 5.3 shows
that Wn−1(LDT,X ) equals 1 while Wi(LDT,X ) is the number of σ ∈ CF(T,X)
with |σ| = n− i for i = 0, . . . , n−2. Fixing any i ∈ {0, . . . , n−2}, to find such a
σ, we choose any n−i of the n edges of the star tree and then assign orientations
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to them in an arbitrary way, excepting the two ways for which the interior vertex
of the tree will not be good. This shows that Wi(LDT,X ) =

(
n
i

)
(2n−i − 2) for

i ∈ {0, . . . , n− 2}.

Lemma 9.8. Let T be an X-tree with X = V(T ) and let n = |X|. Then
Wi(LDT,X ) =

(
n−1
i

)
2n−i−1 for i = 0, . . . , n− 1.

Proof. For any σ ∈ CF(T,X), it clearly holds

b0

(
(T,X)σ

)
= n− |σ|.

It thus follows from Theorem 4.2, Lemma 5.2 and Lemma 5.3 that Wi(LDT,X )
is the number of σ ∈ CF(T,X) such that |σ| = n − i − 1. Consequently,
Wi(LDT,X ) =

(
n−1
i

)
2n−i−1.

|X|
i

0 1 2 3 4 5 6

3 6 6
4 18 28 12
5 54 114 80 20
6 162 432 422 180 30
7 486 1566 1962 1190 350 42
8 1458 5508 8424 6640 2828 616 56

Figure 9: The number of i-faces of the Lipschitz polytopes of binary phylogenetic
X-trees with |X| = 3, . . . , 8.

We write δi,j for the Kronecker function, which equals 1 if i = j and equals
0 otherwise.

Theorem 9.9. Let T be an X-tree and let n = |X|. For i = 0, . . . , n− 1, let
ui =

∑+∞
m=1 2m3n−m−i−1

(
n−i−2
m−1

)(
n

n+m−i−1

)
,

yi =
(
n−1
i

)
2n−i−1,

zi =
(
n
i

)
(2n−i − 2) + δi,n−1.

Let U, Y, Z be three vectors of length n whose ith entry is ui, yi, zi respectively.
Let W be the face vector of LDT,X , that is, its ith entry is Wi(LDT,X ).

(a) It holds that Y ≤ W ≤ U . Moreover, W = U if and only if T is a binary
phylogenetic X-tree and Y = W if and only if V(T ) = X.

(b) Assume that T is a phylogenetic X-tree. Then Z ≤W ≤ U, with W = U if
and only if T is a binary phylogenetic X-tree and with Z = W if and only
if T is a star tree or n = 2.

Proof. (a) It is not hard to see that we can find a binary phylogenetic X-tree T ′

such that T is obtained from T ′ by a sequence of operations of shrinking edges.
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By Lemma 9.4 and Lemma 9.6, we know that W = W(LDT,X ) ≤W(LDT ′,X ) = U
with equality if and only if T itself is a binary phylogenetic X-tree.

By a sequence of operations of shrinking edges, we can transform T into an
X-tree T ′′ with X = V(T ′′). Applying Lemma 9.6 and Lemma 9.8, we know
that W = W(LDT,X ) ≥ W(LDT ′′,X ) = Y and equality happens if and only if
V(T ) = X.

(b) The relationship between U and W is obtained already in (a). We now
turn to discuss the relationship between W and Z. If n = 2, we have X = V(T )
and Z = U and so the result trivially holds. We now assume n ≥ 3. Since T is
a phylogenetic X-tree and |X| ≥ 3, by shrinking edges successively, we can go
from T to a star tree T ∗ with X as its leaf set. In view of Lemma 9.4, Lemma 9.6
and Lemma 9.7, we then find that W = W(LDT,X ) ≥ W(LDT∗,X ) = Z, with
equality if and only if T = T ∗, namely, (T,X) is a star tree.

10 Simple vertices

We say that a proper metric (X,D) is generic [GP17], if LD is simple and
D(x, y) + D(z, y) > D(x, z) for all {x, y, z} ∈

(
X
3

)
. For any generic metric space,

Gordon and Petrov [GP17] deduced general formula for the face numbers of its
Lipschitz polytope. For phylogenetic X-tree T with at least four leaves, we will
find in this section that that LDT,X is not simple (Corollary 10.3) and so our
Lemma 9.1 and Lemma 9.4 are not covered by their results on generic metrics.

Lemma 10.1 (Balinski’s Theorem). [Bal61] [Zie95, Theorem 3.14] For every
d-dimension polytope P , its 1-skeleton graph SGP is d-connected.

By Lemma 10.1, simple vertices of SGP are those whose degree attains the
absolute lower bound d. In the same spirit of Lemma 2.3, the face poset of a sim-
ple polytope is determined by its 1-skeleton graph [BML87, Kal88]. But, simple
zonotopes correspond to simplicial arrangements of hyperplanes and they are
rare [Zie95, p. 224], This section confirms this general observation by characte-
rizing simple vertices of Lipshitz polytopes of phylogenetic X-trees.

Theorem 10.2. (a) For every X-tree T , the dimension of LDT,X and the mi-
nimum degree of SGT,X are both |X| − 1.

(b) Let T be a phylogenetic X-tree and take σ ∈ V(SGT,X) = CF∗(T,X) (see
Lemma 5.4). Then, degSGT,X (σ) ≥ |X| − 1, with equality if and only if σ is
both H1-free and H2-free, where H1 and H2 are the two digraphs as shown
in Figure 10.

Proof. (a) By Lemma 5.1, LDT,X has dimension |X|−1. By Lemma 10.1, SGT,X

is (|X|−1)-connected and so its minimum degree is at least |X|−1. Take x ∈ X
and consider the elements σ+

T,x and σ−T,x. An arc α ∈ σ+
T,x is flippable for σ+

T,x

if and only if tT (α) ∈ X while an arc α ∈ σ−T,x is flippable for σ−T,x if and

only if oT (α) ∈ X. In view of Remark 5.5, we see that degSGT,X (σ+
T,x) =

degSGT,X (σ−T,x) = |X| − 1.
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Figure 10: Two forbidden digraphs.

(b) If |V(T )| ≤ 5, the result can be directly checked. We assume now
|V(T )| ≥ 6 and the result is valid when |V(T )| is smaller. Let H =

(
V(T ), σ

)
.

Case 1. The digraph H has H1 as an induced subgraph.
We may assume that S = {a1, a2, b, c, d, e} is a subset of V(T ) and H[S] =

H1. Let T ′ be obtained from T by shrinking a1a2 into a new vertex a and let
σ′ = σ ∩ A(T ′). It is clear that σ′ restricted on {a, b, c, d, e} is just H2. By
induction hypothesis, degSGT ′,X

(σ′) > |X| − 1. Since every flippable arc of σ′

is also a flippable arc of σ, we can infer that degSGT,X (σ) ≥ degSGT ′,X
(σ′) >

|X| − 1.
Case 2. The X-tree (T,X) is a star tree.
Since T is a star tree, σ cannot contain H1 as a subgraph, σ contains H2 as

a subgraph if and only if σ /∈ {σ+
T,x, σ

−
T,x : x ∈ X} while {σ+

T,x, σ
−
T,x : x ∈ X}

is the set of all those vertices of SGT,X having degree |X| − 1.
Case 3. The X-tree (T,X) is not a star tree, the digraph H contains H2 as

an induced subgraph but does not contain H1 as an induced subgraph.
Since T is not a star tree, we may assume that S = {a, b, c, d, e} is a subset of

V(T ), H[S] = H2 and either b or d is not a leaf of T . By symmetry, let us only
consider the case of d /∈ L(T ) = X. Since d is good for the flow σ and H does
not contain H1 as an induced subgraph, there is exactly one vertex d′ ∈ V(T )

such that
−→
dd′ ∈ σ. As a phylogenetic X-tree, degT (d) ≥ 3 holds and so we can

find a vertex d′′ 6= a such that
−→
d′′d ∈ σ. Accordingly, we see now H contains

the digraph shown in Figure 11 as an induced subgraph.

b

c

a

d

e

d′′

d′

Figure 11: An induced subgraph of H.

We shrink ad into a new vertex a′ and thus obtain from T a new tree T ′.
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Let σ′ = σ ∩ A(T ′). Since H2 is isomorphic with the subgraph of σ′ induced
by {a′, b, c, d′, e}, the induction hypothesis implies degSGT ′,X

(σ′) > |X| − 1. A

look at Figure 11 shows that
−→
ad /∈ σ′ is a flippable arc for σ and that every arc

which is flippable for σ′, must be also flippable for σ as long as it is not
−→
dd′. It

follows degSGT,X (σ) ≥ degSGT ′,X
(σ′)− 1 + 1 = degSGT ′,X

(σ′) > |X| − 1.

Case 4. The digraph H contains neither H1 nor H2 as an induced subgraph.
Let b be a leaf of the subgraph of T induced by its interior vertices. Let

a1, . . . , ak be all the leaves of T which are adjacent to b, let T ′ be the tree obtai-
ned from T by deleting a1, . . . , ak, let c be the only vertex adjacent to b in T ′,
and let f1, . . . , fm be all the edges of T other than bc whose boundaries contain
c. Note that min{k,m} ≥ 2. Let the subgraph of T induced by {c, b, a1, . . . , ak}
be T̃ .

Let X ′ = (X \ {a1, . . . , ak}) ∪ {b} and let σ′ = σ ∩ A(T ′). Since σ′ has
neither H1 nor H2 as its induced subgraph, the induction hypothesis leads to
degSGT ′,X′

(σ′) = |X ′| − 1 = |X| − k.

Case 4.1. σ ∩A(T̃ ) ∈ {σ−
T̃ ,c
, σ+

T̃ ,c
}.

Since σ does not have H1 as an induced subgraph, there exist two distinct
edges fi and fj from {f1, . . . , fm} such that c = oT (σ ∩ fi) and c = tT (σ ∩ fj).
Let the set of edges flippable for σ be F and let the set of edges flippable for σ be

F ′. Let S denote the singleton set {
−→
cb,
−→
bc} ∩ σ and let R denote the k-element

set σ ∩ {
−→
ba1,
−→
a1b, . . . ,

−→
bak,
−→
akb}. We can check that F = (F ′ \ S)∪R and S ⊆ σ.

This shows that |F | = |F ′|−1+k and so degSGT,X (σ) = degSGT ′,X′
(σ′)−1+k =

|X| − 1.
Case 4.2. σ ∩A(T̃ ) /∈ {σ−

T̃ ,c
, σ+

T̃ ,c
}.

Without loss of generality, we assume
−→
cb ∈ σ and so there are at least two

incoming arcs at b from σ. Since σ does not have H2 as an induced subgraph,

there is exactly one outgoing arc at b from σ, say
−→
ba1. Note that every arc which

are flippable for σ′ must be flippable for σ as well. Also,
−→
a2b, . . . ,

−→
akb are k − 1

arcs flippable for σ while
−→
ba1 is not flippable for σ. Therefore, we can conclude

that degSGT,X (σ) = degSGT ′,X′
(σ′) + k − 1 = |X| − 1.

Corollary 10.3. Let T be a phylogenetic X-tree. Then LDT,X is simple if and
only if |X| ≤ 3.

Proof. If T has at least two interior vertices, then |X| ≥ 4 and there exists
σ ∈ CF∗(T,X) which contains H1 as an induced subgraph; If T has at most one
interior vertex, then no σ ∈ CF∗(T,X) can contain H1 as an induced subgraph
while there exists σ ∈ CF∗(T,X) which contains H2 as an induced subgraph if
and only if T is a star tree with at least four leaves. Henceforth, the result is a
consequence of Theorem 10.2.
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11 Integral points in skew Lipschitz polytopes

An element of RX is called integral if it lies in ZX . We call a polytope P ⊆ RX
an integral polytope if all the vertices of P are integral. The Ehrhart series of
an integral polytope P ⊆ RX is a series in an indeterminate, say z, such that

EhrP (z) =

∞∑
t=0

Ehr(P, t)zt,

where Ehr(P, t) enumerates the number of integral points in tP = {tv : v ∈ P ⊆
RX}. For each integral polytope P of dimension d, Ehrhart [Ehr62] proved that
Ehr(P, t) is a rational polynomial of degree d in t, called the Ehrhart polynomial
of P , and that there exists complex numbers h∗j , 0 ≤ j ≤ d, such that

EhrP (z) =

∑d
j=0 h

∗
jz
j

(1− z)d+1
.

The vector (h∗0, . . . , h
∗
d) is called the h∗-vector of the integral polytope P . For

any integral polytope P of dimension d, we know that the leading coefficient
of Ehr(P, t), namely, the coefficient of td, equals the d-volume of P [BR15,
Corollary 3.20] while the constant term of it is 1 [BR15, Corollary 3.15].

Let A be an I-indexed vector configuration in ZX . We denote the greatest
common divisor of the set{

|det(AY )| : Y ∈
(
X

|I|

)}
⊆ Z

by
gcd(A),

where, for any Y ∈
(
X
|I|
)
, AY is the Y × I matrix whose (y, i)-entry is A(i)(y)

for any (y, i) ∈ Y × I. By convention, gcd(A) = 0 provided
∑
i∈I ti A(i) = 0

possesses a nonzero solution (ti)i∈I , say when |X| < |I|.

Lemma 11.1. [She74] [Sta80, Example 3.1] [Sta91, Theorem 2.2] [BR15, The-
orem 9.9] Let X and I be two finite sets and let A be an I-indexed vector con-
figuration in ZX . Then the Ehrhart polynomial of Z(A) is given by

Ehr(Z(A), t) =

|X|∑
m=0

∑
Y ∈( Im)

gcd(A(Y ))tm = 1 +

|X|∑
m=1

∑
Y ∈( Im)

gcd(A(Y ))tm,

where A(Y ) stands for the Y -indexed vector configuration in ZX obtained as the
restriction of A on Y ⊆ I.

A matrix is totally unimodular provided all its minors are 1, 0 or −1. To
make our paper self-contained, let us recall some simply property about totally

49



unimodular matrices. We first note that, as observed already by Poincaré, a
(0,±1)-matrix in which each column has at most one 1 and at most one −1 must
be totally unimodular [Poi00] [Sch86, p. 274]. A (0, 1)-matrix is said to have the
consecutive-ones property for columns [BL76] if its rows can be permuted in such
a way that the ones in each column occur consecutively. Going further from
the result of Poincaré, we mention that a (0, 1)-matrix with the consecutive-
ones property must be totally unimodular. Indeed, a minor of a (0, 1)-matrix
with the consecutive-ones property for columns is the determinant of a matrix
with the consecutive-ones property for columns and so is the determinant of a
(0,±1)-matrix in which each column has at most one 1 and at most one −1 and
so must fall into {−1, 0, 1}. Matrices with consecutive-ones property are some
special network matrices while Seymour [Sey80] found in 1980 that a matrix is
totally unimodular if and only if it is a natural combination of some network
matrices and some copies of two particular 5 by 5 matrices [Sch86, Theorem
19.6].

Lemma 11.2. Let (X,D) be a metric space such that D(a, b) are integers for
all a, b ∈ X. Then LxD is an integral polytope for any x ∈ X.

Proof. Let I = {(a, b) : {a, b} ∈
(
X
2

)
} ∪ {x1, x2} and let A be the I-indexed

vector configuration in RX such that A((a, b)) = χa − χb for {a, b} ∈
(
X
2

)
and A(x1) = −A(x2) = χx. As a matrix, A is totally unimodular, simply
because each column of it, namely every vector in A, has all entries being zeros,
excepting at most one +1 and at most one −1 [Poi00] [Sch86, p. 274]. Recall
that LxD is defined via a set of linear inequalities as shown in (2). That is,
LxD = {f ∈ RX : A> f ≤ %} where % ∈ RI is the integral vector such that
%(a, b) = D(a, b) for {a, b} ∈

(
X
2

)
and %(x1) = %(x2) = 0. If f is a vertex

of LxD, there should be a subset I ′ ∈
(
I
|X|
)

so that f is the unique solution

to (A |I′)>f = %|I′ [Lau13, Proposition 4.3]. Since A is totally unimodular,
A |I′ must have an integral matrix as its inverse. This shows that f ∈ ZX , as
wanted.

Let (T,X) be an X-tree and x ∈ X. Let σ = σ−T,x and recall from (22) that
DT,X,x, the descendent matrix of (T,X) with origin x, is a σ-indexed vector

configuration in RX . Note that DT,X,x can be viewed as an X×σ matrix whose
(x, α)-entry is DT,X,x(α)(x).

Lemma 11.3. If (T,X) is an X-tree and x ∈ X, then the matrix DT,X,x is
totally unimodular.

Proof. We can view T ′ = (V(T ), σ−T,x) as a directed in-tree rooted at x. For
every two vertices v and w of T ′, let v ∨ w be the vertex which is of longest
distance from x in the tree T and is on both the path from v to x and the path
from w to x in T ′. For each v ∈ V(T ), let Hv be the set of elements u ∈ X such
that there is a path in T ′ leading from u to v. Note that the columns of DT,X,x

are of the form χA ∈ RX\{x} where A = Hv for some v ∈ V(T ) \ {x}. We make
use of the so-called postorder transversal to get an ordering of V(T ): For each
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v ∈ V(T ), fix a total ordering ≺v of the connected components of T − v; Let
π(1), . . . , π(n), where n = |V(T )|, be the total ordering of V(T ) such that, for
every two vertices v and w, we have π−1(v) < π−1(w) if w = v ∨ w, or if v
and w fall into different components of T − (v ∨ w) while the one containing v
comes earlier than that containing w in the total order ≺v∨w. This ordering π
naturally induces a total order µ on X \{x} ⊆ V(T ), where x̂ ∈ X \{x} appears
earlier than x′ ∈ X \ {x} in µ if and only if that happens in π. It is clear that
Hv is always consecutive in µ for each v ∈ V(T ), completing the proof.

Remark 11.4. Our proof of Lemma 11.3 indeed shows that DT,X,x has consecutive-
ones property for columns. We mention that this fact is already observed im-
plicitly in phylogenetic combinatorics; see [KHP13, Proposition 3.5] and [Ste16,
p. 130].

Note that DT,X,x is totally unimodular if and only if its transpose, PT,X,x,
the path matrix of (T,X) with origin x, is totally unimodular. From this view
point, Lemma 11.3 is just [Fra11, Corollary 4.2.6], which is obtained from a
result of Tutte [Fra11, Theorem 4.2.5] that all network matrices are totally uni-
modular.

The independence complex IC(A) of an E-indexed vector configuration A in
RX is the simplicial complex whose faces are subsets of E which are mapped
by A to a set of linearly independent set of vectors. Similarly, the independence
complex of a matroid M is the simplicial complex whose faces are independent
sets of M. It is easy to see that IC(A) = IC(MA).

Assume that P = Z(u1, . . . , um) and P ′ = Z(±u1, . . . ,±um) where ui ∈ ZX
for i = 1, . . . ,m. It is easy to see that

Ehr(P ′, t) = Ehr(P, 2t) (47)

for all nonnegative integers t.

Theorem 11.5. Let (T,X) be an X-tree and take x ∈ X. Then

Ehr(LxDT,X , t) = c0 + c1 × 2t+ · · ·+ c|X|−1 × (2t)|X|−1, (48)

where (c0, . . . , c|X|−1) is the face vector of the independence complex of M∗T/X .

In particular, the (|X| − 1)-volume of LxDT,X equals 2|X|−1 times the number of
spanning trees of T/X.

Proof. Recall from Lemma 5.1 that LxDT,X has dimension |X|−1. By Lemma 11.2,
we can assume that (48) holds for some numbers c0, . . . , c|X|−1. It follows from
(21) that LxDT,X = Z(±DT,X,x) and so, by (47),

Ehr
(
Z(DT,X,x), t

)
= c0 + c1 × t+ · · ·+ c|X|−1 × t|X|−1.

Applying Lemma 11.1 and Lemma 11.3, we now find that (c0, . . . , c|X|−1) is the
face vector of IC(DT,X,x). By virtue of (26) and (27),MDT,X,x

=M∗T/X . This
implies that (c0, . . . , c|X|−1) is the face vector of IC(M∗T/X).
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By [BR15, Corollary 3.20], the volume of LxDT,X is given by the leading term

of Ehr(LxDT,X , t), i.e, 2|X|−1c|X|−1. But c|X|−1 enumerates the number of bases

of M∗T/X , which is equal to the number of bases of MT/X and so, the number
of spanning trees of T/X.

A consequence of Theorem 11.5 is that it is easy to compute the volume
of LxDT,X . Note that the problem of calculating the volume of a general zono-
tope is #P-hard [DGH98, Theorem 1]. From Theorem 11.5 we also see that
Ehr(LxDT,X , t) is independent with the choice of x ∈ X and so we will write
Ehr(T,X, t) for Ehr(LxDT,X , t) and write EhrT,X(z) for EhrLxDT,X

(z).

ab

c

d

f

e

T1

a

b c d e

f

T2

Figure 12: Two binary phylogenetic X-trees.

Example 11.6. Let T1 and T2 be the two binary phylogenetic X-trees shown
in Figure 12. Then, a computation with the software Polymake [GJ00] tells us
that{

Ehr(T1, X, t) = 1 + 9× (2t) + 36× (2t)2 + 80× (2t)3 + 99× (2t)4 + 54× (2t)5,
Ehr(T2, X, t) = 1 + 9× (2t) + 36× (2t)2 + 80× (2t)3 + 99× (2t)4 + 55× (2t)5;

and that {
EhrT1,X(z) = 1+4109z+61698z2+110306z3+30589z4+657z5

(1−z)6 ,

EhrT2,X(z) = 1+4141z+62530z2+112418z3+31421z4+689z5

(1−z)6 .

Stanley’s Monotonicity Theorem [Sta93, Theorem 3.3] says that if P1 and P2

are integral polytopes and P1 ⊆ P2, then h∗(P2)−h∗(P1) is a nonnegative vector.
Though the h∗-vector of LDT2,X

dominates the h∗-vector of LDT1,X
, LDT1,X

is
not a subset of LDT2,X

. This suggests that we may need a new Monotonicity
Theorem to explain this comparison result for T1 and T2.

Question 11.7. If (T1, X) and (T2, X) are two phylogenetic X-trees satisfying
EhrT1,X = EhrT2,X , can we conclude that T1 and T2 are isomorphic graphs?

12 Lipschitz heights

For any finite set X and any function f ∈ RX , we define the height of f to be

h(f) = max
x∈X

f(x)−min
x∈X

f(x).
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Let (X,D) be a proper finite metric space. Taking any x ∈ X, we define the
Lipschitz height of (X,D) to be

LipH(X,D) =

´
LxD

h(f) d f

Vol|X|−1(LxD)
, (49)

and define the integral Lipschitz height of (X,D) to be

IntLipH(X,D) =

∑
f∈LxD ∩ZX h(f)

|LxD ∩Z
X |

.

Note that the parameters LipH(X,D) and IntLipH(X,D) are indeed indepen-
dent of the choice of x ∈ X and they measure the average height of the 1-
Lipschitz functions on (X,D) and the average height of the integral 1-Lipschitz
functions on (X,D) respectively. In addition, by the linearity of expectation,
we have

LipH(X,D) =

´
LxD

maxx∈X f(x) d f

Vol|X|−1(LxD)
−

´
LxD

minx∈X f(x) d f

Vol|X|−1(LxD)
= 2

´
LxD

maxx∈X f(x) d f

Vol|X|−1(LxD)
;

similarly, we have

IntLipH(X,D) =
2
∑
f∈LxD ∩ZX maxx∈X f(x)

|LxD ∩Z
X |

.

For a connected graph G and the shortest path metric DG on V(G), we write
LipH(G) and IntLipH(G) for LipH

(
V(G),DG

)
and IntLipH

(
V(G),DG

)
, re-

spectively. Note that what we call an integral Lipschitz height of a graph metric
space is named by Loebl, Nešetřil and Reed the Lipschitz height of a graph
[LNR03].

In (49) we assign the expected value of the height of a random 1-Lipschitz
function to a proper metric space, assuming that the random Lipschitz functions
are uniformly distributed in the Lipschitz polytope. This parameter looks na-
tural but it lacks scaling invariance. For any proper finite metric space (X,D),
we define its scale-invariant Lipschitz height to be

SLipH(X,D) =

´
LxD

h(f) d f(
Vol|X|−1(LxD)

) 2
|X|−1

.

This new parameter is scale-invariant, namely SLipH(X, tD) = SLipH(X,D)
for all positive real t. As a consequence, max SLipH(X,D) and min SLipH(X,D)
exist where D runs through all proper metrics on the fixed finite set X.

Question 12.1. Let (X,D) be a proper metric space. Find an upper/lower
bound estimates of SLipH(X,D) in terms of |X|. If (X,D) is a tree metric,
what are the corresponding upper and lower bounds?
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The rest of this section will focus on Question 12.1 and related issues for
some special tree metrics. Let T n denote the set of all n-vertex trees up to
graph isomorphism. For any connected graph G and x, y ∈ V(G), we use the
notation [x, y]G for the set {z ∈ V(G) : DG(x, z) + DG(z, y) = DG(x, y)}
and we use the notation (x, y)G for [x, y]G \ {x, y}. Let T be a tree and let
x, y be two interior vertices of T such that (x, y)T only contains degree-two
vertices of T. We now define KCx→y(T ) to be the tree having V(T ) and A(T )
as its vertex set and arc set, respectively, but having a new boundary relation
that, for each α ∈ A

(
KCx→y(T )

)
= A(T ), it holds oKCx→y(T )(α) = oT (α) and

tKCx→y(T )(α) = tT (α), with the exception of{
oKCx→y(T )(α) = y if oT (α) = x and tT (α) /∈ (x, y)T ;
tKCx→y(T )(α) = y if tT (α) = x and oT (α) /∈ (x, y)T .

This transformation from T to KCx→y(T ) is called a KC-transformation, in
honor of Kelmans [Kel81] and Csikvári [Csi10]; see [WXZ16, Figure 4] for an
illustration of this transformation. For any two trees T1, T2 ∈ Tn, we say that
T1 is less than T2 and write T1 ≤ T2 if we can obtain T1 from T2 by a sequence
of KC-transformations. It is apparent that (T n,≤) is a poset. Let Pn, Sn ∈ Tn
be the path and the star with n vertices, respectively.

Lemma 12.2. [Csi10, Theorem 2.4] For any positive integer n, (T n,≤) is a
ranked poset with Sn and Pn being the minimum and maximum elements, re-
spectively.

A graph automorphism ρ of a graph G is a pair of maps (ρ0, ρ1), where
ρ0 ∈ V(G)V(G) and ρ1 ∈ A(G)A(G) are two bijective maps such that ρ1 oG(α) =
oG ρ1(α), ρ1 tG(α) = tG ρ1(α) and ρ1(α) = ρ1(α) for all α ∈ A(G). We call
ρ0 and ρ1 the vertex map and the arc map of ρ. It is clear that ρ1 induces a
bijective map from E(G) to E(G) which we often also refer to as ρ1.

Theorem 12.3. Let n be a positive integer and take T ∈ Tn.

(a) [WXZ16, Corollary 2.6] It holds IntLipH(Sn) ≤ IntLipH(T ) ≤ IntLipH(Pn).
The first equality holds if and only if T = Sn and the second equality holds
if and only if T = Pn.

(b) It holds LipH(Sn) ≤ LipH(T ) ≤ LipH(Pn). The first equality holds if and
only if T = Sn and the second equality holds if and only if T = Pn.

Proof. Our task is to prove claim (b). We will show that we can follow the same
arguments in [WXZ16] for proving (a) to prove (b).

When n ≤ 3, |Tn| = 1 and so there is nothing to prove. We now assume that
n > 3. In view of Lemma 12.2, we will be done if we can obtain

LipH(T )− LipH(T ′) > 0, (50)

where T ∈ Tn, x and y are two interior vertices of T such that (x, y)T only
contains degree-two vertices of T, and T ′ = KCx→y(T ).
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Let us write LxT for LxDT,V(T )
. Let p = p

V(T )
x be the projection from RV(T ) to

RV(T )\{x} as defined in (3). For each g ∈ RV(T )\{x}, let
︷︸︸︷
g denote the unique

element f ∈ RV(T ) such that f(x) = 0 and p(f) = g. Recall the definition of
the descendent matrix of (T,V(T )) with origin x as given in (22). Let σ = σ−T,x
and consider the σ-indexed vector configuration DT in RV(T )\{x} defined by
DT = p ◦DT,V(T ),x. It follows from (21) that

p(LxT ) = DT [−1, 1]σ = {DT ξ =
∑
α∈σ

ξ(α)DT (α) : ξ ∈ [−1, 1]σ} ⊆ RV(T )\{x} .

(51)

By (25), DT is a nonsingular linear map from Rσ to RV(T )\{x}. This and
Remark 1.1 allow us deduce from (51) that

LipH(T ) =

´
LxT

h(f) d f

Voln−1(LxT )

=

´
p(LxT )

h(
︷︸︸︷
g ) d g

Voln−1(p(LxT ))

=

´
[−1,1]σ

h(
︷ ︸︸ ︷
DT ξ) det(DT ) d ξ

det(DT ) Voln−1([−1, 1]σ)
(52)

=

´
[−1,1]σ

h(
︷ ︸︸ ︷
DT ξ) d ξ

Voln−1([−1, 1]σ)

=
1

2n−1

ˆ
[−1,1]σ

h(
︷ ︸︸ ︷
DT ξ) d ξ.

The subgraph of T induced by the set [x, y]T is a path graph H and hence
has a unique automorphism ρ whose vertex map ρ0 swaps x and y. For any
ξ ∈ [−1, 1]σ, we define Φ(ξ) to be the element in [−1, 1]σ such that

Φ(ξ)(α) =

{
−ξ(ρ1(α)) if α ∈ σ ∩A(H);
ξ(α) if α ∈ σ \A(H).

Let ∆ξ represent

h(
︷ ︸︸ ︷
DT ξ)− h(

︷ ︸︸ ︷
DT ′ ξ)

for every ξ ∈ [−1, 1]σ. We proceed to show that

∆ξ + ∆Φ(ξ) ≥ 0 (53)

holds for all ξ ∈ [−1, 1]σ while

∆ξ + ∆Φ(ξ) ≥ 0 (54)

holds for some ξ ∈ [−1, 1]σ. When we replace ξ ∈ [−1, 1]σ by ξ ∈ {0,±1}σ, the
statements corresponding to (53) and (54) are proved in [WXZ16, pp. 109–114].
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Especially, this shows the truth of (54). Moreover, the reader can check that
the range of ξ does not make any difference to the proof of [WXZ16, Eq. (4)]
and so the same argument as there establishes the validity of (53).

Finally, we are ready to derive that

2n
(

LipH(T )− LipH(T ′)
)

= 2

ˆ
[−1,1]σ

h(
︷ ︸︸ ︷
DT ξ) d ξ − 2

ˆ
[−1,1]σ

h(
︷ ︸︸ ︷
DT ′ ξ) d ξ by (52)

=

ˆ
[−1,1]σ

(
h(
︷ ︸︸ ︷
DT ξ) + h(

︷ ︸︸ ︷
DT Φ(ξ))

)
d ξ −

ˆ
[−1,1]σ

(
h(
︷ ︸︸ ︷
DT ′ ξ+ h(

︷ ︸︸ ︷
DT ′ Φ(ξ))

)
d ξ

=

ˆ
[−1,1]σ

(∆ξ + ∆Φ(ξ)) d ξ

> 0, by (53) and (54)

proving (50), as wanted.

Theorem 12.4. Let n be a positive integer and take T ∈ Tn. It holds

SLipH(Sn) ≤ SLipH(T ) ≤ SLipH(Pn).

The first equality holds if and only if T = Sn and the second equality holds if
and only if T = Pn.

Proof. By Theorem 11.5 we have Vol(LxT ) = 2n−1 for all T ∈ T n and x ∈ V(T ).
Accordingly, we can check that SLipH(T ) = 2n−3 LipH(T ). Thus the result
follows from Theorem 12.3(b) directly.

Conjecture 12.5. Let n be a positive integer and let G be a connected graph
with n vertices.

(a) [LNR03, Conjecture 1] IntLipH(G) ≤ IntLipH(Pn) holds.

(b) LipH(G) ≤ LipH(Pn) holds, with equality if and only if G = Pn.

(c) SLipH(G) ≤ SLipH(Pn) holds, with equality if and only if G = Pn.

Conjecture 12.5 is a statement about the real line. If we consider a general
injective metric space and the corresponding Lipschitz maps, there may be even
more interesting mathematics ahead.
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Kantorovich-Rubinstein polytopes, 2017. arXiv:1703.06612.

[Kal88] Gil Kalai. A simple way to tell a simple polytope from its graph. Jour-
nal of Combinatorial Theory. Series A, 49(2):381–383, 1988. doi:10.1016/

0097-3165(88)90064-7.
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[Zat08] P. B. Zatitskĭı. On the coincidence of the canonical embeddings of me-
tric spaces into Banach spaces. Rossĭıskaya Akademiya Nauk. Sankt-
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