Note

Minimum light number of lit-only σ-game on a tree

Xinmao Wanga, Yaokun Wub,*

aDepartment of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
bDepartment of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China

Received 27 August 2006; received in revised form 19 April 2007; accepted 23 May 2007

Communicated by A. Fraenkel

Abstract

Let T be a tree with ℓ leaves. Each vertex of T is assigned a state either lit or off. An assignment of states to all the vertices of T is called a configuration. The lit-only σ-game allows the player to pick a lit vertex and change the states of all its neighbours. We prove that for any initial configuration one can make a sequence of allowable moves to arrive at a configuration in which the number of lit vertices is no greater than $\lceil \frac{\ell}{2} \rceil$. We also give examples to show that the bound $\lceil \frac{\ell}{2} \rceil$ cannot be relaxed to $\lfloor \frac{\ell}{2} \rfloor$.

Keywords: Binary field; Orbit; Leaves; Hamming weight

1. The maximum-orbit-weight problem

Let S be a finite set, w be a real-valued weight function on S, G be a permutation group acting on S. Under the action of G, S is divided into disjoint orbits. Two elements $x, y \in S$ are said to be equivalent, denoted by $x \sim y$, if they lie in the same orbit $\bar{x} = \bar{y}$. We define the weight of the orbit \bar{x} to be $w(\bar{x}) = \min_{x \sim y} w(y)$. The maximum-orbit-weight problem is to estimate $\max_{x \in S} w(\bar{x})$.

Example 1. Let $S = \mathbb{F}^n$ be the linear space of n-tuples over a finite field \mathbb{F}, the weight function w be the Hamming weight $w(x) = \# \{i \mid x_i \neq 0 \}$, G be a subspace of S, the group action be vector addition of elements of G. Then each orbit has size equal to the cardinality of G and the maximum orbit weight coincides with the covering radius of the linear code G.

The σ-game, introduced by Sutner [25], and many of its variations or generalizations have been the research topics of many papers [1–32]. We are interested in the maximum-orbit-weight problem for some special group action that has a close connection with the σ-game on a graph.

Let T be a graph with vertex set $V(T) = \{v_1, \ldots, v_n\}$. Each vector $x = (x_1, \ldots, x_n) \in \mathbb{F}_2^n$ denotes an assignment of 0’s and 1’s to the vertices of T, namely v_i receives value x_i for each i. x is called a configuration of T and can be

**Corresponding author. Tel.: +86 21 27460286.
E-mail address: ykwu@sjtu.edu.cn (Y. Wu).

0304-3975/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.05.033
represented as follows: draw the graph T on the plane and represent v_i by a bullet if $x_i = 1$; or by a circle if $x_i = 0$; or by a circle with question mark inside if the value of x_i is unclear or irrelevant. A move at $v \in V(T)$ of the σ-game played on T toggles the states of all the vertices which are adjacent to v in T. Let α_i be the i-th row of the adjacency matrix of T. It is easy to see that the move at v transforms the configuration of T from x to $x + \alpha_i$. Therefore, the set of all moves of the σ-game on T forms an abelian group A, which is isomorphic to the linear subspace of \mathbb{F}_2^n spanned by $\{\alpha_1, \ldots, \alpha_n\}$.

For any configuration x, we say that v_i is lit in x if $x_i = 1$, and v_i is off in x if $x_i = 0$. The light number of x is the total number of its lit vertices, i.e., the light number is the Hamming weight $w(x)$. For any given configuration x, the minimum light number problem is to play the σ-game aiming to transform x into a configuration y with as few light number as possible. Note that such y belongs to $\overline{x} = x + A$ and $w(y) = w(\overline{x})$. Thus, we are led to the maximum-orbit-weight problem if we concern with the upper bound $L(T) = \max_{x \in \mathbb{F}_2^n} w(\overline{x})$. As mentioned in Example 1, $L(T)$ is the covering radius of the linear code A.

For the σ-game, the group A is abelian and the order of the moves does not matter. For this reason, the maximum-orbit-weight problem is relatively easy to solve. In [30], we consider the σ-game played on a graph that is obtained form a tree with $\ell \geq 2$ leaves by attaching some loops. We show there that any given configuration can be transformed to a configuration with light number no greater than $\left\lfloor \frac{\ell}{2} \right\rfloor$ and all lit vertices are distributed among the leaves of the original tree.

This note is devoted to the maximum-orbit-weight problem for a class of nonabelian groups. If we forbid any move at an off vertex in the σ-game, we come to one of its variations, the so-called lit-only σ-game [4]. In other words, a move of the lit-only σ-game at v_i transforms the configuration of T from x to $x + x_i \alpha_i = x(I + e_i^\top \alpha_i) = xA_i$, where I is the identity matrix and e_i is the i-th unit row vector. Notice that the set of all moves of the lit-only σ-game corresponds to the subgroup of $SL(n, \mathbb{F}_2)$ generated by $\{A_1, \ldots, A_n\}$.

From now on, we use the light number as the weight function w and concern with the maximum-orbit-weight problem for the lit-only σ-game on a graph T. Unless stated otherwise, all moves mentioned below refer to moves in the lit-only σ-game.

Problem 2. Estimate $L'(T) = \max_{x \in \mathbb{F}_2^n} w(\overline{x})$ for a simple graph T with n vertices.

The main result of this paper, as described below, is our tiny first step in tackling Problem 2.

Theorem 3. $L'(T) \leq \left\lfloor \frac{\ell}{2} \right\rfloor$ for any tree T with ℓ leaves.

The direct motivation for Theorem 3 comes from the work of Chuah and Hu on Lie algebras [9,10], in which they addressed Problem 2 for configurations of some special trees, namely Vogan diagrams. During the course of his work on generalizing the results of Chuah and Hu, Chang [6] made implicitly the conjecture that half of the number of leaves should be an upper bound of the maximum orbit weight for the lit-only σ-game on a tree. We remark that after informing Chang of our work in proving Theorem 3, he told us that one of his students also obtained similar results. Though we still have no details of their work, we do hope that our work here and subsequent work in preparation will be of independent interest.

2. Preliminaries

This section is devoted to some definitions and lemmas.

Definition 4.

- $\text{deg}(v)$ is the number of vertices adjacent to a vertex v.
- A vertex v is called a leaf if $\text{deg}(v) = 1$; a stem if $\text{deg}(v) = 2$; and a fork if $\text{deg}(v) \geq 3$.
- A graph is called a tree if it is connected and has no cycle.
- A tree is called a path if each vertex is either a leaf or a stem. We write (v_1, v_2, \ldots, v_n) to represent the path with n vertices v_1, \ldots, v_n and $n - 1$ edges connecting v_i and v_{i+1} for each $i = 1, \ldots, n - 1$.
- A tree T is called star-like if it has exactly one fork. This fork is called the root of T.
- The smallest connected subgraph T' that contains all forks of a tree T is called the inner tree of T.
- Let T be a graph. For any $S \subseteq V(T)$, we use $T - S$ to denote the subgraph of T induced by $V(T) \setminus S$. For subgraphs T_1, \ldots, T_p of T, we write $\bigcup_{i=1}^p T_i$ for the subgraph of T induced by $\bigcup_{i=1}^p V(T_i)$.
• In a σ-game that transforms one configuration to another, if there are t moves at a vertex v, we say that v is used t times.

• Consider a configuration of the path (v_1, v_2, \ldots, v_n). Suppose the vertices $v_p, v_{p+1}, \ldots, v_q$ are lit and all other vertices are off initially, $1 \leq p \leq q \leq n$.

When $q - p$ is even, execution of successive moves at $v_p, v_{p+2}, \ldots, v_q$ changes the states of v_{p-1} and v_{q+1} to lit and leave all other states unchanged. Note that v_{p-1}/v_{q+1} may be a dummy vertex.

This sequence of moves is called an inflate.

When $q - p$ is even and $q - p \geq 2$, successive moves at $v_{p+1}, v_{p+3}, \ldots, v_{q-1}$ transform the states of v_p and v_q to off but leave all other states unchanged.

This sequence of moves is called a deflate.

When $q - p$ is odd, by a series of moves at $v_p, v_{p+2}, \ldots, v_{q-1}$, we find that the state of v_{p-1} becomes lit and that of v_q becomes off and all other states are unaffected. Note that v_{p-1} is dummy when $p = 1$.

This sequence of moves is called a left-shift.

When $q - p$ is odd, making moves consecutively at $v_q, v_{q-2}, \ldots, v_{q+1}$ brings the game into the configuration that the lit vertices are $v_{p+1}, v_{p+2}, \ldots, v_{q+1}$. Note that v_{q+1} is dummy when $q = n$.

This sequence of moves is called a right-shift.

We begin with studying paths and star-like trees.

Let T be the path (v_1, v_2, \ldots, v_n). For each $i = 1, \ldots, n$, let e_i be the configuration of T where v_i is the only lit vertex (see the figure below).

$$e_i : \quad v_1 \cdots v_i-1 v_i v_{i+1} \cdots v_n$$

Lemma 5. Consider the lit-only σ-game on the path $T = (v_1, v_2, \ldots, v_n)$. Any nonzero configuration x of the path T can be transformed without using v_1 to some e_i, $1 \leq i \leq n$. In particular, $\omega(\bar{x}) = 1$.

Proof. For any configuration of T, if $v_i, v_{i+1}, \ldots, v_{j-1}$ is off and v_j is lit, after sequential moves at $v_j, v_{j+1}, \ldots, v_{i+1}$, the vertex v_i is turned lit. In this way, beginning from the very left, each vertex can be turned lit without using v_1 until all vertices on its right are off. That is, for any nonzero configuration x we can find $1 \leq k \leq n$ such that x is equivalent to $e_1 + \cdots + e_k$.

$$e_1 + \cdots + e_k : \quad v_1 \cdots v_k v_{k+1} \cdots v_n$$

When k is odd, $e_1 + \cdots + e_k$ can be deflated to e_{k+1} without using v_1. When k is even, $n - k + 1$ right-shifts transform $e_1 + \cdots + e_k$ without using v_1 into $e_{n-k+2} + \cdots + e_n$,

$$v_1 \cdots v_{n-k+1} v_{n-k+2} \cdots v_n$$

which can then be deflated to e_{n+1-k}.

Lemma 6. Let T be the path (v_1, v_2, \ldots, v_n) and $i \leq \frac{n+1}{2}$. The configuration e_i can be transformed to e_{n+1-i} with each v_j used i times, $j = i, i+1, \ldots, n+1-i$. Correspondingly, e_{n+1-i} can be transformed to e_i with each v_j used i times, $j = i, i+1, \ldots, n+1-i$.

Proof. It follows from an observation of the chart below that records the changes of configuration.
Lemma 7. \(w(\bar{x}) \leq \lceil \frac{\ell}{2} \rceil \) for any nonzero configuration \(x \) of a star-like tree \(T \) with \(\ell \) leaves.

Proof. Let \(v \) be the root of \(T \). Note that \(\ell = \deg(v) \geq 3 \) and we can write \(T = \bigcup_{i=1}^{\ell} P_i \), where \(P_i \) is an induced path of \(T \) with \(v \) as one endpoint, say \(P_i = (v, v_{i1}, \ldots, v_{in_i}) \), \(i = 1, \ldots, \ell \). Without loss of generality, assume \(n_1 = \max(n_1, \ldots, n_\ell) \). For each \(i = 2, \ldots, \ell \) in that order, if the configuration of the path \(P_i \cup P_1 \) is nonzero, we may apply Lemmas 5 and 6 to get a configuration such that the only lit vertex of \(P_i \cup P_1 \) lies in \(P_1 \). Note that, for any \(2 \leq i < j \leq n \), the moves on \(P_j \cup P_1 \) does not affect the states of vertices on \(\{v_{i2}, \ldots, v_{in_i}\} \). Therefore, after this sequence of moves, each lit vertex of \(T \) lies in \(V(P_1) \cup \{v_{21}, \ldots, v_{\ell-1,1}\} \) and there is exactly one lit vertex on \(P_1 \).

![Diagram of tree configuration](image)

By possible moves on \(P_1 \), we can set \(v \) lit, and then a possible move at \(v \) will change the number of lit vertices in \(\{v_{21}, \ldots, v_{\ell1}\} \) to be at most \(\lceil \frac{\ell-1}{2} \rceil \). Finally, by Lemma 5, the number of lit vertices in \(P_1 \) can be reduced to 1 by moves inside \(\{v_{11}, \ldots, v_{1n_1}\} \). Now, we see that \(w(\bar{x}) \leq \lceil \frac{\ell-1}{2} \rceil + 1 = \lceil \frac{\ell}{2} \rceil \). \(\square \)

In order to establish Theorem 3, three more lemmas are prepared below. They are tools to treat the local configurations of a game. For the first one, one vertex is forbidden to be used so that outside states is unaffected by local moves while for the the second and third ones the state of some fixed vertex can be changed taking advantage of outside moves.

Lemma 8. Let \(k \geq 0 \) and let \(T \) be a tree with the following configuration

\[
X : \quad u_1 \quad u_2 \quad \ldots
\]

\[
v_k \quad v_{k-1} \quad \ldots \quad v_0 \quad w_1 \quad w_2 \quad \ldots
\]

where \(u_2 \) and/or \(w_2 \) may be dummy. \(X \) can be transformed to one of the following configurations by moves restricted inside \(\{v_{k-1}, \ldots, v_0, u_1, w_1\} \) only.

(i) \(k \equiv 0 \mod 4 \):

\[
v_k \quad \ldots \quad v_0
\]

(ii) \(k \equiv 1 \mod 4 \):

\[
v_k \quad \ldots \quad v_0
\]

(iii) \(k \equiv 2 \mod 4 \):

\[
v_k \quad \ldots \quad v_0
\]
We prove Theorem 3.

Let T be the path

\[v_k \ldots v_1 v_0 \]

by Lemma 5 and 7. Let T be a tree drawn as below, k

Successive moves at \(u_1, v_0, \ldots, v_{k-1} \) transform the configuration X to

\[X' : \]

Then, sequential moves at \(w_1, v_0, \ldots, v_{k-2} \) turn the configuration \(X' \) into

\[X'' : \]

Repeating the successive moves at \(u_1/w_1, v_0, \ldots, v_{i-1} \) where \(v_i \) is lit, we eventually get to the desired configuration. □

Lemma 9. Let T be a tree drawn as below, \(k = \text{deg}(v) \geq 1 \). Suppose \(v \) is always reset to lit after each move. Then any configuration of T can be transformed to

\[v \]

where at most \(\lfloor k/2 \rfloor \) vertices of \(\{v_1, \ldots, v_k\} \) are lit.

Proof. Since \(v \) is always reset to lit, any configuration of \((v, v_{i1}, \ldots, v_{in}) \) can be transformed to \((1, ?, 0, \ldots, 0) \). Finally, if necessary, a move at \(v \) reduces the number of lit vertices in \(\{v_1, \ldots, v_k\} \) to be at most \(\lfloor k/2 \rfloor \). □

Lemma 10. Let T be the path \((v_1, v_2, \ldots, v_n) \) and let \(1 \leq p \leq n \) be a number such that \(n - p \) is even. Suppose \(v_p \) is always reset to lit after each move. Then any configuration of T can be transformed to \(v_p \).

Proof. By Lemma 9, any configuration of T can be transformed to either \(e_p \) or \(e_p + e_{p+1} \). To conclude the proof, it is enough to show that \(e_p \sim e_p + e_{p+1} \). For each \(i = p + 1, p + 2, \ldots, n \), we define \(X_i = \)

\[\begin{cases} e_i + e_p, & \text{when } i - p \text{ is odd;} \\ e_i + e_p + e_{p-1}, & \text{when } i - p \text{ is even.} \end{cases} \]

Successive moves at \(v_i, v_{i-1}, \ldots, v_p \) transform the configuration \(X_i \) to \(X_{i+1} \).

Hence, we have \(e_p + e_{p+1} = X_{p+1} \sim \cdots \sim X_n \). Finally, the sequence of moves at \(v_n, v_{n-1}, \ldots, v_p \) gives \(X_n \sim e_p \). This ends the proof. □

3. **Proof of Theorem 3**

Proof. We prove Theorem 3 by induction on the number of vertices of T. Let \(T' \) be the inner tree of T. By virtue of Lemmas 5 and 7, we need only deal with the case that \(T' \) has at least two vertices. Let \(v \) be a leaf of \(T' \). Then, we have \(\text{deg}(v) = k \geq 3, \ell \geq k + 1 \), and that T can be drawn as
where $\text{deg}(u) \geq 3$, $(v, v_{i_1}, v_{i_2}, \ldots, v_{i_n})$ is an induced path of T with n_i edges, $n_1 \geq 0$, $n_i \geq 1$, $\forall i = 2, \ldots, k$. When $n_1 = 0$, we identify v_{i_n} with v.

Suppose that the given configuration x is equivalent to one for which all vertices on the left side of v are off. Since $T_1 = \bigcup_{i=2}^{k} (v, v_{i_1}, \ldots, v_{i_n})$ is a tree with $k - 1$ leaves, by Lemmas 5 and 7 we know that further moves inside $V(T_1)$ result in a configuration of T where no more than $\lceil \frac{k-1}{2} \rceil$ lit vertices can be found in $V(T_1)$ and at most one vertex of $V(T) \setminus V(T_1)$ is switched from off to lit. This shows that $w(\bar{x}) \leq \lceil \frac{k-1}{2} \rceil + 1 \leq \lceil \frac{k}{2} \rceil$ and hence we are done.

Consequently, we are allowed to assume that we are working with a configuration x for any of whose equivalent configurations there always exists a lit vertex on the left side of v. This means that v can always be set to lit by moves at some vertices on its left during the play. By Lemma 9, the configuration can be transformed to

where at most $\lceil \frac{k-1}{2} \rceil$ elements of $\{v_2, \ldots, v_k\}$ are lit.

For each vertex v, v_{i_1}, \ldots, v_{i_n} in that order, if there exists a lit vertex on its left, then it can be set to off by moves at some sequence of vertices on its left; otherwise, we simply have $w(\bar{x}) \leq \lceil \frac{k-1}{2} \rceil + 1 \leq \lceil \frac{k}{2} \rceil$. Therefore, to prove the theorem, it suffices to consider the case that the configuration x can be transformed to

where at most $\lceil \frac{k-1}{2} \rceil$ vertices from $\{v_2, \ldots, v_k\}$ are lit. To deal with this configuration, we distinguish three cases.

Case 1: all vertices v_{i_2}, \ldots, v_{i_k} are off. Let $T_2 = T - \bigcup_{i=1}^{k} \{v, v_{i_1}, \ldots, v_{i_n}\}$, which has $\ell - k + 1$ leaves. By induction, we can make a sequence of moves on T_2 so that the resulting configuration has at most $\lceil \frac{\ell - k + 1}{2} \rceil$ lit vertices in $V(T_2)$ and the only possible vertex outside T_2 which may become lit again is v_{i_n}. This leads to $w(\bar{x}) \leq \lceil \frac{\ell - k + 1}{2} \rceil + 1 \leq \lceil \frac{\ell}{2} \rceil$.

Case 2: $k \geq 4$ and there exist one lit vertex v_{i_1} and one off vertex v_{j_1}, $2 \leq i, j \leq k$. Let $T_3 = T - \{v_{i_1}, \ldots, v_{i_n}, v_{j_1}, \ldots, v_{j_n}\}$. T_3 has $\ell - 2$ leaves. By induction, \bar{x} is equivalent to a configuration that has at most $\lceil \frac{\ell - 2}{2} \rceil$ lit vertices in $V(T_3)$ via a series of moves restricted in $V(T_3)$. Note that any move at a vertex from $V(T_3)$ leaves unchanged the number of lit vertices in $\{v_{i_1}, \ldots, v_{i_n}, v_{j_1}, \ldots, v_{j_n}\}$. Consequently, $w(\bar{x}) \leq \lceil \frac{\ell - 2}{2} \rceil + 1 = \lceil \frac{\ell}{2} \rceil$.

Case 3: $k = 3$ and one of v_{i_1} and v_{i_2} is lit, the other is off.

Subcase 3.1: n_2 or n_3 is even. Since we have assumed that there always exists a lit vertex on the left side of v, we can apply Lemma 10 to the path $(v_{n_2}, v_{i_2}, v_{i_1}, v, v_{j_1}, v_{j_2})$, followed by the transformations described in the paragraph immediately before Case 1, and then go back to Case 1.

Subcase 3.2: both n_2 and n_3 are odd. Without loss of generality, we assume that $n_2 \geq n_3$. Furthermore, because there always exists a lit vertex on the left side of v, we can utilize certain series of moves on the left of v to make v lit, and then make a move at v to swap the states of v_{i_2} and v_{i_3} whenever needed. So we can assume that v_{i_2} is lit when n_1 is even; and v_{i_3} is lit when n_1 is odd. Proceeding with those transformations described in the paragraph immediately before Case 1 and then using the induction hypothesis, we may assume that there are at most $\lceil \frac{\ell - 2}{2} \rceil$ lit vertices in $V(T) \setminus \bigcup_{i=1}^{n_1} \{v, v_{i_1}, \ldots, v_{i_n}\}$ and assume again that all vertices on the right of u are off with the only possible exceptions of v_{i_2}, v_{i_3} and v_{i_n}.

Subcase 3.2.1: v_{i_n} is off. We have $w(\bar{x}) \leq \lceil \frac{\ell - 2}{2} \rceil + 1 = \lceil \frac{\ell}{2} \rceil$.

Subcase 3.2.2: v_{i_n} is lit. By Lemma 8, the configuration can be transformed by moves inside $\{v_{i_2}, v_{i_3}, v, v_{i_1}, \ldots, v_{i,n_1-1}\}$ to one of the following cases:

(i) $n_1 \equiv 0 \mod 4,$

(ii) $n_1 \equiv 1 \mod 4,$

(iii) $n_1 \equiv 2 \mod 4,$

(iv) $n_1 \equiv 3 \mod 4.$
(ii) \(n_1 \equiv 1 \mod 4 \),

\[
\begin{array}{c}
\cdots \bullet \quad u \quad v_{1n_1} \cdots \quad v_{11} \quad v \\
\cdots \circ \quad v_{21} \quad v_{22} \cdots \quad v_{2n_2}
\end{array}
\]

(vii) \(n_1 \equiv 2 \mod 4 \),

\[
\begin{array}{c}
\cdots \bullet \quad u \quad v_{1n_1} \cdots \quad v_{11} \quad v \\
\cdots \circ \quad v_{31} \quad v_{32} \cdots \quad v_{3n_3}
\end{array}
\]

(iv) \(n_1 \equiv 3 \mod 4 \),

\[
\begin{array}{c}
\cdots \bullet \quad u \quad v_{1n_1} \cdots \quad v_{11} \quad v \\
\cdots \circ \quad v_{31} \quad v_{32} \cdots \quad v_{3n_3}
\end{array}
\]

where \(v_{22} \) or \(v_{32} \) is dummy if \(n_2 = 1 \) or \(n_3 = 1 \), respectively. Note that the apparent interchange of the branches for \(\{v_{21}, \ldots, v_{2n_2}\} \) and \(\{v_{31}, \ldots, v_{3n_3}\} \) when \(n_1 \) is odd is because of our assumption that \(v_{31} \) is initially lit if and only if \(n_1 \) is odd.

For case (i), successive moves at \(v_{21}, v_{22}, \ldots, v_{2n_2} \) reduce the number of lit vertices in \(\{v, v_{21}, \ldots, v_{2n_2}\} \) to be 1 and leave all other states unchanged.

For case (ii), successive moves at \(v \) and \(v_{31} \) transform the configuration to

\[
\begin{array}{c}
\cdots \bullet \quad u \quad v_{1n_1} \cdots \quad v_{11} \quad v \\
\cdots \circ \quad v_{31} \quad v_{32} \cdots \quad v_{3n_3}
\end{array}
\]

As \(n_2 \geq n_3 \), Lemma 6 guarantees that there is a sequence of moves on the path \(P = (v_{3n_3}, \ldots, v_{31}, v, v_{21}, \ldots, v_{2n_2}) \) which uses \(v_{n_3} \) times and transforms the configuration of \(P \) to have only one lit state at \(v_{2,n_2-n_3+1} \). Recall that \(n_3 \) is odd and so the final state of \(v_{11} \) is off.

For case (iii), if \(n_3 = 1 \) then a move at \(v_{21} \) reduces the number of lit vertices in \(\{v, v_{21}, \ldots, v_{2n_2}\} \) to 1. Otherwise, we have \(n_2 \geq n_3 \geq 3 \), and a move at \(v_{32} \) transforms the configuration to

\[
\begin{array}{c}
\cdots \bullet \quad u \quad v_{1n_1} \cdots \quad v_{11} \quad v \\
\cdots \circ \quad v_{21} \quad v_{22} \quad v_{23} \cdots
\end{array}
\]

Clearly, three successive right-shifts to the path \((v_{3n_3}, \ldots, v_{31}, v, v_{21}, \ldots, v_{2n_2}) \) will set the states of \(v_{31}, v_{32}, v_{33} \) all off. The fact that \(n_2 \geq 2 \) guarantees that \(v \) is used exactly twice in this process and so the state of \(v_{11} \) remains off. By Lemma 5, the number of lit vertices in \(\{v, v_{21}, \ldots, v_{2n_2}\} \) can be further reduced to 1 by moves restricted to \(\{v_{21}, \ldots, v_{2n_2}\} \).

For case (iv), a move at \(v_{21} \) reduces the number of lit vertices in \(\{v, v_{21}, \ldots, v_{2n_2}\} \) to 1.

For all these cases (i), (ii), (iii) and (iv), we have \(w(\bar{x}) \leq \left\lceil \frac{L-2}{2} \right\rceil + 1 = \left\lceil \frac{L}{2} \right\rceil \).

Since we have verified \(w(\bar{x}) \leq \left\lceil \frac{L}{2} \right\rceil \) for all initial configurations \(x \), the result follows from the principle of induction. \(\square \)
4. Concluding remarks

We wrote a computer program which enumerates the whole orbit of any input configuration. It reports that $w(\overline{\bar{x}}) = 2$ for the two configurations x depicted above. Therefore, the bound $\lceil \frac{\ell}{2} \rceil$ in Theorem 3 cannot be relaxed to $\lfloor \frac{\ell}{2} \rfloor$. Many other examples have been found for which $w(\overline{\bar{x}}) = \frac{\ell}{2} + 1$. It would be interesting to determine all those extremal configurations.

In Section 1, we mention that the lit-only σ-game corresponds to a group action and list a set of generators of that group. We wonder whether a better understanding of the structure of that group would provide some tools to estimate $w(\overline{\bar{x}})$. When the game is played on the line graph of a tree, Wu has found that this group is S_n, where n is the number of vertices of the tree, and further deduced some related results [31].

For a given tree, we can add loops to some vertices of it and thus make each of them be adjacent to itself. We make here the conjecture that our Theorem 3 for trees still holds for the wider class of graphs thus obtained. Note that for this general situation we do not necessarily have a group action as the process of playing the game may be irreversible. We refer to [13,14] and the references therein for an interesting discussion on the lit-only σ-game on a graph where all vertices have a loop.

Acknowledgements

We thank Gerard Chang, whose plenary talk on Vogan diagrams in the Third Pacific Rim Conference on Mathematics aroused our interest in lit-only σ-game. We are also grateful to the editor and referees. Without their advisory suggestion and kind help, this paper could not appear here in the current form.

The second author was supported by National Natural Science Foundation of China (Grant 10301021) and Science Technology Commission of Shanghai Municipality (Grant 06ZR14048).

References

[31] Y. Wu, Lit-only σ-game on a line graph, Preprint.