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Abstract

This paper discusses the structure of g-circulant solutions to Am = Jn, where A is an un-
known (0, 1) matrix and Jn is a matrix of order n with all entries equal to 1. Wang has made a
conjecture on the form of all such solutions. Partially verifying his conjecture, we discover a
close relationship among the Hall polynomial θA(x), the shifting parameter g, and the order n
of any (0, 1) g-circulant solution A toAm = Jn. As a consequence, all the g-circulant solutions
to Am = Jn are completely determined in the case that n is a prime power. Moreover, in the
case that the constant line sum r of A is square-free, all g-circulant solutions to Am = Jn are
proved to be permutation similar to the adjacency matrix of the De Bruijn digraph B(r,m).
Motivated by the current status of this subject, we identify all (0, 1) g-circulant solutions to
Am = Jn whose Hall polynomials have some specific properties and we further determine
the possible values that the shifting parameter g of such solutions may take. The uniqueness
of these solutions up to isomorphism is also investigated. Our paper is concluded with some
open problems. In particular, we give the concept of standard factorization and conjecture that
all factorizations of (xn − 1)/(x − 1) into a product of (0, 1) polynomials must be standard
and thus point out the close similarity between Wang’s conjecture and a conjecture appearing
in the study of perfect graph. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Throughout this paper, N denotes the set of natural numbers and Z represents the
ring of integers whilst Q and C denote the field of rational numbers and complex
numbers, respectively. We use Z∗ for the set consisting of nonnegative integers, that
is, Z∗ = N ∪ {0}. Z∗[x] stands for the collection of polynomials with nonnegative
integral coefficients. We denote by Zn the ring of residues modulo n. For a, b ∈ N

we define orda(b) to be the maximum integer i such that ai | b.
Unless there is additional assumption, all matrices considered in this paper are

(0, 1) matrices of size n × n and we would always let the indices of their rows (col-
umns) run from 0 to n − 1. A permutation matrix is a (0, 1) matrix with each line
(row or column) summing to 1. Two matrices A and B are called isomorphic if they
are permutation similar, namely, if there exists a permutation matrix P such that
P−1AP = B. In this case, we shall write A ∼= B.

The digraph of a matrix A, denoted by �(A), is defined as the digraph with vertex
set {0, 1, . . . , n − 1} and there is an edge from vertex i to vertex j if and only if the
(i, j) entry of A is 1. It is well known that two (0, 1) matrices A and B are isomorphic
if and only if their corresponding digraphs are isomorphic, that is, A ∼= B ⇐⇒
�(A) ∼= �(B).

Given s, t ∈ N, the well-known De Bruijn digraph B(s, t), which is an impor-
tant network model studied in computer science, is defined as follows. Its vertex
set V (B(s, t)) consists of all the t-tuples (b1, b2, . . . , bt ) with integral coordinates:
0 � bi � s − 1, 1 � i � t ; and (b1, b2, . . . , bt ) is joined to (b′

1, b
′
2, . . . , b

′
t ) if and

only if b′
i = bi+1 for 1 � i � t − 1.

For g ∈ N, a g-circulant is a matrix in which each row (except the first) is ob-
tained from the preceding row by shifting the elements cyclically g columns to
the right. In other words, the entries of a g-circulant A = (ai,j ) are related in the
manner: ai+1,j = ai,j−g , where 0 � i � n − 2, 0 � j � n − 1, and the subscripts
are computed modulo n. Obviously, a g-circulant is uniquely determined by its first
row and the shifting parameter g ∈ N. For a g-circulant A, its first row vector, say,
(a0, a1, . . . , an−1), can be recorded in

θA(x) =
n−1∑
i=0

aix
i,

which is called the Hall polynomial of A. In particular, the Hall polynomial of a
(0, 1) g-circulant A can be written as θA(x) = ∑r−1

i=0 x
αi , where 0 � α0 < α1 <

· · · < αr−1 � n − 1 and r = θA(1). When there is no possibility of ambiguity, we
often drop the subscript A and simply write θA(x) as θ(x). As an example, the reader
can check that with the natural vertex order, the adjacency matrix of the De Bruijn di-
graph B(s, t) is an s-circulant of order st with Hall polynomial 1 + x + · · · + xs−1.

Let Jn denote the matrix of size n × n which has all its entries equal to 1. In 1967,
Hoffman [11] proposed a famous problem regarding solving the matrix equation
A2 = Jn for an unknown (0, 1) matrix A. Since then it has attracted considerable
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attention and many authors have contributed to the study of this equation and some
other related (0, 1) matrix equations [3,6,7,9,14–35]. However, it turns out that these
problems are rather difficult and there are very few general results concerning this
particular subject so far. A natural approach, which was adopted by most authors,
is to study these (0, 1) matrix equations under special assumptions. Our work in
this paper is also some effort in this direction. Loosely speaking, we shall consider
g-circulant solutions to the matrix equation

Am = Jn (1)
for an unknown (0, 1) matrix A. Although it seems too special to consider only g-
circulant solutions, we should mention that this study has some interesting connec-
tion with problems arising from perfect graph [1], tiling [4] and large digraph [8].

As any nonnegative integer matrix A satisfying Eq. (1) has to be a (0, 1) matrix,
we will sometimes also work with nonnegative integers just for convenience. By a
simple result on Hoffman polynomial [12], we know that any nonnegative integer
solution A to Eq. (1) must have constant line sum, say r, and rm = n. Since there
are only trivial solutions to Eq. (1) when m = 1 or r = n = 1, we always assume
that m > 1 and n > r > 1. Let Qr,m denote the set of (0, 1) solutions A to Eq. (1)
which have constant line sum r = θA(1) and are all g-circulants for some g (here the
shifting parameters g are not necessarily the same for different members in the set).
One can check that the adjacency matrix of B(r,m) mentioned above is a member of
Qr,m. In terms of this notation, our purpose can also be interpreted as studying the
structure of Qr,m.

Let Ts(x) be the polynomial
∑s−1

i=0 x
i for s ∈ N and T0(x) the constant

polynomial 0. A classical result on Qr,m goes as follows:

Theorem 1.1 [17]. Let A be a g-circulant of order n with θA(x) = ∑r−1
i=0 x

αi . Then

A ∈ Qr,m if and only if
∏m−1

i=0 θ(xg
i
) ≡ Tn(x) (mod xn − 1).

The next result is a variation of Theorem 1.1.

Theorem 1.2 [21]. Let A be a g-circulant and θ(x) = ∑r−1
i=0 x

αi its Hall polynomi-

al. Then A ∈ Qr,m if and only if
∏m−1

i=0 θ(xc
i
) ≡ Tn(x) (mod xn − 1), where c =

(g, n).

The following theorem is an immediate consequence of Theorems 1.1 and 1.2.

Theorem 1.3. Suppose that A is a g-circulant and θ(x) = ∑r−1
i=0 x

αi is its Hall
polynomial. Let c = (g, n). Then the following are equivalent:

(i) Am = Jn.
(ii) For each integer i, 0 � i � n − 1, there exists a unique m-tuple (αi0 , . . . ,

αim−1), where αij ∈ {αl : 0 � l � r − 1}, 0 � j � m − 1 such that i ≡∑m−1
j=0 αij g

j (mod n).
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(iii) For each integer i, 0 � i � n − 1, there exists a unique m-tuple (αi0 , . . . ,

αim−1), where αij ∈ {αl : 0 � l � r − 1}, 0 � j � m − 1 such that i ≡∑m−1
j=0 αij c

j (mod n).

Theorem 1.3 shows that the study of the g-circulant solutions to Eq. (1) can
actually be viewed as a number-theoretical question. Let us describe this question
in the language of addition set here. An (n, r, λ, g,m)-addition set S is a collection
of r residues modulo n such that for any residue γ �≡ 0 (mod n) the congruence

m−1∑
j=0

sj g
j ≡ γ (mod n)

has exactly λ solutions (s0, s1, . . . , sm−1) with sj ∈ S, 0 � j � m − 1. Note that
when m = 2 the concept of (n, r, λ, g,m)-addition set defined here coincides with
the concept of (n, r, λ, g)-addition set introduced by Lam [18,19]. Let τ be the
integer such that τ + λ is the number of ways that 0 can be represented as

∑m−1
j=0 sj g

j

(mod n) with sj ∈ S, 0 � j � m − 1. We call τ the order of the (n, r, λ, g,m)-
addition set, generalizing the corresponding concept for difference set in design
theory. We shall call an (n, r, 1, g,m)-addition set with order 0 a planar (n, r,m)-
addition set with shifting parameter g. As with a g-circulant, one can also introduce
the Hall polynomial for a subset S of Zn, which is defined by

θS(x) =
∑
s∈S

xs
′
,

where s′ is the minimum nonnegative integer in the residue class s. Through this def-
inition we can establish a mapping which sends a g-circulant of order n to a subset of
Zn with the same Hall polynomial. It is not difficult to see that Theorem 1.3 implies
that this mapping actually induces a one to one correspondence between Qr,m and
the collection of all the planar (n, r,m)-addition sets. Therefore, finding g-circulant
solutions to Eq. (1) is virtually equivalent to constructing planar (n, r,m)-addition
sets.

For c, k,m ∈ N, we write �c,k,m(x) = ∏k−1
i=0 Tc(x

cim). The next result is con-
cerning the construction of a class of g-circulant solutions to Am = Jn.

Theorem 1.4 [34]. Let A be a (0, 1) g-circulant satisfying the following conditions:
(i) θA(1) = ck,

(ii) g = ct and (t, n) = 1, and
(iii) �c,k,m(x) | θA(x).
Then Am = Jn.

Let us denote by Pc,k,m the set consisting of the g-circulants which satisfy all
conditions in Theorem 1.4. Then the foregoing result states that Pc,k,m constitutes
a subclass of Qck,m. Conversely, we can show that the members in Qck,m bear re-
semblance to those in Pc,k,m. To be more precise, for any (0, 1) g-circulant solution
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A to Eq. (1), taking c = (g, n) = p
α1
1 p

α2
2 · · ·pαs

s , where pi, 1 � i � s, are distinct
primes, our result (see Section 3) asserts:

(i) θ(1) = ∏s
i=1 p

αiki
i for some ki ∈ N, 1 � i � s,

(ii) (g/c, n) = 1, and
(iii)

∏s
i=1 �

p
αi
i ,ki ,m

(x) | θ(x).
The class Pc,k,m was first proposed by Wang and Wang in [34], where its mem-

bers were called the (c, k)-type solutions of Eq. (1). This class has become extreme-
ly interesting in the subject we are addressing, as Wang [30,31] has proposed the
following conjecture:

Wang’s Conjecture. For any (0,1) g-circulant solution A to Eq. (1), there must exist
some parameters c and k such that A ∈ Pc,k,m.

A consequence of our work mentioned above is that Wang’s conjecture is true
when n is a prime power and when ordpn = m for each prime factor p of n. After
knowing our work here, Wang informed us that he has already verified his conjecture
in the case that n is a prime power [30]. But the above attracting conjecture still
remains far from being settled in general case.

It seems that Wang’s conjecture is not an isolated conjecture. We have noticed
that in the study of perfect graphs [1,5,10] there also appeared a problem on solving
a congruence equation. It was conjectured in [1] that every partitionable graph with
circular symmetry is a CGPW graph. At the end of this paper, we will give the con-
cept of standard factorization for a polynomial (xn − 1)/(x − 1) and then propose
the conjecture that all factorizations of (xn − 1)/(x − 1) into a product of (0, 1)
polynomials must be standard factorizations. We will illustrate how does the concept
of standard factorization connect all the three conjectures. So, although we are only
dealing with g-circulant solutions to Eq. (1) here, we hope that our techniques and
results may find usage in a wider range.

Because of Wang’s conjecture, it is important to study the construction of the class
P(c, k,m) in discussing g-circulant solutions to Am = J . Our paper will provide
an enumeration of the set of Hall polynomials of the elements in P(c, k,m) for
any given parameters. Thus, from the view-point of generalized addition sets, the
structure of P(c, k,m) has been understood quite well. If we view two matrices
in a P(c, k,m) being equivalent if and only if their digraphs are isomorphic, the
classification of P(c, k,m) will become much more difficult. However, we get some
partial results too. More precisely, we will determine for any given parameters c, k,
and m whether or not there are two matrices in P(c, k,m) whose digraphs are not
isomorphic.

Our paper is organized as follows. In Section 2, we prepare some technical
results to be used later. In Section 3, we work out a close relationship among the
order n, the Hall polynomial θA(x), and the shifting parameter g for any (0, 1) g-
circulant solution A to Am = Jn. In Section 4, we identify the Hall polynomials of
the members in Pc,k,m and compute the cardinality of Pc,k,m. This then can be used
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to give a rather clear picture of the planar (n, r,m)-addition sets in some special
cases. In Section 5, for any matrix A ∈ Qr,m, we show that some assumptions on
its Hall polynomial, which have close connection with the definition of Pc,k,m, will
considerably restrict the behavior of its shifting parameter. Section 6 is devoted to the
study of the uniqueness of the solutions to Eq. (1) up to isomorphism. We show that if
a g-circulant (0, 1) matrix A satisfies Am = Jn and its constant line sum r is square-
free, then �(A) ∼= B(r,m). We also prove that for given c, k ∈ N all members in
Pc,k,m are in the same isomorphism class if and only if c = k = m = 2 or one of the
three numbers c, k, and m is equal to 1. Finally, we conclude this paper by presenting
some open problems in Section 7.

2. Preliminaries

This section includes some lemmas of which we will make use in our work. Most
of the polynomials to be dealt with are divisible by Tc(x

s) for some c, s ∈ N. So we
begin by giving some simple properties of such polynomials. For a polynomial
f (x) = ∑n−1

j=0 ajx
j and s, i ∈ Z, we write

fi,s(x) =
∑

j≡i (mod s)

0�j�n−1

ajx
j .

Lemma 2.1. Let s, c ∈ N and f (x) = ∑n−1
i=0 aix

i ∈ C[x]. If Tc(xs) | f (x), then for
i = 0, 1, . . . , s − 1, we have:

(i) Tc(x
s) | fi,s(x).

(ii) fi,s(x) ≡ (fi,s(1)/c)xiTc(xs) (mod xcs − 1).
(iii) If f (x) ∈ Z∗[x], then fi,s(1)/c ∈ Z∗.
(iv) If f (x) ∈ Z∗[x] and fi,s(1) = c, then there exist h0, h1, . . . , hc−1 ∈ Z∗ such

that fi,s(x) = xi
∑c−1

j=0 x
hj cs+js .

(v) If f (x) has nonnegative coefficients and fi,s(1) = 0, then fi,s(x) = 0.

Proof. (i) Let f (x) = Tc(x
s)h(x). It is easily seen that fi,s(x) = Tc(x

s)hi,s(x).
(ii) For each 0 � l � �(n − 1)/s�, let kl = �l/c� and ml = l − ckl . Let

q(x) =
∑

0�l��(n−1)/s�
als+ix

mls =
c−1∑
j=0

bjx
js,

where

bj =
∑

l≡j (mod c)
0�l��(n−1)/s�

als+i .

Note that it holds q(1) = fi,s(1) = ∑c−1
j=0 bj .
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By the definition of fi,s(x), we have

fi,s(x)= xi


 ∑

0�l��(n−1)/s�
als+ix

ls




= xi


 ∑

0�l��(n−1)/s�
als+ix

klcs+mls


 .

By the definition of q(x), we can further write

fi,s(x)= xiq(x) + xi


 ∑

0�l��(n−1)/s�
als+i (x

klcs − 1)xmls




≡ xiq(x) (mod xcs − 1). (2)

The last equality is due to the fact that xcs − 1 | xklcs − 1 for all l.
Now (i) together with the fact that Tc(x

s) | xcs − 1 implies Tc(x
s) | xiq(x).

Since (Tc(x
s), xi) = 1, we see that Tc(xs) | q(x). But the degree of q(x) is at most

s(c − 1), while Tc(xs) is a polynomial whose degree is exactly s(c − 1). This shows
that

q(x) = aTc(x
s) (3)

for some constant number a. Putting x = 1 in (3) yields a = q(1)/c = fi,s(1)/c. So
(3) can be rewritten as

q(x) = (
fi,s(1)/c

)
Tc(x

s). (4)

Now (2) implies that fi,s(x) ≡ (fi,s(1)/c)xiTc(xs) (mod xcs − 1), as required.
(iii) From f (x) ∈ Z∗[x], it easily follows q(x) ∈ Z∗[x] and thus (4) implies

fi,s(1)/c ∈ Z∗.
(iv) Since fi,s(1) = c, (4) says q(x) = Tc(x

s). So

bj =
∑

l≡j (mod c)
0�l��(n−1)/s�

als+i = 1

for j = 0, 1, . . . , c − 1. Since it is assumed that f (x) ∈ Z∗[x], we immediately
find that for each j = 0, 1, . . . , c − 1, all als+i , where l ≡ j (mod c) and 0 � l �
�(n − 1)/s�, are equal to zero with exactly one exception and the exceptional value
is 1. This illustrates that there exists hj ∈ Z∗ for each j ∈ {0, 1, . . . , c − 1} such that
fi,s(x) = xi

∑c−1
j=0 x

hj cs+js , which is the result.
(v) The assumption means that the coefficients of fi,s(x) are all nonnegative and

sum to 0. Hence they all must be 0. �
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Corollary 2.1. If f (x) ∈ Z∗[x], f (1) = n, and Tn(x) | f (x), then there exist h0,

h1, . . . , hn−1 ∈ Z∗ such that f (x) = ∑n−1
j=0 x

hjn+j .

Proof. Note that f (x) = f0,1(x) and then apply Lemma 2.1(iv). �

For a polynomial f (x), let Root(f (x)) denote the collection of all distinct roots
of f (x) = 0 in the field C. For a root of unity, say ξ , the minimum positive integer t
such that ξ t = 1 is called the order of ξ . We use φn(x) to denote the nth cyclotomic
polynomial.

The following lemma describes a basic property of Tr(xs) which will be frequent-
ly cited afterwards.

Lemma 2.2. Let f (x) ∈ Z∗[x] and c, k,m ∈ N. If �c,k,m(x)|f (x) in C[x],
then f (1) � ck . If f (1) = ck, then f (x) must be a (0, 1) polynomial, namely,
a polynomial each of whose coefficients is either 0 or 1, and h(x) ≡ Tn(x)

(mod xn − 1), where n = ckm and h(x) = ∏m−1
i=0 f

(
xc

i )
.

Proof. Recall that �c,k,m(x) = ∏k−1
i=0 Tc

(
xc

im)
. It is easily seen that∏m−1

i=0 �c,k,m(x
ci ) = Tn(x). Hence by hypothesis, there is g(x) such that h(x)

= Tn(x)g(x). Since Tn(x), h(x) ∈ Z[x] and Tn(x) is monic, we then get g(x) ∈
Z[x]. By setting x = 1, we immediately obtain f (1)m = h(1) � Tn(1) = ckm and
hence f (1) � ck . If f (1) = k, then h(1) = n. Thus we can deduce from
Corollary 2.1 that h(x) is a (0, 1) polynomial and h(x) ≡ Tn(x) (mod xn − 1).
Because h(x) = ∏m−1

i=0 f (xc
i
) and f (x) ∈ Z∗[x], we see that f (x) is a (0, 1) poly-

nomial too. �

Lemma 2.3. Let f (x) ∈ Z∗[x] and c, k,m ∈ N. If �c,k,m(x)|f (x) in C[x], then
f (1) � ck . If f (1) = ck, then f (x) must be a (0, 1) polynomial, namely, a
polynomial each of whose coefficients is either 0 or 1, and

∏m−1
i=0 f (xc

i
) ≡ Tn(x)

(mod xn − 1).

Proof. Recall that �c,k,m(x) = ∏k−1
i=0 Tc(x

cim). Write n = ckm and h(x) =∏m−1
i=0 f (xc

i
). It is easily seen that

∏m−1
i=0 �c,k,m(x

ci ) = Tn(x). Hence by hypothesis,
there is g(x) such that h(x) = Tn(x)g(x). Since Tn(x), h(x) ∈ Z[x] and Tn(x) is
monic, we then get g(x) ∈ Z[x]. By setting x = 1, we immediately obtain f (1)m =
h(1) � Tn(1) = ckm and hence f (1) � ck . If the equality holds, h(1) = n. We then
obtain from Corollary 2.1 that h(x) is a (0, 1) polynomial and h(x) ≡ Tn(x)

(mod xn − 1). Because h(x) = ∏m−1
i=0 f (xc

i
) and f (x) ∈ Z∗[x], we see that f (x)

is a (0, 1) polynomial too. �

Let Fn = {∑0�i�n−1 x
ain+i : ai ∈ Z∗}. The reason for our interest in Fn is clari-

fied in the next result.
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Lemma 2.4. If h(x) ∈ Z∗[x] and h(x) ≡ Tn(x) (mod xn − 1), then h(x) ∈ Fn.

Proof. We deduce from h(x) ≡ Tn(x) (mod xn − 1) that Tn(x) |h(x) and h(1) = n.
Thus our statement here is actually the same as that in Corollary 2.1. �

In the sequel, we recall a result (see [13, p. 301, Example 5(f)]), which can be
easily deduced from the fact xl − 1 = ∏

d | l φd(x) for all l ∈ N.

Lemma 2.5.

φn(1) =



0 if n = 1,
p if n = pk, where p is a prime and k > 0,
1 otherwise.

Our next lemma is a basic observation on the members of Fn and can be estab-
lished by a direct calculation.

Lemma 2.6. Let ai ∈ Z∗ for i = 0, 1, . . . , n − 1. Then

n−1∑
i=0

xain+i = Tn(x)

(
1 + (x − 1)

(
n−1∑
i=0

xiTai (x
n)

))
.

The “if” part of the forthcoming lemma plays a crucial role in our work in Section
3 while its “only if” part, which is not used in the current paper, will explain why our
efforts here did not result in a complete resolution to the problem we are discussing.

Lemma 2.7. Let ξ �= 1 be an nth root of unity and t the order of ξ . Then ξ is a
simple root of f (x) = 0 for all f (x) ∈ Fn if and only if t is a prime power.

Proof. It is certainly true that ξ is a simple root of Tn(x) = 0. Hence Lemma 2.6
implies that our assertion is equivalent to the following: none of the polynomials
1 + (x − 1)(

∑n−1
i=0 xiTai (x

n)), where ai ∈ Z∗, will vanish at x = ξ if and only if t is
a prime power.

First suppose that there exist a0, . . . , an−1 ∈ Z∗ such that 1 + (ξ − 1)(
∑n−1

i=0 ξ i

Tai (ξ
n)) = 0. Then 1 + (ξ − 1)(

∑n−1
i=0 aiξ

i) = 0 as ξn = 1. Note that the minimal
polynomial of ξ over Q is φt (x). Hence, if we denote the polynomial 1 +
(x − 1)(

∑n−1
i=0 aix

i) by g(x), then g(x) is a multiple of φt (x) in the polynomial
ring Z[x]. In particular, it follows that g(1) (which is equal to 1) is a multiple of
φt (1) in Z, which implies then φt (1) has absolute value 1. By Lemma 2.5, t has at
least two distinct prime factors.

Conversely, assume that t �= 1 is not a prime power. Then, again by Lemma
2.5, φt (1) = 1. This ensures that φt (x) − 1 = (x − 1)u(x) for some u(x) ∈ Z[x].
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Comparing the degrees of the polynomials on both sides, we find that deg u(x) <

deg φt (x) < n. This enables us to write u(x) = ∑n−1
i=0 dix

i with di ∈ Z for 0 �
i � n − 1. Let δ = min{di : 0 � i � n − 1} and define ai = di − δ for each i. Then
ai ∈ Z∗, 0 � i � n − 1. Consequently,

1 + (ξ − 1)

(
n−1∑
i=0

ξ iTai (ξ
n)

)
= 1 + (ξ − 1)

(
δTn(ξ) +

n−1∑
i=0

aiξ
i

)

= 1 + (ξ − 1)u(ξ)

= φt (ξ)

= 0.

This asserts that the polynomial 1 + (x − 1)(
∑n−1

i=0 xiTai (x
n)) vanishes at x = ξ and

thus the proof is ended. �

Let us conclude this section by presenting two more lemmas.

Lemma 2.8. Let d, n, g be positive integers with d | (g, n). Suppose that θ(x) ∈
C[x] and θ(1) �= 0. If

∏m−1
i=0 θ(xg

i
) ≡ Tn(x) (mod xn − 1), then Td(x) | θ(x) in

C[x]. Furthermore, Td(x) | θ(x) in Z[x] whenever θ(x) ∈ Z[x].

Proof. By setting x to be each of the nontrivial dth roots of unity in
∏m−1

i=0 θ(xg
i
) ≡

Tn(x) (mod xn − 1), we obtain Root(Td(x)) ⊆ Root(θ(x)). Since Td(x) has no mul-
tiple roots, we conclude that Td(x) | θ(x) in C[x]. Further, as Td(x) ∈ Z[x] is a monic
polynomial, we can get from θ(x) ∈ Z[x] that θ(x)/Td(x) ∈ Z[x], which completes
the proof. �

Lemma 2.9. Let c, b be two natural numbers such that ordb(c) = α and (d, b) = 1,
where d = c/bα . Suppose that θ(x) ∈ Z[x]. Then the following hold for i, j, k ∈ Z∗:
(i) If Root(Tbk (x

bj )) ⊆ Root(θ(x)), then Tbk (x
bj+iα

) | θ(xci ) in Z[x].
(ii) Let i � 1, j � α. Then Root(Tbk (x

bj )) ∩ Root(θ(xc
i
)) �= ∅ implies Root

(Tbk (x
bj−α

)) ∩ Root(θ(xc
i−1

)) �= ∅.

Proof. (i) Let ξ be a root of Tbk (x
bj+iα

) = 0. Then, by Lemma 2.2, ξ is a t th
primitive root of unity for some t with t � | bj+iα and t |bj+iα+k . Hence, the order of
ξb

iα
, say t ′, should satisfy t ′� | bj but t ′| bj+k . Now (d, b) = 1 together with t ′| bj+k

implies that ξc
i = ξb

iαdi also has order t ′. From Lemma 2.2 and the assumption
Root(Tbk (x

bj )) ⊆ Root(θ(x)), we can deduce that ξc
i ∈ Root(θ(x)). Consequently,

ξ ∈ Root(θ(xc
i
)). So we have arrived at Root(Tbk (x

bj+iα
)) ⊆ Root(θ(xc

i
)). Because

Tbk (x
bj+iα

) has no multiple roots (see Lemma 2.2), we get Tbk (x
bj+iα

) | θ(xci ) in

C[x]. Moreover, noting that Tbk (x
bj+iα

) ∈ Z[x] is monic, we immediately conclude

that Tbk (x
bj+iα

) | θ(xci ) in Z[x].
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(ii) Suppose that η belongs to Root(Tbk (x
bj )) ∩ Root(θ(xc

i
)). Repeating the same

argument as in (i), we derive from η ∈ Root(Tbk (x
bj )) that ηc ∈ Root(Tbk (x

bj−α
)).

On the other hand, η ∈ Root(θ(xc
i
)) gives ηc ∈ Root(θ(xc

i−1
)). Therefore, ηc ∈

Root(Tbk (x
bj−α

)) ∩ Root(θ(xc
i−1

)). �

3. Order, shifting parameter, and Hall polynomial

In this section, we work on the relationship among the order n, the shifting param-
eter g, and the Hall polynomial θA(x) of any (0, 1) g-circulant solution A to Am = Jn
by analyzing the root sets of related polynomials. The following theorem is a long
step towards achieving our objective.

Theorem 3.1. Let c, n be two natural numbers with c | n and c = p
α1
1 p

α2
2 · · ·pαs

s ,

where pi, 1 � i � s, are distinct primes and αi ∈ N. Let 1 �= m ∈ N. If θ(x) ∈
Z∗[x] satisfies that

∏m−1
i=0 θ(xc

i
) ≡ Tn(x) (mod xn − 1), then there exist ki ∈ N

for each i, 1 � i � s, such that θ(1) = p
α1k1
1 p

α2k2
2 · · ·pαsks

s , n = (θ(1))m =
p
mα1k1
1 p

mα2k2
2 · · ·pmαsks

s , and
∏s

i=1 �
p
αi
i ,ki ,m

(x) | θ(x).

Proof. It is obvious that n = (θ(1))m. So we turn to consider the remaining claims.
For any prime p with (p, c) = 1, by letting α = 0, k = 1, j = 0, b = p, and

noting the irreducibility of Tp(x) over Q, we deduce from Lemma 2.9 that either

Tp(x) divides θ(xc
i
) for all i ∈ Z∗ or Tp(x) does not divide θ(xc

i
) for all i ∈ Z∗.

This shows that Tp(x) is a factor of
∏m−1

i=0 θ(xc
i
) with multiplicity 0 or at least

m > 1. But we also know from Lemmas 2.4 and 2.7 that, for any divisor p of n, Tp(x)

is a factor of
∏m−1

i=0 θ(xc
i
) with multiplicity exactly 1. This tells us that all divisors

of n must be divisors of c too.
Let p be a prime factor of c and α = ordp(c) > 0. Write ordp(n) = kαm + β,

where k ∈ N and 0 � β < αm.
If it holds that Tpα (xp

jαm
) | θ(x) for all j, 0 � j � k, then Lemma 2.9(i) implies

Tpα
(
xp

(jm+i)α ) ∣∣ θ(xci )
for 0 � j � k and 0 � i � m − 1. Making use of the fact that these polynomi-
als Tpα (x

p(jm+i)α
), where 0 � j � k and 0 � i � m − 1, are pairwise prime, we

conclude that
∏(k+1)m−1

l=0 Tpα (x
plα ) | ∏m−1

i=0 θ(xc
i
) in Z[x]. Putting x = 1 in this

relation, we see that pα(k+1)m | (θ(1))m, which contradicts the fact n = (θ(1))m and
ordp(n) < α(k + 1)m. Therefore, we can take an integer j, 0 � j � k, for which

Tpα
(
xp

jαm)� | θ(x). (5)

Choose σ to be the smallest one among all such j ’s. Then we clearly have ordp(n) −
σαm ∈ Z∗. Let us use δ for the nonnegative integer min{ordp(n) − σαm, α}.
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Since c | n, Lemma 2.8 asserts Tpα (x) | θ(x). Hence σ �1. The choice of σ guaran-

tees that Tpα (xp
lαm

) | θ(x) for l = 0, 1, . . . , σ − 1. Thus, by Lemma 2.9(i), we have

Tpα
(
xp

(lm+i)α ) ∣∣ θ(xci ) in Z[x] (6)

for 0 � l � σ − 1, i ∈ Z∗.
Note that Lemma 2.2 says Tpα (xp

lmα
) are pairwise prime for 0 � l � σ − 1. So

by letting i = 0 in (6) we have

�pα,σ,m(x) | θ(x). (7)

Another consequence of (6), which we will make use of later, is obtained by
substituting l = σ − 1 and i = m − 1 into it:

Root
(
Tpα

(
xp

(σm−1)α )) ⊆ Root
(
θ
(
xc

m−1))
. (8)

From σmα + δ � ordp(n),we know that Tpδ (x
pσαm) | Tn(x). But

∏m−1
i=0 θ(xc

i
) ≡

Tn(x) (mod xn − 1) shows that Tn(x) | ∏m−1
i=0 θ(xc

i
). Hence, we get

Root
(
Tpδ

(
xp

σαm
))

⊆ Root

(
m−1∏
i=0

θ
(
xc

i ))
. (9)

If there exists γ ∈ {1, 2, . . . , m − 1} with Root(Tpδ (x
pσαm)) ∩ Root(θ(xc

γ
)) �=

∅, then Lemma 2.9(ii) would imply

Root
(
Tpδ
(
xp

(σm−1)α )) ∩ Root
(
θ
(
xc

γ−1)) �= ∅. (10)

Note that δ � α gives

Root
(
Tpδ
(
xp

(σm−1)α )) ⊆ Root
(
Tpα

(
xp

(σm−1)α ))
,

and hence (8) implies

Root
(
Tpδ
(
xp

(σm−1)α )) ⊆ Root
(
θ
(
xc

m−1))
. (11)

At this point, since γ − 1 < m − 1, we can combine (10) and (11) to deduce that∏m−1
i=0 θ(xc

i
) has a multiple root which is a root of unity and whose order is a prime

power. This violates Lemma 2.7, since, by Lemma 2.4,
∏m−1

i=0 θ(xc
i
) ∈ Fn. So, we

conclude from (9) that Root(Tpδ (x
pσαm)) ⊆ Root(θ(x)).

Invoking Lemma 2.9(i) again, we obtain

Tpδ
(
xp

(σm+i)α ) | θ(xci ) in Z[x] (12)

for 0 � i � m − 1. So we see that δ < α, as otherwise it would follow from (12)
(by putting i = 0) that Tpα (xp

σαm
) | θ(x) in Z[x], contradicting (5). It is readily seen

from δ = min{ordp(n) − σαm, α} that

k = σ (13)

and δ = β.
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Noting that all the polynomials T ’s which appear in (6) or (12) are pairwise prime,
we conclude that(

km−1∏
i=0

Tpα
(
xp

iα ))(m−1∏
i=0

Tpβ
(
xp

(km+i)α ))∣∣∣∣∣
m−1∏
i=0

θ
(
xc

i )
in Z[x]. Setting x = 1, we obtain pkαm+βm|n. Observe that ordp(n) = kαm + β. So
it must hold that βm � β. But we have m � 2 and β � 0. This is possible only if
β = 0, that is, ordp(n) = kαm. It then follows from n = (θ(1))m that ordp(θ(1)) =
kα. Moreover, since σ = k, (7) gives �pα,k,m(x) | θ(x).

Applying the above argument to each pi, 1 � i � s, we obtain a corresponding
ki ∈ N such that ordpi (θ(1)) = kiαi and �

p
αi
i ,ki ,m

(x) | θ(x). Hence we get θ(1) =
p
α1k1
1 p

α2k2
2 · · ·pαsks

s , as required. Further noticing that �
p
αi
i ,ki ,m

(x), i = 1, . . . , s,

are pairwise prime (see Lemma 2.2), we then obtain
∏s

i=1 �
p
αi
i ,ki ,m

(x) | θ(x) and

thus complete the proof. �

Our next theorem summarizes what we have known about the relations among the
three parameters g, n and θA(x) for a (0, 1) g-circulant solution A to Eq. (1). As a
matter of fact, it says a bit more.

Theorem 3.2. Let g, n be natural numbers for which c = (g, n) has a factorization
c = p

α1
1 p

α2
2 · · ·pαs

s , where pi, 1 � i � s, are distinct primes and αi ∈ N. Assume
that a (0, 1) g-circulant A satisfies Am = Jn. Then:

(i) Tc(x) | θ(x).
(ii) There exist ki ∈ N, 1 � i � s, such that θ(1) = ∏s

i=1 p
αiki
i and n = θ(1)m =∏s

i=1 p
mαiki
i .

(iii)
∏s

i=1 �
p
αi
i ,ki ,m

(x) | θ(x).
(iv) (g/c, n) = 1.
(v) If a positive divisor l of n satisfies:

(a) for some i ∈ {1, 2, . . . , s}, there exists an f ∈ N such that ordpi (l) ∈
{αifm + 1, αifm + 2, . . . , αifm + αi} (note that we have in fact f ∈
{1, 2, . . . , ki − 1} since l | n) and

(b) ordpj (l) ∈ {0, 1, . . . , αj } if j �= i,

then φl(x) | θ(x).

Proof. By Theorem 1.2, we have

m−1∏
i=0

θ
(
xc

i ) ≡ Tn(x) (mod xn − 1). (14)

Hence the first three claims follow from Lemma 2.8 and Theorem 3.1, respectively.
So our task is to prove (iv) and (v).
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We first give the argument for (iv). Observe that each prime factor of n is also a
factor of n/c due to the fact that n = ∏s

i=1 p
mαiki
i , c = p

α1
1 p

α2
2 · · ·pαs

s , and m � 2.
But (g/c, n/c) = 1. It then follows that (g/c, n) = 1.

Now we are proving (v). From l | n and (14), we deduce that

Root(φl(x)) ⊆
m−1⋃
i=0

Root
(
θ(xc

i

)
)
.

Observe that our assertion φl(x) | θ(x) is equivalent to Root(φl(x)) ⊆ Root(θ(x)).
Therefore, in order to establish (iv) it suffices to show that Root(φl(x)) ∩ Root
(θ(xc

v
)) = ∅ for v = 1, 2, . . . , m − 1. We will do this by way of contradiction and

hence complete the proof.
Assume that there is an integer v ∈ {1, 2, . . . , m − 1} such that there exists some

number ξ ∈ Root(φl(x)) ∩ Root(θ(xc
v
)). Let η = ξc. Then ξ ∈ Root(φl(x)) implies

η is a root of unity whose order is l/(l, c). But (a) together with (b) shows that
there is some w ∈ {αi((f − 1)m + m − 1) + 1, αi((f − 1)m + m − 1) + 2, . . . , αi
((f − 1)m + m − 1) + αi} such that l/(l, c) = pw

i . So, in virtue of f ∈ {1, 2, . . . ,

ki − 1}, (6) and (13) tell us that η ∈ Root(θ(xc
m−1

)). Going the other way, since
ξ ∈ Root(θ(xc

v
)), we have η = ξc ∈ Root(θ(xc

v−1
)). However, v − 1 < m − 1, and

thus η is a multiple root of
∏m−1

i=0 θ(xc
i
) = 0, contradicting Lemmas 2.4 and 2.7. �

Using Theorem 3.1, we can give a characterization of all the g-circulant solutions
to Am = Jn for n being a prime power in the ensuing result. We remark that it was
also obtained independently by Wang [30].

Theorem 3.3. Suppose that A is a g-circulant and n ∈ N is a prime power. Let
c = (g, n) and r = θA(1). Then Am = Jn if and only if the following hold:
(i) n = rm.

(ii) There exists k ∈ N such that r = ck and �c,k,m(x) | θA(x).

Proof. The “if” part follows immediately from Lemma 2.3 while the “only if” part
is a direct consequence of Theorem 3.1. �

Another application of Theorem 3.1 leads to a complete determination of all the
(0, 1) g-circulant solutions to Eq. (1) when ordpn = m for each prime factor p of n.
But we defer this treatment to Section 6, since we can say something more about this
case there.

4. �′
c,k,m and �c,k,m

For c, k,m ∈ N, we define �′
c,k,m to be the set of polynomials f (x) ∈ Z∗[x] with

�c,k,m(x) | f (x) and f (1) = ck . In view of Lemma 2.3, we see that each member
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of �′
c,k,m is in fact a (0, 1) polynomial. Often we put a restriction on the degree

of the polynomials in our consideration due to the fact that the Hall polynomial of
a g-circulant of size n × n has degree less than n. Here we denote by �c,k,m the
set consisting of those members of �′

c,k,m which have degree less than ckm. Note
that if Wang’s conjecture is correct, then in order to enumerate all (0, 1) g-circulant
solutions A to Eq. (1) it is sufficient to enumerate all elements in �c,k,m for which
ckm = n. Note also that Theorem 3.1 means that if a (0, 1) g-circulant A satisfies
Am = Jn, then for each prime factor p of n we have ordp(n) = αkm for some natural
numbers α and k, and θA(x) ∈ �′

pα,k,m. The next result identifies �′
c,k,m and �c,k,m

by explicitly formulating their members. We have known that Wang also succeeded
in determining �c,k,m for any prime power c using a different approach [30,31].

Theorem 4.1.
(i) �′

c,k,m consists of the polynomials

c−1∑
i1=0

c−1∑
i2=0

· · ·
c−1∑
ik=0

x
∑k

j=1 pi1,i2,...,ij c
(j−1)m+1+∑k

j=1 ij c
(j−1)m

, (15)

where the p’s with fewer than k subscripts take values in {0, 1, . . . , cm−1 − 1}
while the p’s with k subscripts take values in Z∗.

(ii) �c,k,m consists of the polynomials

c−1∑
i1=0

c−1∑
i2=0

· · ·
c−1∑
ik=0

x
∑k

j=1 pi1,i2,...,ij c
(j−1)m+1+∑k

j=1 ij c
(j−1)m

, (16)

where all p’s take values in {0, 1, . . . , cm−1 − 1}.

Proof. We first claim that any member in �′
c,k,m can be represented as in (15) and

any member in �c,k,m can be represented as in (16).
We proceed by using induction on k to establish the results for both �′

c,k,m and
�c,k,m simultaneously. For k = 1, since �c,1,m(x) is just Tc(x), it is not difficult
to check that the assertion follows from Corollary 2.1. So let us assume that the
assertion holds for k = t − 1 and turn to consider the case k = t � 2.

Let f (x) ∈ �′
c,t,m. Set s = c(t−1)m and define g(x) = ∑s−1

j=0(fj,s(1)/c)x
j . By

the definition of �′
c,t,m, we have Tc(x

s) | f (x). So we can apply Lemma 2.1(iii) to
get g(x) ∈ Z∗[x]. By Lemma 2.1(ii), we have

f (x)=
s−1∑
j=0

fj,s(x)

≡
s−1∑
j=0

(fj,s(1)/c)x
jTc(x

s) (mod xcs − 1).
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This is just

f (x) ≡ Tc(x
s)g(x) (mod xcs − 1). (17)

Note that �c,t,m(x) | (f (x), xcs − 1). Hence (17) shows �c,t,m(x) | Tc(xs)g(x),
which implies �c,t−1,m(x) | g(x). Furthermore, we have deg g(x) < s and g(1) =
f (1)/c = ct−1. Thus we arrive at g(x) ∈ �c,t−1,m and henceforth our induction
hypothesis asserts now there are some p’s falling into the set {0, 1, . . . , cm−1 − 1}
and

g(x) =
c−1∑
i1=0

c−1∑
i2=0

· · ·
c−1∑

it−1=0

x
∑t−1

j=1 pi1,i2,...,ij c
(j−1)m+1+∑t−1

j=1 ij c
(j−1)m

. (18)

In view of Lemma 2.3, g(x) is a (0, 1) polynomial, which means fj,s(1) can on-
ly take values 0 and c when j runs from 0 to s − 1. For any polynomial h(x) =∑n−1

j=0 hjx
j , we define X(h(x)) to be the set {j : 0 � j � n − 1, hj �= 0}. In terms

of this notation, we have

X(g(x)) =



t−1∑
j=1

pi1,i2,...,ij c
(j−1)m+1 +

t−1∑
j=1

ij c
(j−1)m : ij = 0, 1, . . . , c − 1,

j = 1, 2, . . . , t − 1

}

and |X(g(x))| = ct−1.
Using Lemma 2.1(iv), we know that for each j with fj,s(1) = c, it holds

fj,s(x) = xj
c−1∑
it=0

xuj,it cs+it s (19)

for some nonnegative integers uj,it , it = 0, 1, . . . , c − 1. In the following, we shall
write pi1,i2,...,it for uj,it provided that

j =
t−1∑
q=1

pi1,i2,...,iq c
(q−1)m+1 +

t−1∑
q=1

iqc
(q−1)m.

Recalling the definition of g(x), we derive the following formula from the com-
bination of Lemma 2.1(v), (18), and (19):

f (x)=
∑

0�q�s−1
fq,s (1)=c

fq,s(x)

=
∑

q∈X(g(x))

fq,s(x)
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=
∑

q∈X(g(x))

xq


c−1∑
it=0

xuq,it cs+it s




=
c−1∑
i1=0

c−1∑
i2=0

· · ·
c−1∑

it−1=0


x∑t−1

j=1 pi1,i2,...,ij c
(j−1)m+1+∑t−1

j=1 ij c
(j−1)m

×

c−1∑
it=0

xpi1,i2,...,it cs+it s






=
c−1∑
i1=0

c−1∑
i2=0

· · ·
c−1∑
it=0

x
∑t

j=1 pi1,i2,...,ij c
(j−1)m+1+∑t

j=1 ij c
(j−1)m

. (20)

Clearly (20) means each member f (x) of �′
c,t,m can be represented as in (15)

when k = t . If f (x) is also a member of �c,t,m, that is, deg f (x) � ctm, it is easy to
see that this assumption poses a restriction on pi1,i2,...,it−1,it , where ij ∈ {0, 1, . . . ,
c − 1}, j = 1, 2, . . . , t, namely they cannot exceed cm−1 − 1. Hence it also follows
that it has an expression as in (16) in case of k = t . So, by principle of induction, our
first claim is reached.

Next, we shall show that all polynomials expressed as in (15) and (16) are mem-
bers of �′

c,k,m and �c,k,m, respectively.

In fact, by letting σi1,...,ik−1 = ∑k−1
j=1 pi1,i2,...,ij c

(j−1)m+1 +∑k−1
j=1 ij c

(j−1)m, we
have

c−1∑
i1=0

c−1∑
i2=0

· · ·
c−1∑
ik=0

x
∑k

j=1 pi1,i2,...,ij c
(j−1)m+1+∑k

j=1 ij c
(j−1)m

=
c−1∑
i1=0

c−1∑
i2=0

· · ·
c−1∑

ik−1=0


xσi1,...,ik−1

c−1∑
ik=0

xpi1,i2,...,ik c
(k−1)m+1+ikc

(k−1)m




=
c−1∑
i1=0

c−1∑
i2=0

· · ·
c−1∑

ik−1=0


xσi1,...,ik−1

c−1∑
ik=0

xikc
(k−1)m




+
c−1∑
i1=0

c−1∑
i2=0

· · ·
c−1∑

ik−1=0


xσi1,...,ik−1

c−1∑
ik=0

(
xpi1,i2,...,ik c

(k−1)m+1 − 1
)
xikc

(k−1)m




≡ Tc

(
xc

(k−1)m
) c−1∑
i1=0

c−1∑
i2=0

· · ·
c−1∑

ik−1=0

x
σi1,...,ik−1

(
mod xc

(k−1)m+1 − 1
)
.

Thus, by applying induction on k, we can show that the polynomials represented in
(15) or (16) are divisible by �c,k,m(x). But all these polynomials have nonnegative
coefficients summing to ck . Therefore, they belong to �′

c,k,m. Furthermore, it is clear
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that each polynomial represented in (16) is of degree less than ckm and hence is in
�c,k,m. This completes the proof. �

From the expression of �c,k,m, its cardinality can be easily obtained.

Theorem 4.2. |�c,k,m| = c(m−1)c(ck−1)/(c−1).

Proof. Note that in (15) the number of p’s with r subscripts is cr . So, there are
altogether

∑k
i=1 c

i = c(ck − 1)/(c − 1) p’s in (15), each of which takes value from
{0, 1, 2, . . . , cm−1 − 1}. Thus the theorem follows. �

We conclude this section by giving an equivalent statement of Theorem 4.2 in
terms of addition set. We are still not sure if the Hall polynomial of any planar
(ckm, ck,m)-addition set must be divisible by �c,k,m(x). Of course, our results in
last section say that this is indeed the case if n is a prime power or if ck is square-
free, and hence in such cases the assumption on Hall polynomial in the following
theorem is redundant.

Theorem 4.3. Let c, r, k, n be positive integers such that r = ck and n = rm. Then
the total number of planar (n, r,m)-addition sets with their Hall polynomial divisible
by �c,k,m(x) is c(m−1)c(ck−1)/(c−1).

5. Shifting parameter against Hall polynomial

In this section, we consider the class of g-circulant solutions to Am = Jn, whose
Hall polynomials are divisible by some polynomial �c,k,m(x) or, more generally, just
by Tc(x). More precisely, we will examine how the shifting parameters of such g-
circulant solutions behave. Our work here develops the technique in [3], where Chao
and Wang have shown that if a (0, 1) g-circulant A satisfies A2 = J, θA(1) = c, and
Tc(x) | θA(x), then there exists t ∈ N such that g = ct and (t, c) = 1.

Theorem 5.1. Let A be a g-circulant solution to Am = Jn.
(i) If Tc(x) | θA(x), then there exists t ∈ N such that g = ct.

(ii) Suppose θA(1) = ck and �c,k,m(x) | θA(x). Then there exists t ∈ N such that
g = ct and (t, c) = 1.

Proof. (i) Let d = (g, c), c = hd and g = ed. Then (e, h) = 1 and there exists
f ∈ Z such that ef ≡ 1 (mod h).

Our aim is to show that c | d .
Let θ(x) = ∑r−1

i=0 x
αi be the Hall polynomial of A and X = X(θ(x)) = {αi : 0 �

i � r − 1}. Clearly r = θ(1).
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To make our argument not too lengthy, we will use the following notations:

Si = {
b : b ∈ X, b ≡ i (mod h)

}
,

Ri = {
b : b ∈ X, b ≡ id (mod c)

}
,

Ti =
{
(b1, b2, . . . , bm−1) : bj ∈ X, 1 � j � m − 1,

m−1∑
j=1

bjg
j ≡ id (mod c)

}
,

Wi =
{
(b0, b1, . . . , bm−1) : bj ∈ X, 0 � i � m − 1,

m−1∑
j=0

bjg
j ≡ id (mod c)

}
,

�i =
∑

(b0,b1,...,bm−1)∈Wi

m−1∑
j=0

bjg
j .

Note that for any (b0, b1, . . . , bm−1) ∈ Wi , it follows from d = (g, c) that d | b0.
Hence we have

�i = �1
i + �2

i , (21)

where

�1
i =

h−1∑
p=0


|Ti−p|

∑
b0∈Rp

b0


 ,

and

�2
i =

h−1∑
p=0


|Rp|

∑
(b1,b2,...,bm−1)∈Ti−p

m−1∑
j=1

bjg
j


 .

Since Tc(x) | θ(x), we know from Lemma 2.1(ii) that |Rp| = r/c for all p. This
enables us to write

�2
i = (r/c)


h−1∑
p=0

∑
(b1,b2,...,bm−1)∈Ti−p

m−1∑
j=1

bjg
j




= (r/c)


h−1∑
p=0

∑
(b1,b2,...,bm−1)∈Tp

m−1∑
j=1

bjg
j


 . (22)
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Note that Th(x) | Tc(x) and thus by invoking Lemma 2.1(ii) again, our hypothesis
Tc(x) | θ(x) leads to the assertion |Sp| = r/h for all p. Therefore, for any j ∈ Z, we
have ∣∣Tj ∣∣=

∣∣∣∣∣
{
(b1, b2, · · · , bm−1) : bl ∈ X, 1 � l � m − 1,

m−1∑
l=1

blg
l ≡ jd (mod c)

}∣∣∣∣∣
=
∣∣∣∣∣
{
(b1, b2, . . . , bm−1) : bl ∈ X, 1 � l � m − 1,

e

m−1∑
l=1

blg
l−1 ≡ j (mod h)

}∣∣∣∣∣
=
∣∣∣∣∣
{
(b1, b2, . . . , bm−1) : bl ∈ X, 1 � l � m − 1,

m−1∑
l=1

blg
l−1 ≡ fj (mod h)

}∣∣∣∣∣
= (r/h)m−1

∣∣∣∣∣
{
(b1, b2, . . . , bm−1) : 0 � bl � h − 1, 1 � l � m − 1,

m−1∑
l=1

blg
l−1 ≡ fj (mod h)

}∣∣∣∣∣
= (r/h)m−1

h−1∑
b1=0

∣∣∣∣∣
{
(b1, b2, . . . , bm−1) : 0 � bl � h − 1, 2 � l � m − 1,

m−1∑
l=2

blg
l−1 ≡ fj − b1 (mod h)

}∣∣∣∣∣
= (r/h)m−1

h−1∑
b=0

∣∣∣∣∣
{
(b1, b2, . . . , bm−1) : 0 � bl � h − 1, 2 � l � m − 1,

m−1∑
l=2

blg
l−1 ≡ b (mod h)

}∣∣∣∣∣ . (23)

The last equality is due to the fact that if b1 ranges over a complete representative
system of residues modulo h, then so is fj − b1. Since the parameter j does not
appear in formula (23), we see that there is a number τ such that |Tj | = τ for all j.
So we obtain the following expression for �1

i :
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�1
i = τ

h−1∑
p=0

∑
b0∈Rp

b0. (24)

Combining (22) and (24) we know that �i is in fact independent of the parameter i.
In particular, we have

0 = �0 − �1.

But as Am = Jn, Theorem 1.3 says that

�0 ≡
n/c−1∑
i=0

ic (mod n)

and

�1 ≡
n/c−1∑
i=0

(ic + d) (mod n).

Hence we get 0 ≡ dn/c (mod n) and thus it follows c | d , as desired.
(ii) Owing to (i) and that Tc(x) | �c,k,m(x), our work is reduced to showing (c, t)

= 1. Note that we have now deg θ(x) < n, θ(1) = ck and �c,k,m(x) | θ(x), which is
just equivalent to saying that θ(x) is in the class �c,k,m, since n = θ(1)m = ckm. By
Theorem 4.1, there are some p’s taking values in {0, 1, . . . , cm−1 − 1} such that

X =



k∑
j=1

pi1,i2,...,ij c
(j−1)m+1

+
k∑

j=1

ij c
(j−1)m : ij = 0, 1, . . . , c − 1, j = 1, 2, . . . , k


 .

Let q = (c, t). Suppose that the assertion (c, t) = 1 is false. Then 1 � c/q < c. Let
γ1 and γ2 be the two integers in X which correspond to ij = 0, 0 � j � k, and
ij = 0, 0 � j � k − 1, ik = c/q, respectively, that is,

γ1 = p0c + p0,0c
m+1 + · · · + p0, 0, . . . , 0︸ ︷︷ ︸

k zeros

c(k−1)m+1,

γ2 = p0c + p0,0c
m+1 + · · · + p0, 0, . . . , 0︸ ︷︷ ︸

k−1 zeros

,c/qc
(k−1)m+1 + (c/q)c(k−1)m.

It is easily verified that

γ1 + γ1g
2 + · · · + γ1g

m−1

≡ γ1 + γ1g
2 + · · · + γ1g

m−2 + γ2g
m−1 (mod ckm),

which contradicts Theorem 1.3, since it holds n = ckm here. This contradiction con-
cludes the proof of the theorem. �
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We remark that Theorem 5.1(i) can be viewed as a converse of Lemma 2.8, while
Theorem 5.1(ii) illustrates that Pc,k,m is just the set of (0, 1) g-circulant solutions A
to Am = Jckm with �c,k,m(x) | θA(x).

6. Isomorphism

In this section, we study the isomorphism relations among solutions to Am = Jn.
Throughout this section, all the computations involving integer addition and multi-
plication are implicitly executed modulo n.

Our first goal is to show that in some cases the g-circulant solution to Am = Jn is
unique up to isomorphism. For this purpose one lemma is needed.

Lemma 6.1. Let A be a g-circulant solution to Am = Jn and r = θA(1). If gm ≡
0 (mod n), then �(A) ∼= B(r,m).

Proof. Let θA(x) = ∑r−1
i=0 x

αi . Then by Theorem 1.3, each vertex in �(A) can
be uniquely represented as

∑m−1
j=0 αij g

j , αij ∈ {α0, α1, . . . , αr−1}, 0 � j � m − 1.
Since gm ≡ 0 (mod n), we have(

αi0 + αi1g + · · · + αim−1g
m−1

)
g + αt

= αt + αi0g + αi1g
2 + · · · + αim−1g

m

= αt + αi0g + αi1g
2 + · · · + αim−2g

m−1

for any αt , αij ∈ {α0, α1, . . . , αr−1}, j = 0, 1, . . . , m − 1. Note that the adjacency
rule in �(A) is given by u → ug + α, u ∈ V (�(A)), α ∈ {α0, α1, . . . , αr−1}. Thus
it is readily seen that the mapping ϕ:V (�(A)) → V (B(r,m)) defined by

ϕ
(
αi0g + αi1g

2 + · · · + αim−1g
m−1

)
= (im−1, im−2, . . . , i0),

i0, i1, . . . , im−1 ∈ {0, 1, . . . , r − 1}, induces an isomorphism from �(A) to
B(r,m). �

Note that gm ≡ 0 (mod n) holds for any g-circulant in Pc,1,m. Therefore we have
(see also [34]):

Corollary 6.1. Any two matrices in Pc,1,m are isomorphic.

Let us turn to the presentation of our first main result in this section. It character-
izes a special family of the well-known De Bruijn digraphs. (The reader can refer to
[35] for a characterization of general De Bruijn digraphs.)

Theorem 6.1. Suppose that ordp(n) = m holds for every prime factor of n. Then
any (0, 1) g-circulant solution A to Am = Jn is permutation similar to the adjacency
matrix of B(r,m).
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Proof. Since Theorem 3.1 implies in this case that gm ≡ 0 (mod n), the assertion
follows from Lemma 6.1. �

We next turn our attention to the study of the isomorphism relations among the
members of a class Pc,k,m for any given c, k,m. In view of Corollary 6.1, we restrict
our attention to k � 2.

Lemma 6.2. Let A be a (0, 1) g-circulant solution toA2 =J and θA(x) = ∑r
i=1 x

ai .
Then �(A) contains exactly r vertices, each of which has a loop attachment. Further-
more, the out-neighbor sets of these r vertices constitute a partition of V (�(A)).

Proof. Let A be a g-circulant and c = (g, n). Then by Theorem 3.1, any prime
factor of n divides c. It follows that (1 − g, n) = 1. Thus we can choose ρ ∈ Z such
that ρ(1 − g) ≡ 1 (mod n). Let θA(x) = ∑r

i=1 x
ai . Observe that in �(A), each ver-

tex i is joined to ig + aj , 1 � j � r . So, it is not difficult to check that �(A) con-
tains exactly r loops (ρai, ρaig + ai), i = 1, 2, . . . , r . Moreover, by Theorem 1.1,
θA(x)θA(x

g) ≡ Tn(x) (mod xn − 1). Since (g, n) = (ρg, n), we see from Theorem
1.2 that θA(x)θA(xρg) ≡ Tn(x) (mod xn − 1). This implies that (ρai)g + aj , 1 �
i, j � r , are pairwise distinct. Consequently, V (�(A)) = ⋃r

i=1 N
+
�(A)(ρai), com-

pleting the proof. �

Remark. It can be easily obtained via eigenvalue argument that for any matrix A
satisfying A2 = Jr2 it holds T r(A) = r , from which the first claim of Lemma 6.2
also follows. But in order to get the second claim, the g-circulant condition cannot
be removed, as we will illustrate it immediately. Let A0 be the matrix displayed
below:



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0




.
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It is verified that A2
0 = J . Note that 0, 5, 10, 14 are the vertices with loop attachment

in �(A0); but 12 is not in the union of the out-neighbor sets of these four vertices.
As a by-product of Lemma 6.2, we know that A0 is not permutation similar to any
g-circulant.

Theorem 6.2. All matrices in P2,2,2 are isomorphic to each other.

Proof. We will carry out computations in Z16 in most places without further asser-
tion.

Let A be a g-circulant in P2,2,2. Then A has order 16, constant line sum 4, and
shifting parameter g ≡ 2 (mod 4). Note that

g2 = 4. (25)

Let θA(x) = xa1 + xa2 + xa3 + xa4 be the Hall polynomial of A. In view of Theorem
4.1, we know that there are some p’s taking values in {0, 1} such that{

a1, a2, a3, a4
} = {2p0 + 8p0,0, 2p0 + 8p0,1 + 4, 2p1 + 8p1,0 + 1,

2p1 + 8p1,1 + 5
}
.

Hence, by rewriting the indices of ai’s if necessary, we may assume that

a3 = a1 + 4, a4 = a2 + 4, and a1 − a2 ≡ 1 (mod 4). (26)

(Note that it is meaningful to write a1 − a2 ≡ 1 (mod 4) in Z16 since 4 is a divisor
of 16.) Consequently, by letting τ be the permutation (13)(24) acting on {1, 2, 3, 4},
we have

4(ai − aj ) =
{

4 if (i, j) ∈ {1, 3} × {2, 4},
−4 if (i, j) ∈ {2, 4} × {1, 3}, (27)

g(aj − aτ(j)) = 8, (28)

(1 − g)(aτ(k) − ak) =
{

4 if k ∈ {3, 4},
−4 if k ∈ {1, 2}. (29)

Observe that (1 − g)(g − 3) = 1 and hence it is meaningful to refer to (1 − g)−1

(which is just g − 3 in Z16) here. Now the proof of Lemma 6.2 shows that �(A)
contains four vertices, enumerated as ui = (1 − g)−1ai, 1 � i � 4, such that

V (�(A)) =
4⋃

i=1

N+
�(A)(ui) =

4⋃
i=1

{
uig + aj : 1 � j � 4

}
. (30)

For 1 � i, j, k � 4, let

πi,k(j) =
{
τ(j) if i + j ≡ 1 (mod 2) and (i, k) ∈ {1, 3} × {2, 4},
j otherwise.
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We now assert that

(uig + aj )g + ak = uπi,k(j)g + ak if i ≡ j (mod 2), (31)

(uig + aj )g + ak = uπi,τ(k)(j)g + aτ(k) if i �≡ j (mod 2). (32)

Clearly (30)–(32) will imply that E(�(A)) = {uig + aj → uπi,k(j)g + ak : 1 �
i, j, k � 4}. Therefore, the mapping ϕ: uig + aj �→ (i, j) induces an isomorphism
from �(A) to the specific digraph G = (V ,E), where V = {(i, j) : 1 � i, j � 4}
and E = {(i, j) → (πi,k(j), k) : 1 � i, j, k � 4}, and hence our result will
follow.

The remaining part is devoted to the proof of (31) and (32).
First consider the case i ≡ j (mod 2). To see that (31) holds, we first note that if

i ≡ j (mod 2), then πi,k(j) = j for any k. Using this and (25), we have

(uig + aj )g + ak

= (
uπi,k(j)g + ak

)+ (
(uig + aj )g + ak

)−(uπi,k(j)g + ak
)

= (
uπi,k(j)g + ak

)+ (
uig

2 + ajg − ujg
)

= (
uπi,k(j)g + ak

)+ (
4ai(1 − g)−1 + ajg − aj (1 − g)−1g

)
. (33)

We can also deduce from (25) and (26) that

4ai + ajg(1 − g) − ajg = 4ai − ajg
2

= 4ai − 4aj
= 0.

Multiplying this relation by (1−g)−1, we obtain 4ai(1 − g)−1 + ajg − aj (1 − g)−1

g = 0. Thus by virtue of (33), we see that (31) holds.
As for the case i �≡ j (mod 2), we will turn to prove an equivalent formulation of

(32), that is,

4(ai − aj ) + g(aj − aπi,k(j)) + (1 − g)(aτ(k) − ak) = 0, (34)

which is obtained from (32) by multiplying 1 − g and then using (25). To verify (34),
we will consider four cases individually:

(i) i is odd, j is even, and k ∈ {3, 4};
(ii) i is odd, j is even, and k ∈ {1, 2};

(iii) i is even, j is odd, and k ∈ {3, 4};
(iv) i is even, j is odd, and k ∈ {1, 2}.

Note that in cases (i) and (iv) we have πi,k(j) = τ(j) while in cases (ii) and (iii) we
have πi,k(j) = j . Now using (27), we get that, in cases (i) and (ii), 4(ai − aj ) = 4,
while in cases (iii) and (iv), 4(ai − aj ) = −4; using (28), we get that in cases (i) and
(iv), g(aj − aπi,k(j)) = 8 while in cases (ii) and (iii) g(aj − aπi,k(j)) = g(aj − aj ) =
0; using (29), we get that in cases (i) and (iii), (1 − g)(aτ(k) − ak) = 4 while in cases
(ii) and (iv), (1 − g)(aτ(k) − ak) = −4. After these preparations, it is then a trivial
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matter to check that (34) holds for all the four cases. The proof of the theorem is
completed. �

We are now concluding this section by showing that there are always two non-
isomorphic members in Pc,k,m for rest of the cases, that is, all the three integers
c, k,m are greater than 1 and at least one of them is greater than 2. We now give some
additional notation and terminology. A nonempty proper subset S of Zn is called
a circular set, if there are two elements (not necessarily distinct) l(S), r(S) ∈ Zn

such that S = {l(S), l(S) + 1, . . . , r(S)}. It is obvious that the pair (l(S), r(S)) is
uniquely determined by the circular set S. We call l(S) (r(S)) the left (right) end of
S. For any (0, 1) matrix A of order n we define XA = {j (mod n) : A(0, j) = 1},
which is a subset of Zn. Observe that if A is a g-circulant, then N+

�(A)(i) = ig + XA

for any vertex i of �(A).

Theorem 6.3. Let c, k,m be three integers no less than 2 and at least one of them
is greater than 2. Then there exist two non-isomorphic members in Pc,k,m.

Proof. Write n = ckm. Let A1 be the c-circulant whose Hall polynomial is ob-
tained by assigning 0 to each p in (16), that is, XA1 = {∑k

j=1 ij c
(j−1)m : 0 � ij �

c − 1, 1 � j � k}. We know from Theorem 4.1 that A1 ∈ Pc,k,m. (In fact, it is not
difficult to check that θA1(x) = �c,k,m(x).)

We will show that the number of the common out-neighbors of any two ver-
tices u and v in �(A1) is a multiple of c, that is, |N+

�(A1)
(u) ∩ N+

�(A1)
(v)| ≡ 0

(mod c).
Denote by T the set consisting of all the (k − 1)-tuples (i2, i3, . . . , ik), 0 � ij �

c − 1, 2 � j � k. For each (i2, i3, . . . , ik) ∈ T , we write Ui2,i3,...,ik = {∑k
j=1 ij

c(j−1)m : 0 � i1 � c − 1}. Observe that each Ui2,i3,...,ik is a circular set in Zn. Fur-
thermore, by comparing the cardinalities, we see that XA1 is the disjoint union of
Ui2,i3,...,ik ’s for (i2, i3, . . . , ik) ∈ T . Henceforth,∣∣∣N+

�(A1)
(u) ∩ N+

�(A1)
(v)

∣∣∣
= ∣∣(uc + XA1) ∩ (vc + XA1)

∣∣
=
∣∣∣∣∣∣

 ⋃
(i2,i3,...,ik)∈T

(uc + Ui2,i3,...,ik )


 ∩


 ⋃
(i′2,i′3,...,i′k)∈T

(vc + Ui′2,i′3,...,i′k )



∣∣∣∣∣∣

=
∣∣∣∣∣∣

⋃
(i2,i3,...,ik)∈T

⋃
(i′2,i′3,...,i′k)∈T

(
(uc + Ui2,i3,...,ik ) ∩ (vc + Ui′2,i′3,...,i′k )

)∣∣∣∣∣∣
=

∑
(i2,i3,...,ik)∈T

∑
(i′2,i′3,...,i′k)∈T

∣∣∣(uc + Ui2,i3,...,ik ) ∩ (vc + Ui′2,i′3,...,i′k )
∣∣∣ . (35)
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Notice that for any (i2, i3, . . . , ik) ∈ T , Ui2,i3,...,ik is of cardinality c and has left
end

∑k
j=2 ij c

(j−1)m ≡ 0 (mod c). So we conclude that for any two (k − 1)-tuples
(i2, i3, . . . , ik), (i′2, i′3, . . . , i′k), the two circular sets uc + Ui2,i3,...,ik and
vc + Ui′2,i′3,...,i′k are either identical or disjoint. This then allows us to derive from
(35) that∣∣∣N+

�(A1)
(u) ∩ N+

�(A1)
(v)

∣∣∣ ≡ 0 (mod c). (36)

We now take the c-circulant A2 with XA2 = (
XA1\{α}) ∪ {β}, where α =

(c − 1)
∑k−1

i=0 c
im and β = (c − 1)

∑k−1
i=0 c

im + c(k−1)m+1. Note that θA2(x) is in-
deed a member of �c,k,m which can be represented as in (16) with all but one p’s
equal to 0, and the exceptional case is

pc − 1, c − 1, . . . , c − 1︸ ︷︷ ︸
k elements

= 1.

Clearly,

XA2 ∩ (cm + XA2)= (Z1 ∪ Z2) ∩ (Z3 ∪ Z4)

= (Z1 ∩ Z3) ∪ (Z1 ∩ Z4) ∪ (Z2 ∩ Z3) ∪ (Z2 ∩ Z4),

where Z1 = XA1\{α}, Z2 = {β}, Z3 = cm + (XA1\{α}), and Z4 = {cm + β}.
It immediately follows from c, k,m � 2 and n = ckm that Z2 ∩ Z3 =

Z2 ∩ Z4 = ∅.
In order to see that Z1 ∩ Z4 = ∅, it is enough to prove the inequality

(c − 1)
k−1∑
i=0

cim + c(k−1)m+1 + cm < ckm. (37)

Surely, our assumption on c, k, and m namely c, k,m � 2 and at least one of them is
greater than 2 is needed in our reasoning below. Let x = (cm−1 − 1)(

∑k−2
i=0 c

im+1)

and y = (cm−1 − 2)c(k−1)m+1. If k > 2, then x > cm; while if one of c and m is
greater than 2, then cm−1 > 2 and hence y > cm. But x and y are both nonnegative
quantities whatever the case is. So it follows x + y > cm. Note that (c − 1)

∑k−1
i=0 c

im

+c(k−1)m+1 + x + y = ckm − 1. Therefore, (37) comes from x + y > cm, as desired.
By now, we have

N+
�(A2)

(0) ∩ N+
�(A2)

(cm−1)= XA2 ∩ (cm + XA2)

= Z1 ∩ Z3

= (
XA1\{α}) ∩ (cm + (

XA1\{α}))
= (

XA1 ∩ (cm + XA1

)) \{α}
=
(

N+
�(A1)

(0) ∩ N+
�(A1)

(cm−1)
)

\{α}.
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This together with (36) implies that∣∣∣N+
�(A2)

(cm−1) ∩ N+
�(A2)

(0)
∣∣∣ ≡ (c − 1) (mod c). (38)

Comparing (38) with (36), we get that �(A1) and �(A2) are not isomorphic. Hence
A1 � A2. �

7. Open problems

Of course, the main challenge in this subject is to tackle Wang’s conjecture. But
our work above suggest some smaller problems.

First, is it always true that all k’s appearing in Theorem 3.1 must take the same
value? Second, even if all k’s already have the same value, say just k, can we assert
that �c,k,m(x) | θ(x)? Note that Wang’s conjecture means that these two problems
both have affirmative answers.

The work in Section 3 relies heavily on the property of root sets of polynomials in
Fn. But Fn is nothing but �′

n,1,m. It seems interesting to see if anything worthwhile
can be said about the root sets of polynomials in a general �′

c,k,m or �c,k,m. We
remark that a key argument in the proof of Theorem 3.1 amounts to showing that(

k−1∏
i=1

Tpα
(
xp

α(im−1)))
,

m−2∏
i=0

θ
(
xc

i )) = 1,

where p is a prime and α = ordp(c), by using Lemma 2.7. Hence we would like to
ask if it can occur(

k−1∏
i=1

Tb
(
xb

im−1)
,

m−2∏
i=0

θ
(
xc

i ))
/= 1

for some b, c, and θ(x), where b | c, (b, b/c) = 1 and θ(x) ∈ �c,k,m.
The techniques in Sections 3 and 5 are rather different and they play separate

role in the approach here. It may be a good idea to try to combine them to obtain
further results. Particularly, by comparing those results in Sections 3 and 5, we pose
the following question: if a (0, 1) polynomial θ(x) satisfies θ(1) = cku, (c, u) = 1,
�c,k,m(x) | θ(x), and

∏m−1
i=0 θ(xg

i
) ∈ Fn, must it hold that (c, g/c) = 1?

We have discussed the isomorphism problem for those matrices in a fixed Pc,k,m.
Let A(c, k,m) be the c-circulant with Hall polynomial �c,k,m(x) and order ckm. By
computing the rank of A(c, k,m), Wang and Wang [34] proved that two A(c, k,m)’s
can be isomorphic only if they have the same parameters, i.e., they are the same
matrix. It still remains an open problem whether there are two isomorphic matrices
occurring in different Pc,k,m’s.
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Finally, let us present a conjecture which may be somewhat “bigger” than the con-
jecture of Wang. Let n = ∏km

i=1 ni, where ni, i = 1, . . . , km, are natural numbers.
Let n0 = 1. For i = 0, . . . , m − 1, define a (0, 1) polynomial fi(x) to be∏k−1

j=0 (xpi+1+jm − 1)/(xpi+jm − 1), where ps = ∏s
i=0 ni for s = 0, . . . , km.

Clearly, (xn − 1)/(x − 1) = ∏m−1
i=0 fi(x), which will be called a standard factoriza-

tion of (xn − 1)/(x − 1) corresponding to the factorization n = ∏km
i=1 ni .

Our conjecture is: all factorizations of (xn − 1)/(x − 1) into a product of (0, 1)
polynomials must be a standard factorization. Restricting to the case that we fac-
torize (xn − 1)/(x − 1) into a product of two polynomials, this conjecture has long
been known to be true, according to a famous result of De Bruijn [2]. For its con-
nection with the topic we have addressed here please note that for any c, k,m,∏m−1

i=0 �c,k,m(x
ci ) all are standard factorizations of (xn − 1)/(x − 1) provided that

n = ckm, while Wang’s conjecture means that these factorizations are “generators”
of all solutions to Eq. (1). In the study of perfect graph, there is a problem on finding
two subsets A,B of Zn such that |A + B| = |A||B| = n − 1 [1,5,10]. Conjecture
2.1 in [1] can be interpreted as any such subset pair A,B of Zn must correspond to
a so-called “De Bruijn near-factorization” of Zn. We remark that any “De Bruijn
near-factorization” of Zn corresponds instead to a standard factorization of (xn−1 −
1)/(x − 1) into two (0, 1) polynomials (see [1,2,10] for details). As is clear now,
the two conjectures on additive property of Zn, namely, Wang’s conjecture and the
conjecture in [1] as described above, both have close connection with the concept of
standard factorization. Perhaps it may be true that the two conjectures on Zn can be
deduced from our conjecture and it will be interesting to see if such a deduction can
really be given.
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In the proof-reading process, we wanted to improve the presentation of Lemma 2.3.
Unfortunately, when writing email to inform the publisher of our modification, I wrote
mistakenly Lemma 2.3 as Lemma 2.2. Thus, in the published version of this paper, Lemma
2.3 appears just in the same way as in the proof sent to us and Lemma 2.2 is substituted
by the updated version of Lemma 2.3 as described in our email to the publisher. Please
note that these two lemmas should read as follows.
——————————————————————-

Lemma 2.2
Tr(xs) =

∏
t|rs
t6|s

φt(x).

Hence all roots of Tr(xs) = 0 are simple roots and Root(Tr(xs)) = {ξ: ξ is a root of unity
whose order t satisfies t | rs and t 6 |s}.
Proof: It follows immediately from the fact that Tr(xs) is just (1− xrs)/(1− xs) and it
holds 1− xh =

∏
t|h

φt(x) for h = rs and s. 2

Lemma 2.3 Let f(x) ∈ Z∗[x] and c, k, m ∈ N. If Φc,k,m(x) | f(x) in C[x], then f(1) ≥ ck.
If f(1) = ck then f(x) must be a (0, 1) polynomial, namely, a polynomial each of whose
coefficients is either 0 or 1, and h(x) ≡ Tn(x) (mod xn − 1), where n = ckm and h(x) =∏m−1

i=0 f(xci
).

Proof: Recall that Φc,k,m(x) =
∏k−1

i=0 Tc(xcim
). It is easily seen that

∏m−1
i=0 Φc,k,m(xci

) =
Tn(x). Hence by hypothesis, there is g(x) such that h(x) = Tn(x)g(x). Since Tn(x), h(x) ∈
Z[x] and Tn(x) is monic, we then get g(x) ∈ Z[x]. By setting x = 1, we immedi-
ately obtain f(1)m = h(1) ≥ Tn(1) = ckm and hence f(1) ≥ ck. If f(1) = ck, then
h(1) = n. Thus we can deduce from Corollary 2.1 that h(x) is a (0, 1) polynomial and
h(x) ≡ Tn(x) (mod xn − 1). Because h(x) =

∏m−1
i=0 f(xci

) and f(x) ∈ Z∗[x], we see that
f(x) is a (0, 1) polynomial too. 2

1


