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Abstract

A digraph G, whose adjacency matrix A satis®es Ak � Jn ÿ In, where Jn is the n� n
matrix of all ones, is called a digraph with unique paths of ®xed length k, or simply a

UPFL-k digraph. We prove that all the UPFL-k digraphs of the same order are co-

spectral and have the same number of elementary cycles of length l for each l6 k. We

also provide some techniques helpful for computing the spectrum and the numbers of

short elementary cycles of a UPFL digraph, including the determination of the numbers

of reentrant paths of every ®xed length in a UPFL digraph. At the end of the paper we

point out an interesting relation between the number of elementary cycles of the UPFL

digraphs and the number of circular sequences with equal length and period. Our

theorems generalize corresponding results of Lam and Van Lint. Ó 1999 Elsevier

Science Inc. All rights reserved.
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1. Introduction

We follow Tutte [5] for most of our graph theory terminology.
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A path in a digraph G is a sequence P � �D1; . . . ;Dn� of n darts Dj of G, not
necessarily all distinct. It is required that the head of Dj shall be the tail of Dj�1

whenever 16 j < n. The number n is the length l�P� of P. A path is reentrant if
its origin and terminus coincide, and this common vertex is called the base
point of P. A path P is head-simple (tail-simple) if no vertex occurs twice as
head (tail) of a term of it. It is simple if it is both head-simple and tail-simple.
Sometimes, the base point of a simple reentrant path is of no concern, and we
use the term of an elementary cycle to indicate the set of darts in it.

In [3], Lam and Van Lint proposed a problem as a generalization of the well
known Friendship theorem. The question is to determine, for each given k,
digraphs for which every ordered pair of its vertices p; q �p 6� q� has a unique
path of length k joining p to q and no vertex has a path of length k to itself.
They called such a digraph a digraph with unique paths of ®xed length (k). We
name it a UPFL-k digraph. The de®nition of the UPFL-k digraph leads us to
consider the matrix equation

Ak � Jn ÿ In; �1:1�
where Jn is the n� n matrix of all one's, In is the identity matrix of order n, and
A is an unknown nonnegative integer matrix. We remark that the nonnegative
integer solutions A of (1.1) are in fact �0; 1� matrices. Consequently, when
speaking of a solution A of (1.1), we shall always mean an n� n �0; 1� matrix
A. There is a simple connection between this equation and the concept of
UPFL-k digraph. The adjacency matrix of a UPFL-k digraph with n vertices is
a solution to (1.1); conversely, if A is a solution to (1.1), then its digraph is a
UPFL-k digraph of order n. In other words, to determine all the nonisomor-
phic UPFL digraphs amounts to searching for all the nonpermutation-similar
solutions of (1.1). Some results relevant to this problem of Lam and Van Lint
can be found in [3,4,7±10].

The problem can be tackled in two directions. On the one hand, we can try
to construct as many UPFL digraphs as possible. On the other hand, we can
try to ascertain more and more characteristic properties a UPFL digraph must
possess, and so narrow the range of possible UPFL digraphs. For the second
direction, a basic result is that a UPFL-k digraph on n > 1 vertices can exist
only if k is odd and n � dk � 1 for some nonnegative integer d [3]. Since a one
vertex UPFL digraph is trivial, we will only consider the UPFL-k digraphs on
n vertices for some odd k and n � dk � 1 > 1 throughout the paper. As for the
®rst direction, we have constructed a class of UPFL digraphs [9], which con-
tains the UPFL digraphs described by Lam and Van Lint [3] as a special
subfamily. We note that for any ®xed order n, the number of nonisomorphic
UPFL-k digraphs in this class is u�k� [8,9], where u�k� is the number of positive
integers less than k that are relatively prime to k.

In this paper, we tackle the problem in the second direction. We present two
results which generalize the corresponding ones of Lam and Van Lint. Roughly
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speaking, we claim the uniqueness of two sets of parameters, the eigenvalues
and the numbers of short elementary cycles of the UPFL-k digraphs of ®xed
order n. But for each odd k and each n � dk � 1, a UPFL-k digraph of order n
has been found [3]. So these parameters really make sense and can be deter-
mined completely. In fact, we will give in Section 4 a sketch of a procedure to
compute them. Therefore our theorems provide some characteristic parameters
of the UPFL digraphs.

In [3], Lam and Van Lint observed that all the UPFL-3 digraphs of the same
order must be co-spectral. We ®nd that much more can be said. Let us state
here:

Theorem 1.1. All UPFL-k digraphs of the same order n must be co-spectral.

A ®sh is de®ned to be an elementary 2-cycle. It is proved in [3] that all the
UPFL-3 digraphs of the same order have the same number of ®shes. We make
the comment that this property plays a fundamental role in the work of Lam
and Van Lint in determining all the UPFL-3 digraphs of order 9 [3]. Following
a suggestion by Xinmao Wang [6], we use M�obius inversion to deduce Theo-
rem 1.2 from Theorem 1.1.

Theorem 1.2. For each l6 k, the number of elementary cycles of length l is the
same for all UPFL-k digraphs of the same order.

Of course, this strengthens the result of Lam and Van Lint about ®shes.
Theorem 1.1 also enables us to get the exact values of the numbers of re-

entrant paths of every ®xed length in UPFL digraphs in a quite simple manner.
We will present this result in Section 4 as a step in computing the number of
short elementary cycles. Finally, we will establish an interesting result which
relates the number of elementary cycles of a UPFL digraph to the number of
circular sequences of equal length and period, i.e., the number of primitive
circular sequences.

Let us conclude this section by explaining some notations. If p is a prime
number and pr j a but pr�1-a then we write prka. Let B and C be two sets of
numbers and h a number. We write B � C (mod h) to mean
fx �mod h� j x 2 Bg � fy �mod h� j y 2 Cg and use hB to denote the multiset in
which every element of B is repeated h times. The following are some other
conventions.

B� C :� fxy j x 2 B; y 2 Cg; h� B :� fhx j x 2 Bg;
ÿB :� �ÿ1� � B; B� C :� fx� y j x 2 B; y 2 Cg;
Ms :� fx j 0 < x < s; gcd�x; s� � 1g:
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2. Proof of Theorem 1.1

We only need to prove that all the solutions A to (1.1) are co-spectral, or the
spectrum of A is uniquely determined by the relation (1.1).

Suppose Ak � Jn ÿ In. It is known that d is an eigenvalue of A [3]. Note in
addition that k is odd and the eigenvalues of J ÿ I are nÿ 1 � dk with mul-
tiplicity 1 and ÿ1 with multiplicity nÿ 1. Hence we can list the spectrum of A
as d;ÿn1; . . . ;ÿnnÿ1, where the ni's are kth roots of unity.

Let the characteristic polynomial of A be

f �x� � det�xI ÿ A� � �xÿ d��x� n1� � � � �x� nnÿ1�:
Since A is a matrix on the integer ring Z, we have f �x� 2 Z�x�, the ring of
polynomials over Z in the indeterminate x. Then the remainder theorem [2, p.
125] implies f �x� � �xÿ d�q�x� � f �d� � �xÿ d�q�x� for some unique q�x� �
xnÿ1 ÿ a1xnÿ2 � � � � � �ÿ1�nÿ1anÿ1 2 Z�x�. This gives

�x� n1� � � � �x� nnÿ1� � q�x� � xnÿ1 ÿ a1xnÿ2 � � � � � �ÿ1�nÿ1anÿ1 2 Z�x�;

and hence s�x� � �xÿ n1� � � � �xÿ nnÿ1� � xnÿ1 � a1xnÿ2 � � � � � anÿ1 2 Z�x� fol-
lows.

Let s�x� � s1�x� � � � st�x� be the factorization of s�x� as a product of irre-
ducible polynomials in Z�x�. Suppose s1�x� � �xÿ g1� � � � �xÿ gq�. Then g1 is a
primitive mth root of 1 for some divisor m of k. (The term divisor always means
positive divisor here and in what follows.) Let Wm be the set of all mth primitive
roots of 1 and km�x� �

Q
g2Wm
�xÿ g�. It is well known that km�x�, the so called

cyclotomic polynomial, is an irreducible polynomial in Z�x� of degree u�m� [2,
p. 148, Ex. 1, p. 264±265]. Since g1 is a common root of km�x� and s1�x�, Eu-
clid's algorithm [2, p. 144, Ex. 11] tells us that g1 is also a root of
gcd�s1�x�; km�x��. But both s1�x� and km�x� are monic and irreducible. It then
follows that s1�x� � km�x� and thus the set fg1; . . . ; gqg is exactly the set Wm. We
repeat this argument for s2�x�; . . . ; st�x�. Thus there are nonnegative integers
cm;m j k, such that the spectrum of A consists of a single d together with cm

copies of ÿWm; where m ranges over all divisors of k.
Write k as pe1

1 � � � per
r where p1 < � � � < pr are primes. Then the number of

divisors of k is s�k� � �1� e1� � � � �1� er�. The preceding results indicate that
our task now is reduced to investigating the s�k� numbers cm's for all divisors m
of k.

Let us look at Eq. (1.1) again.
Given a divisor of k, say s, we can write (1.1) in the form �As�k=s � J ÿ I .

Because As is a nonnegative matrix and all the diagonal entries of J ÿ I are
zeros, it immediately follows that

Tr As � 0: �2:1�

148 Y. Wu et al. / Linear Algebra and its Applications 293 (1999) 145±158



This observation gives us s�k� relations, one for each divisor of k. Recall that
the trace of a matrix is equal to the sum of its eigenvalues. Thus if we let
T s

m �
P

x2wm
xs, then (2.1) implies that

ÿ
X
mjk

T s
mcm � ds � 0

holds for all divisors s of k. Here the fact that s must be odd has been used. We
can display these s�k� relations in matrix form as

�T s
m� sjk

mjk
�cm�mjk � �ds�sjk: �2:2�

We pause to clarify the notations. Denote the three matrices in (2.2) by
T �k�;C�k� and D�k�. For the vector C�k�, we de®ne its subscript vector to be
SC�k� � �m�mjk where the number m appears in the ith position of SC�k� i� cm

appears in the ith position of C�k�. Similarly we can de®ne the superscript
vector SD�k� of D�k�. For de®niteness, we ®x the notations here by requiring
that the vectors C�k� and D�k� have, respectively, the subscript vector

SC�k� � �p1; p2
1; . . . ; pe1

1 ; 1�T 
 � � � 
 �pr; p2
r ; . . . ; per

r ; 1�T;
and superscript vector

SD�k� � �1; p1; . . . ; pe1

1 ; �T 
 � � � 
 �1; pr; . . . ; per
r ; �T;

where we have used the notation aT for the transpose of a vector a and 
 for
the Kronecker product (also called the tensor product). After giving the explicit
de®nitions of C�k� and D�k�, there remains only one choice for the de®nition of
the matrix T �k� � �T s

m� with rows indexed by s and columns by m such that
(2.2) is in conformity with the s�k� relations above. In fact, the �i; j� position of
T �k� should contain the element T s

m if the ith position of SD�k� is occupied by s
and the jth position of SC�k� is occupied by m.

Let us continue with the proof. At this point, we see that the spectrum of A
will only depend on (1.1) provided that T �k� can be proved to be nonsingular.
We shall demonstrate that this is indeed the case.

First, let us set up an auxiliary result.

Lemma 2.1. If m and b are relatively prime integers, then Wm � Wb � Wmb.

Proof. We deduce from the Chinese remainder theorem that

b�Mm � m�Mb � Mmb �mod mb�:
So for any �mb�th root of 1, say g,

fgbx j x 2 Mmg � fgmx j x 2 Mbg � fgx j x 2 Mmbg: �2:3�

Y. Wu et al. / Linear Algebra and its Applications 293 (1999) 145±158 149



In particular, if we take g to be a primitive �mb�th root of 1, then gb is a
primitive mth root of 1 and gm a primitive bth root of 1, and thus (2.3) becomes
Wm � Wb � Wmb. �

This lemma implies that T s
mb � T s

mT s
b when gcd�m; b� � 1. But for any t prime

to m, we can deduce from t �Mm � Mm �mod m� that T qt
m � T q

m. Hence we get

T s
m � T s

pg1

1

� � � T s
pgr

r
� T

p
f1
1

pg1

1

� � � T pfr
r

pgr
r
;

where m � Qr
i�1 pgi

i and s � Qr
i�1 pfi

i . This, in turn, implies that

T �k� � T �pe1

1 � 
 � � � 
 T �per
r �: �2:4�

To proceed further, notice that it is a simple property of the Kronecker
product that

�B
 C��D
 E� � �BD� 
 �CE�:
So T �k� is nonsingular if and only if T �pei

i � is nonsingular for i � 1; . . . ; r.
Now the proof of Theorem 1.1 can be completed by using the following

lemma.

Lemma 2.2. Let p be a prime and e P 0: Then T �pe� is nonsingular.

Proof. We start by collecting here some identities to be used later. The ®rst one
is

T pj

pi � pjT 1
piÿj for i P j: �2:5�

The reason is that pj �Mpi � pjMpiÿj �mod piÿj� for i P j.
The second is very simple:

T pj

pi � u�pi� for i6 j: �2:6�

Here are some others. Let xi be a primitive �pi�th root of 1 for i � 1; 2; . . . ; e.
Then we have

T 1
1 � T 1

p � 1� x1 � � � � � xpÿ1
1 � 1ÿ xp

1

1ÿ x1

� 0; �2:7:1�

T 1
1 � T 1

p � T 1
p2 � 1� x2 � � � � � xp2ÿ1

2 � 1ÿ xp2

2

1ÿ x2

� 0; �2:7:2�

..

.

T 1
1 � T 1

p � � � � � T 1
pe � 1� xe � � � � � xpeÿ1

e � 1ÿ xpe

e

1ÿ xe
� 0: �2:7:e�
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Clearly T 1
1 � 1. So (2.7.1) gives

T 1
p � ÿ1: �2:8�

By subtracting (2.7.i) from (2.7.i� 1) in turn for i � 1; . . . ; eÿ 1, we get

T 1
p2 � T 1

p3 � � � � � T 1
pe � 0: �2:9�

Finally, combining (2.5) with (2.8) yields

T pj

pj�1 � ÿpj; �2:10�

while by (2.5) together with (2.9) we obtain

T pj

pj�a � 0 for a P 2: �2:11�
We are now ready to evaluate the determinant of T �pe�. Employing (2.6),

(2.10) and (2.11), we know that T �pe� is of the form

ÿ1 0 0 � � � 0 1
p ÿ 1 ÿ p 0 � � � 0 1
p ÿ 1 p�p ÿ 1� ÿ p2 � � � 0 1

..

. ..
. ..

. . .
. ..

. ..
.

p ÿ 1 p�p ÿ 1� p2�p ÿ 1� � � � ÿ peÿ1 1
p ÿ 1 p�p ÿ 1� p2�p ÿ 1� � � � p�eÿ1��p ÿ 1� 1

0BBBBBBB@

1CCCCCCCA; �2:12�

where the ith row corresponds to piÿ1, while the jth column corresponds to pj

when j6 e and the �e� 1�th column the number 1.
Observe that pj �Pjÿ1

i�0 pi�p ÿ 1� � 1. This implies that all but one row sum
of T �pe� equals zero, the only exception being the last row, which sums to pe.
Hence if we add the columns 1; 2; . . . ; e to the last column, then T �pe� becomes

T �

ÿ1 0 0 � � � 0 0
p ÿ 1 ÿ p 0 � � � 0 0
p ÿ 1 p�p ÿ 1� ÿ p2 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

p ÿ 1 p�p ÿ 1� p2�p ÿ 1� � � � ÿ peÿ1 0
p ÿ 1 p�p ÿ 1� p2�p ÿ 1� � � � peÿ1�p ÿ 1� P e

0BBBBBBB@

1CCCCCCCA: �2:13�

So det T �pe� � det T � �ÿ1�epe�e�1�=2 6� 0, and thus the nonsingularity of T �pe�
is established. �

3. Proof of Theorem 1.2

Let l6 k and G be a UPFL-k digraph of order n. A parameter of G is called
characteristic if its value is unchanged when G varies over all UPFL-k digraphs
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of order n. Our aim then is to show that the number of elementary cycles of
length l in G, which shall be denoted by El, is characteristic.

Let A be the adjacency matrix of G. Theorem 1.1 asserts that the spectrum
of A is a set of characteristic parameters of G. Consequently, we have Tr As is
characteristic for each s. We remark that Tr As is just equal to the number of
reentrant paths of length s in G.

For two paths P and Q such that the terminus of P coincides with the origin
of Q, there is a path PQ formed by writing down the terms of P, in their order
in P, and continuing with the terms of Q, in their order in Q. We say that PQ is
the product of P and Q in that order.

The following is a special property of the UPFL-k digraphs.

Lemma 3.1. Assume R1 and R2 are reentrant paths of G with the same base point
v. If l�R1� � l�R2�6 k and l�R2�P l�R1�, then there is a reentrant path R3 with
base point v such that R2 � R1R3.

Proof. The case l�R2� � 0 is trivial and thus we may let l�R2� > 0. Pick a path P
of length k ÿ l�R1� ÿ l�R2� with origin v and terminus some vertex w. We can
achieve this, for example, just by traversing along the darts in R2. Since the
number of paths joining every ordered pair of vertices in G with length k is
either zero or one, we know that the two paths R1R2P and R2R1P from v to w
must be the same. Hence, comparing the ®rst l�R1� darts in R1R2P and R2R1P
gives the result. �

For any elementary cycle R of length l and any number t, one can derive l
distinct reentrant paths of length lt by choosing one of the l vertices on R as the
base point and then moving along the darts of R t times. We assert that if
m6 k, then all the reentrant paths of length m can be thus generated. If this is
not the case, then there is a reentrant path R0 � �D1; . . . ;Dm� with length m not
greater than k such that it has two darts Di and Dj with a common tail v but
di�erent heads. Let R1 � �Di;Di�1; . . . ;Djÿ1� and R2 � �Dj;Dj�1; . . . ;Diÿ1�, in
which the subscripts are computed modulo m. Then they are both reentrant
paths with base point v. Further, we have l�R1� � l�R2� � m6 k. So it follows
from Lemma 3.1 that Di and Dj must have the same head, which is a con-
tradiction.

In view of the above analysis, we have Tr As �Pljs lEl for s6 k. Now the
classical M�obius inversion formula [2, p. 145, Ex. 18] says that

El � 1

l

X
sjl

l
l
s

� �
Tr As; �3:1�

holds for l6 k. Accordingly, El is characteristic for each l6 k. This ®nishes the
proof of Theorem 1.2. �
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4. Computations

For feasible k and n, once the values of such characteristic parameters as the
eigenvalues and the numbers of elementary cycles of every ®xed length l not
greater than k are known, then only the digraphs with these parameter values
need be examined when searching for UPFL digraphs. Sometimes this may
help a lot as [3] has shown. This section will describe some techniques for
computing these parameters.

In the former two sections, we have acquired some knowledge about these
parameters of a UPFL-k digraph of order n on condition that there really exists
one such digraph. However, the existence question has been settled a�rma-
tively [3]. Therefore we certainly can apply those results hereafter.

We shall ®rst carry out the calculation of the number of reentrant paths of
some ®xed length in any UPFL digraph. Denote the number of reentrant paths
of length l in a digraph G by Nl�G�. For a digraph G with adjacency matrix A,
let Gl be the digraph with adjacency matrix Al. It is not di�cult to see that
Nl�G� � N1�Gl�. Let G be a UPFL-k digraph of order n. According to our
analysis at the beginning of Section 3, we can conclude from Theorem 1.1 that
Nl�G� is characteristic. Hence we only need to calculate these parameters for a
particular UPFL- k digraph of order n, and they are surely the common pa-
rameters for all UPFL-k digraphs of order n. We do this by choosing G to be
the digraph with the adjacency matrix A of order n � dk � 1 that was given in
[3, Section 4]. That is, A is the matrix that has �0; 1; 1; . . . ; 1; 0; 0; . . . ; 0� as its
®rst row where there are d consecutive ones after the initial 0 and then followed
by �nÿ 1ÿ d� 0's and every successive row is obtained by shifting the row
before it by d positions to the left. From [7, Section 3], we have:

(i) If l is odd, then Gl is the digraph on Zn with darts Dij directed from
i �mod n� to �ÿdli� j� �mod n� for i � 1; . . . ; n and j � 1; . . . ; dl.

(ii) If l is even, then Gl is the digraph on Zn with darts Dij directed from i
�mod n� to �dliÿ j� �mod n� for i � 1; . . . ; n and j � 0; . . . ; dl ÿ 1.

Let us denote 1ÿ �ÿd�gcd�k;l�
by g. Note that

g � gcd�1ÿ �ÿd�k; 1ÿ �ÿd�l�: �4:1�

Now we shall go to see what is the value of Nl�G� in case of odd l. Note that
(i) asserts

Nl�G� � N1�Gl�
� Cardf�i; j� j 16 i6 n; 16 j6 dl; i � ÿdli� j �mod n�g

� Cardf�i; j� j 16 i6 1ÿ �ÿd�k; 16 j6 dl;

�1ÿ �ÿd�l�i � j �mod �1ÿ �ÿd�k��g:
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By noting (4.1), we have Nl�G�=g is just the number of multiples of g in the
set f1; 2; . . . ; dlg.However, dl � 1 � 1ÿ �ÿd�l is divisible by g. It then follows

Nl�G� � g
1ÿ �ÿd�l

g

 
ÿ 1

!
� dl ÿ dgcd�k;l�: �4:2�

In the case that l is even, we deduce from (ii) in a similar way as above that

Nl�G� � Card �i; j� j 1
n

6 i6 1ÿ � ÿ d�k; 06 j6 dl ÿ 1;

�1ÿ �ÿd�l�i � ÿ j �mod �1ÿ � ÿ d�k��
o
:

Using (4.1) again, we ®nd at this time that Nl�G�=g equals to the number of
multiples of g in the set f0;ÿ1; . . . ; 1ÿ dlg. But 0 and 1ÿ dl � 1ÿ �ÿd�l are
both multiples of g. So

Nl�G� � g
dl ÿ 1

g

�
� 1

�
� dl � dgcd�k;l�: �4:3�

Combining (4.2) and (4.3), we infer that it holds for all l and all UPFL-k
digraphs of order n � dk � 1 that

Nl�G� � dl � �ÿ1�ldgcd�k;l�: �4:4�
Substituting (4.4) into (3.1), we obtain an expression for El; l6 k, for any

UPFL-k digraph of order n, namely

El � hl � gl; �4:5�
where

hl � 1

l

X
sjl

l
l
s

� �
ds and gl � 1

l

X
sjl

l
l
s

� �
�ÿ1�sdgcd�k;s�:

Let us examine the El's in more detail. We always use l to mean a number
not greater than k in what follows.

(1) If l j k, then since k is odd, one can see that gl � ÿhl and thus it holds
El � 0. Of course this also follows from (2.1).

(2) If l is odd and l does not divide k. Let l � gcd�k; l�qf1

1 � � � qft
t , where the

qi's are distinct odd primes and fi > 0 for i � 1; . . . ; t. The set fs j s j lg can be
divided into three parts. The ®rst part consists of those s with q2

1 j l=s. Clearly
the numbers in it contribute nothing to the summation in the expression of gl.
The second part includes those s with q1kl=s, and the third includes those s for
which q1 does not divide l=s. We can establish a bijection between the numbers
in the second part and those in the third part. In fact, we just let a number x in
the second part pair with the number q1x in the third part. One can check for
the above mentioned x and q1x that
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gcd�k; x� � gcd�k; q1; x�; l
l
x

� �
� ÿl

`

q1x

� �
; �ÿ1�x � �ÿ1�q1x

:

�4:6�
Hence the contributions of x and q1x in gl cancel each other. Therefore we ®nd
that

El � hl: �4:7�
(3) Suppose 4 j l. It is not di�cult to see that we can replace q1 by 2 in the

above argument to yield (4.7) again.
(4) Finally, we consider the case 2kl. Let l � 2j. We use the same technique

as in case 3. The ®rst two identities of (4.6) remain valid, but the third becomes

�ÿ1�x � ÿ�ÿ1�2x
:

So 2x and x have the same contribution to gl. It then follows that

gl � 2
1

2j

� � X
sjj

l
2j
s

� �
�

 
ÿ 1�sdgcd�k;s�

!
� ÿgj:

Since j is odd, we can determine gj from the preceding results. Now we shall
distinguish two subcases.

(4.i) If j does not divide k, then (2) implies that gj � 0 and hence El � hl

follows.
(4.ii) If j j k, then (1) implies gj � ÿhj. So we have

El � hl � gl � hl ÿ gj � hl � hl=2:

To sum up, for l6 k, we get

El �
0 if l j k;
hl � hl=2 if l

2
j k and 2kl;

hl otherwise:

8<:
We remark that hl is just the number of circular sequences on d letters of

length and period l [1, p. 12]. We also note that all the UPFL digraphs known
to us belong to the class of consecutive-d digraphs, which is introduced by D-Z
Du et al. and contains many important network models de®ned on letters [8,9].
We think that there is something behind this fact and the investigation of it
may be helpful to a better understanding of the structure of the UPFL di-
graphs.

Let us deal with the spectra next. From the work in Section 2, we see that it
su�ces to obtain the vector C�k� in order to determine these parameters.
Furthermore one can pay attention to T �k�ÿ1

instead because (2.2) says
C�k� � T �k�ÿ1D�k�. But we have still (2.4). So we only need to get T �pe�ÿ1

for a
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prime p and e > 0, which will turn out to have a simple expression. Note that
our discussion in Section 2 about the relationship between T �pe� and the matrix
T de®ned there implies that

T �pe�
1 1

1 1
. .

. ..
.

1

0BB@
1CCA
�e�1���e�1�

� T : �4:8�

Let

H �

0
1 0

. .
. . .

.

1 0
1 0

0BBBB@
1CCCCA
�e�1���e�1�

:

Then it follows from (2.13) that

T �pe�

1 1
1 1

. .
. ..

.

1 1
1

0BBBB@
1CCCCA
ÿ1

ÿ p
. .

.

ÿ peÿ1

pe

0BBBBB@

1CCCCCA
ÿ1

� I ÿ �p ÿ 1�W ; �4:9�

where

W � H � H 2 � � � � � H e: �4:10�
Since He�1 � 0, we also obtain W e�1 � 0. So

�I ÿ �p ÿ 1�W �ÿ1 � I � �p ÿ 1�W � � � � � �p ÿ 1�eW e: �4:11�
Substituting (4.10) into (4.11), we obtain

�I ÿ �p ÿ 1�W �ÿ1 � I � f1H � � � � � feHe;

where fi is the coe�cient of xi in the polynomial

1� �x� x2 � � � � � xe��p ÿ 1� � � � � � �x� x2 � � � � � xe�e�p ÿ 1�e:
Clearly

fi �
Xi

j�1

�p ÿ 1�j iÿ 1
jÿ 1

� �
for e P i P 1
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for the coe�cient of xi in �x� x2 � � � � xe�j is the number of ordered partitions
of i into j parts, which instead is the number of ways of putting jÿ 1 markers in
the iÿ 1 spaces between i balls in a line, and hence is

iÿ 1
jÿ 1

� �
:

It in turn shows

fi � �p ÿ 1�
Xiÿ1

j�0

�p ÿ 1�j iÿ 1
j

� �
� �p ÿ 1�piÿ1 � u�pi�:

Thus �I ÿ �p ÿ 1�W �ÿ1 � I �Pe
i�1 u�pi�Hi. Finally (4.9) gives the formula

T �pe�ÿ1 �

1 1

1 1

. .
. ..

.

1 1

1

0BBBBBBBB@

1CCCCCCCCA

ÿ1

ÿ p

. .
.

ÿ peÿ1

pe

0BBBBBBBB@

1CCCCCCCCA

ÿ1

� I

 
�
Xe

i�1

u�pi�Hi

!
:

We do not know if our procedure above will be of any help in the investi-
gation of UPFL-k digraphs and if there is any method to simplify the re-
maining computations in the general setting. We also remark that there is
another way to compute the spectrum of a UPFL- k digraph. One should only
notice that for each feasible k and n, there exists a UPFL-k digraph with a
�ÿd�-circulant as its adjacency matrix [3]; while a description of the eigenvalues
of a g-circulant has been given in [11]. But it seems that we cannot learn any
more from this method either. Perhaps the distribution of the eigenvalues of
UPFL digraphs will behave rather regularly and some structural properties of
the UPFL digraphs may be detected from it. It may be of value to pursue a
more satisfactory description of the distribution of the spectra of UPFL di-
graphs.
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