
European Journal of Combinatorics 30 (2009) 774–787

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Does the lit-only restriction make any difference for the
σ -game and σ+-game?
John Goldwasser a, Xinmao Wang b, Yaokun Wu c
a Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States
b Department of Mathematics, University of Science and Technology of China, Hefei, 230026, China
c Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China

a r t i c l e i n f o

Article history:
Received 1 June 2008
Accepted 13 September 2008
Available online 9 October 2008

a b s t r a c t

Each vertex in a simple graph is in one of two states: ‘‘on’’ or ‘‘off’’.
The set of all on vertices is called a configuration. In the σ -game,
‘‘pushing’’ a vertex v changes the state of all vertices in the open
neighborhood of v, while in the σ+-game pushing v changes the
state of all vertices in its closed neighborhood. The reachability
question for these two games is to decide whether a given
configuration can be reached froma given starting configuration by
a sequence of pushes. We consider the lit-only restriction on these
two gameswhere a vertex can be pushed only if it is in the on state.
We show that the lit-only restriction can make a big difference for
reachability in the σ -game, but has essentially no effect in the σ+-
game.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Reachability problem

Let G = (V (G), E(G)) be a graph, where V (G) is its set of vertices and E(G) ⊆
(
V (G)
2

)
its set of

edges. We write uv for any edge {u, v} ∈ E(G). In general, we write u1u2 · · · un for a path of length
n − 1, namely a graph with vertex set {u1, . . . , un} and edge set {u1u2, u2u3, . . . , un−1un}. The open
neighborhood of v ∈ V (G) in G is NG(v) = {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v in
G is NG[v] = NG(v) ∪ {v}.
For any set S, FS2 is the set of functions from S to the binary field F2. For ease of notation, we simply

identify FS2 with 2
S through identifying a function with its support. Thus, we are allowed to use the
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Fig. 1. From all-on to all-off in the lit-only σ+-game.

expression A + B for A, B ⊆ S, standing both for the sum of two functions and for the symmetric
difference of two sets. With this understanding, we call A ⊆ V (G) a configuration on the graph G and
say that, when A is the given configuration, a vertex v is on (lit) if v ∈ A and that v is off otherwise.
More generally, we say that B ⊆ V (G), as a set of vertices, is on (lit) in the configuration A ⊆ V (G) if
B ⊆ A and is off if B ∩ A = ∅. You can think of a configuration on G as setting one of the two states,
on or off, to each of its vertices. In what follows we often call ∅ the all-off configuration and V (G) the
all-on configuration when it is clear from text that we are talking about configurations on G.
Let G be a graph. In the σ -game on G, given any configuration A ⊆ V (G) one can toggle (push)

any vertex v and that changes the state of each vertex in NG(v). The basic questions for the σ -game
include to determine the existence of a sequence of toggles which changes a given configuration to
another one, to find a best configuration one can reach starting froma given one, and to find an optimal
sequence of toggles tomove fromone configuration to another.We define the σ+-game on G similarly,
the difference being that a toggling of v ∈ V (G) changes the states of each vertex in NG[v]. For the
lit-only σ -game, the effect of toggling a vertex is the same as in the σ -game but we are allowed only
to toggle a lit vertex at each step. Analogously, we define the lit-only σ+-game to be the σ+-game
played under the lit-only restriction.
The σ -game was first introduced by Sutner [35]. We consider here the σ -game and σ+-game only

in a narrow sense, both of which were uniformly treated as the σ -game for general digraphs in a
general sense [11,38].We refer the reader to [2–7,9–26,28,29,32,34–42] and their references formany
variations and generalizations of the σ -game and σ+-game.
As with the reachability problem for digraphs, the reachability problem for a game is to determine

whether or not one can reach some game position (configuration) from some given game position
(configuration) in that game [1,12,36]. The task of this paper is to investigate howmuchdo reachability
situations change when we only allow lit-only toggling in the σ -game and σ+-game. We will show
that the lit-only restriction can make a big difference in the σ -game, but has virtually no effect in the
σ+-game.
Let us recall a famous result on the reachability of all-off from all-on in the σ+-game.

Theorem 1 (Sutner, [35]). For any graph G, we can always transform the all-on configuration to the all-off
configuration in the σ+-game on G.

Many different proofs to Theorem 1 are known; See, e.g., [9,11,29,32,35,39,41]. Based on some
observations on small graphs, Goldwasser and Klostermeyer [18, Question 7] wondered whether
Theorem 1 still holds when the σ+-game is replaced by the lit-only σ+-game. Indeed, before they
posed their question, Jaap Scherphuis [32] showed that the answer is ‘yes’ by presenting what he
called a ‘‘remarkably hard’’ proof. However, even earlier, an alleged ‘counterexample’ to the result
of Scherphuis was presented by Eriksson, Eriksson and Sjöstrand [11, Section 5, p. 362]. In the same
paper they also proved that the answer is ‘yes’ provided the graph is bipartite [11, Theorem 5.1]. Let
us take a look at the ‘counterexample’ given in [11] and show that it is not a counterexample at all. To
depict a configuration on a graph, we use a bullet for an on vertex and a circle for an off vertex.

Example 2. We display in Fig. 1 a sequence of toggles turning the all-on configuration to the all-off
configuration for the lit-only σ+-game on a special graph,whichwas asserted to be impossible in [11].
We put a star beside an on vertex to indicate that it is to be pushed at that moment.
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It is easy to see that in the lit-only σ+-game one cannot go from all-off to any other configuration
and cannot go from any other configuration to all-on.We show that this is the only difference between
the lit-only σ+-game and the σ+-game regarding the reachability problem. More precisely, we have
the following theorem whose proof is deferred until Section 2.

Theorem 3. Let B 6= ∅ and C 6= V (G) be configurations on a connected graph G. Then it is possible to go
from B to C in the σ+-game if and only if it is possible to do so in the lit-only σ+-game.

Corollary 4 (Scherphuis, [32]). We can always go from all-on to all-off in the lit-only σ+-game on any
graph.

Proof. This is a consequence of Theorems 1 and 3. �

Answering the following basic problemwould advance our understanding of the lit-only restriction
on the σ -game.

Problem 5. Let G be a graph, B ⊆ V (G), and v ∈ V (G) \ B. Let C be the configuration obtained from
the configuration B by pushing v in the σ -game. When is it possible to reach C from B in the lit-only
σ -game?

We say a graph G is nonsingular if and only if its adjacency matrix is nonsingular over F2 (and
singular otherwise). The next result, which will be proved with a long parity argument in Section 3.1,
shows that the lit-only restriction causes a substantial difference for reachability in the σ -game.

Theorem 6. Let B be a set of vertices in a nonsingular graph G and v be a vertex of G not in B. Let C be the
configuration obtained from configuration B by pushing v in the σ -game. Then C cannot be reached from
B in the lit-only σ -game.

In Section 1.2, we rephrase the reachability problem in the framework of automata theory
and establish the language of combinatorics on words. In Section 1.3, we further illustrate some
observations on the influence of the lit-only restriction.

1.2. Words and automata

Let V be any set. A word over the alphabet V is a finite sequence of elements of V . We denote the
empty sequence by ε, which is also called the empty word. For any wordW over V and any u, v ∈ V ,
let |W |u stand for the number of occurrences of u inW , |W |v,u the number of occurrences of v before
the first occurrence of u inW . We set |W |v,u = 0 if |W |u = 0. Designate by alph(W ) the set of letters
v ∈ V satisfying |W |v > 0. We use |W | for the length ofW , which is surely just

∑
u∈V |W |u. For any

1 ≤ i ≤ j ≤ |W |, defineW[i,j] to be the subword ofW which is obtained fromW by deleting the first
i − 1 and the last |W | − j elements. We adopt the convention that W[i,j] = ε for any i > j. The set
of words over V form a free monoid V ∗ under the concatenation product which associates with two
wordsW1 andW2 their productW1W2, which is the word of length |W1| + |W2| such that{W = W1, ifW2 = ε;

W = W2, ifW1 = ε;
W[1,|W1|] = W1,W[|W1|+1,|W1|+|W2|] = W2, ifW1,W2 6= ε.

Due to the introduction of this product, we often write a word (a1, a2, . . . , an) of length n ≥ 1 by
mere juxtaposition a1a2 · · · an, regarding it as the product of n words of length one. It will always be
clear from the context whether u1u2 · · · unmeans a word over some alphabet or a path in some graph.
We mention that the four games on G, σ -game, σ+-game, lit-only σ -game, and lit-only σ+-

game, naturally correspond to four kinds of automata on the alphabet V (G) [30], which we denote
by A1(G),A2(G),A3(G) and A4(G), respectively. These four automata all have FV (G)2 as state spaces
and for each v from the alphabet V (G)we have the set of transitions
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{(A, A+ NG(v)) : A ⊆ V (G)}, for A1(G);
{(A, A+ NG[v]) : A ⊆ V (G)}, for A2(G);
{(A, A+ NG(v)) : v ∈ A ⊆ V (G)}, for A3(G);
{(A, A+ NG[v]) : v ∈ A ⊆ V (G)}, for A4(G).

Note thatwe can represent these automataAi(G) as arc labeled digraphsGi for i = 1, 2, 3, 4,where
the state spaces correspond to the vertex sets and those transitions given by v ∈ V (G) correspond to
arcs labeled by v. In game theory, these digraphs are called the game graph of the four combinatorial
games [14]; in discrete dynamical system theory, they are called the phase space of the four games [8].
Let G be a graph. We define inductively two monoid homomorphisms σ and σ+ from the free

monoid V (G)∗ to the monoid of all affine transformations on the space FV (G)2 of configurations: Both
σ(ε) and σ+(ε) act as the identity action on Fn2; For anyW ∈ V (G)

∗ of length n > 0 and any A ⊆ V (G),
we define Aσ(W ) = Aσ(W[1,n−1]) + NG(v) and Aσ

+(W )
= Aσ

+(W[1,n−1]) + NG[v], where v = W[n,n]. Notice
that applying a sequence of toggles according to awordW in the σ -game and σ+-game is just to apply
the action which is the image of the word under the homomorphism σ and σ+, respectively. For any
W ∈ V (G)∗ and u ∈ V (G), let F G

u (W ) =
∑

v∈NG(u)
|W |v,u. For any A ⊆ V (G) andW ∈ V (G)∗, we say

that

• W is good for G and A if F G
u (W ) is even for any u ∈ A ∩ alph(W ) and F G

u (W ) is odd for any
u ∈ alph(W ) \ A;
• W is lit-only σ -allowable for G provided that we find in W for any u ∈ V (G) an even number of
occurrences of elements of NG(u) between any two occurrences of u inW ; (This property was first
formulated by Chuah and Hu [6, Lemma A.1(a)].)
• W is lit-only σ -allowable for G and A if it is lit-only σ -allowable for G and ifW is good for G and A;
• W is lit-only σ+-allowable for G provided that we find in W for any u ∈ V (G) an odd number of
occurrences of elements of NG(u) between any two occurrences of u inW ;
• W is lit-only σ+-allowable for G and A if it is lit-only σ+-allowable for G and if W is good for G
and A.

We now come to two easy observations which provide the tangible criteria for checking the
reachability of one configuration fromanother. They are especially useful for our analysis in Section 3.1
and enable us in turn to check the local vertex distribution of aword (in one dimensionalworld) rather
than chase the global configuration evolution (in a seemingly uncontrolled world).

Observation 7. For the σ -game on a graph G and any A ⊂ V (G), the set of configurations which we can
reach from A is just {Aσ(W ) : W ∈ V (G)∗}; for the σ+-game on a graph G and any A ⊆ V (G), the set of
configurations which we can reach from A is just {Aσ

+(W )
: W ∈ V (G)∗}.

Observation 8. For the lit-only σ -game on a graph G and any A ⊆ V (G), the set of configurations
which we can reach from A is just {Aσ(W ) : W is lit-only σ -allowable for G and A}; for the lit-only
σ+-game on a graph G and any A ⊆ V (G), the set of configurations which we can reach from A is
{Aσ

+(W )
: W is lit-only σ+-allowable for G and A}.

Let G be a graph. For any A, B ⊆ V (G), the language recognized by the four automata introduced
above with respect to A and B are L∗(A1(G), A, B) = {W : Aσ(W ) = B}, L∗(A2(G), A, B) =
{W : Aσ

+(W )
= B}, L∗(A3(G), A, B) = {W : Aσ(W ) = B,W is lit-only σ -allowable for G and A},

L∗(A4(G), A, B) = {W : Aσ
+(W )

= B,W is lit-only σ+-allowable for G and A}. For i = 1, 2, 3, 4
and any A ∈ V (G) we use the notation OGi (A) to mean the set of configurations B for which
L∗(Ai(G), A, B) 6= ∅, namely OGi (A) is the set of reachable configurations starting from A in the
corresponding game.
The relation ∼i defined by A∼i B if and only if B ∈ OGi (A) is clearly an equivalence relation for

i = 1, 2, 3, because we can reverse any sequence of toggles. In other words, the σ -game, σ+-game
and lit-only σ -game are all reversible [24,34], namely if A is reachable from B then B is also reachable
from A in these games. So we will call OGi (A) an orbit of the corresponding game for i = 1, 2, 3. In
the lit-only σ+-game obviously no sequence of toggles which goes from A to B can be executed in the
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reverse order to go from B to A. It is hence unclear at first sight whether or not A∼4 B and B∼4 A can
happen simultaneously. Consequently, it is interesting to note that Theorem 3 implies that ∼4 is an
equivalence relation on the set of configurations on a connected graph G not including ∅ and V (G).

1.3. Background

To introduce more background on the influence of the lit-only restriction on the reachability
problem, we prepare some notation. Let G be a graph. For any A ⊆ V (G) and for i = 1, 2, 3, 4, define
w(OGi (A)) = min{|B| : B ∈ OGi (A)} and defineWi(G) = max{w(O

G
i (A)) : A ⊆ V (G)}. Following [18],

we also use W ,WC,WL and WCL for W1,W2,W3 and W4, respectively, where C comes from closed
neighborhood and L comes from lit-only.
By Theorem 1, any configuration and its complement are in the same orbit of the σ+-game and

hence it holds for any graph G that

WC(G) ≤
|V (G)|
2

. (1)

Furthermore, Goldwasser and Klostermeyer [18] introduced the construction of the closed doubling of
any graph G (replacing each vertex of G by a pair of adjacent vertices) and showed that equality holds
in (1) if and only if G is the closed doubling of some graph. It follows immediately from Theorem 3
that these results hold under the lit-only restriction as well:

Corollary 9. For any graph G,WCL(G) = WC(G). Moreover,w(OG2 (A)) = w(O
G
4 (A)) for any A ⊆ V (G).

For any graph Gwithout isolated vertices, it is well-known that [11,18,37]

W (G) ≤
|V (G)|
2

. (2)

Goldwasser and Klostermeyer [18] showed that equality holds in (2) if and only if G is the doubling of
some graph (the doubling of a graph H is the graph obtained by replacing each vertex of H by a pair
of non-adjacent vertices). The orbit partition in the lit-only σ -game is clearly a refinement of that for
the σ -game and henceW (G) ≤ WL(G) holds for any graph G. Goldwasser, Wang andWu [20] proved
that

WL(G) ≤
2|V (G)|
3

(3)

with equality holding if and only if G is a complete tripartite graph with each of the three partite sets
having equal size. Wang and Wu [37,38] showed that if T is a tree with ` ≥ 2 leaves then

W (T ) ≤
⌊
`

2

⌋
and WL(T ) ≤

⌈
`

2

⌉
.

They gave examples to show that both inequalities are sharp. It seems to be still open to solve the
problemof finding themaximumofWL(T )−W (T ) over all trees T and themaximumofWL(G)−W (G)
over all graphs with n vertices without isolated vertices.
In the remainder of this paper,wewill prove Theorem3 in Section 2, prove Theorem6 in Section 3.1

(it is a special case of Proposition 20), and give a precise answer to Problem 5when G is the line graph
of a tree in Section 3.2 (Theorem 21).

2. Lit-only σ+-game and σ+-game

We start this section with the following three lemmas, each of which shows that if a graph G has a
certain local structure then there is a sequence of toggles in the lit-only σ+-gamewhich has the same
effect as toggling a certain off vertex v in the σ+-game.

Lemma 10. If G is a graph with an induced path vx1x2 · · · xt where t is any positive integer not equal to 2,
and if all vertices in the path are off except xt , then there is a sequence of lit-only vertex toggles that has
the same result as just toggling v in the σ+-game.
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Proof. Put

W1 = x2m−1x2m−2 · · · x1, W2 = x1x3x5 · · · x2m−1, W3 = x2x4x6 · · · x2m−2.

If t = 2m form ≥ 2, x2mW1vW2W3x2m−1x2mx2m−1 finishes it; if t = 2m− 1,W1vW2W3 does it. �

Lemma 11. If G has an induced path vx1x2 · · · xt where t ≥ 3 and if all vertices in the path are on except
v, x1 and xt , then there is a sequence of lit-only vertex toggles that has the same result as just toggling v
in the σ+-game.

Proof. Take m ≥ 2. Let W1 = x2m−2x2m−4 · · · x2, W2 = x2m+1x2m−1x2m−3 · · · x3, W3 =
x1x2x3 · · · x2m, W4 = x3x5x7 · · · x2m−1. If t = 2m + 1, we apply the sequence of toggles
according to x2mW1x1vW2W3x2m+1; if t = 2m, we apply the sequence of toggles according to
x2m−1x2mx2m−1W1x1vW4W3. �

Lemma 12. If G has a vertex v such that all vertices in NG[v] are off and there exist two vertices at distance
two from v, one off and one on, then there is a sequence of lit-only toggles that has the same result as just
toggling v in the σ+-game.

Proof. Let u be an on vertex at distance two from v and let z be an off vertex at distance two from v.
Case 1: If uz ∈ E(G), then the sequence of vertex toggles uzuyvyz does what is required, where
y ∈ NG(v) ∩ NG(z).
Case 2: If uz 6∈ E(G) andNG(u),NG(v),NG(z) contain a common element, say y, then the vertex toggles
uyuvzyz finishes it.
Case 3: uz 6∈ E(G) and NG(u) ∩ NG(v) ∩ NG(z) = ∅.
Subcase 3.1: G contains three induced paths uwyz, uwv and zyv. The sequence of toggles
uwvwywuwzyz does it.
Subcase 3.2: G contains an induced path uwvyz. By Lemma 10, a lit-only sequence of toggles gives the
same result as just toggling y. Then toggle vzyz and we are done. �

The next lemma is concerned with the process of moving from one configuration to another in the
σ+-game.

Lemma 13. Suppose there is a sequence of toggles in the σ+-game on a connected graph G which takes
you from configuration B to configuration C. Then there is a sequence of toggles in the σ+-game from B to
C where none of the intermediate configurations are either all-off or all-on.

Proof. The statement in the lemma is obviously true ifG is a complete graph.We now assume that the
connected graph G is not a complete graph, which means G has an induced path with three vertices
and hence G has three vertices with distinct closed neighborhoods. Suppose, contrary to our claim,
that for every wordW satisfying Bσ

+(W )
= C there exists a positive integer t ∈ [1, |W | − 1] such that

Bσ
+(W[1,t]) ∈ {∅, V (G)} and we denote the minimal such t by t(W ). LetW = x1x2 · · · x|W | be a word

from L∗(A2(G), B, C) such that |W |− t(W ) achieves theminimum possible value. In the following we
write t for t(W ).
Case 1: NG[xt ] +NG[xt+1] 6= V (G). LetW ′ = W[1,t−1]xt+1xtW[t+2,|W |]. Note thatW ′ ∈ L∗(A2(G), B, C).
But it is clear that Bσ

+(W ′
[1,k]) 6∈ {∅, V (G)} for any k ∈ [1, t] and hence |W ′| − t(W ′) < |W | − t , which

is impossible by our assumption onW .
Case 2: NG[xt ] + NG[xt+1] = V (G). Let y ∈ V (G) be such that NG[y] is neither equal to NG[xt ] nor
to NG[xt+1]. We also know that NG[y] 6= V (G) as otherwise the word W ′′ = W[1,t−1]yW[t+2,|W |] ∈
L∗(A2(G), B, C) fulfils |W ′′| − t(W ′′) ≤ (|W | − 1) − t < |W | − t , a contradiction. Let W ′′′ =
W[1,t−1]yxtxt+1yW[t+2,|W |]. Clearly, W ′′′ ∈ L∗(A2(G), B, C). Since |W ′′′| = |W | + 2, to derive a
contradiction it suffices to show t(W ′′′) ≥ t + 3. We only need to check that

Bσ
+(W ′′′

[1,k]) 6∈ {∅, V (G)} (4)
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for k = t, t+1, t+2. Remember that Bσ
+(W[1,t]) = ∅ and NG[xt ]+NG[xt+1] = V (G). Therefore, Eq. (4)

is valid for k = t and k = t + 2 because NG[y] 6∈ {NG[xt ],NG[xt+1]} and is true for k = t + 1 because
NG[y] 6∈ {∅, V (G)}. �

There is not much more to do to prove one of our main results.

Proof of Theorem 3. Suppose there is sequence W of vertex toggles from B 6= ∅ to C 6= V (G) in
the σ+-game. By Lemma 13, there is also such a sequence W ′ which avoids all-off and all-on at all
intermediate stages. Suppose W ′ calls for an off vertex v to be toggled. We show that there is a
sequence of toggles in the lit-only σ+-game which produces the same result as just toggling v. Let
N i(v) be the set of vertices of Gwhich are at distance i to v.
Case 1: There is a lit vertex in N1(v). Then we are done by Lemma 10 with t = 1.
Case 2: N1(v) is off, N2(v) is neither off nor on. Lemma 12 applies to settle this case.
Case 3: N1(v) is off, N2(v) is on, there exists an off vertex at distance t ≥ 3 from v. Then we are done
by Lemma 11.
Case 4: N1(v) is off, ∪t≥2 N t(v) is on. This is impossible because pushing v will result in all-on and we
assumed thatW ′ avoids all-on at all intermediate stages and the ending stage.
Case 5: N1(v) is off, N2(v) is off, there exists an on vertex at distance t ≥ 3 from v. We treat this by
Lemma 10.
Case 6: All vertices are off. This cannot happen due to our assumption onW ′. �

3. Lit-only σ-game and σ-game

3.1. Words: A parity invariant

The following parity result is our main result in this section, from which we will derive several
impossibility results showing the substantial effect of the lit-only restriction on the σ -game.

Lemma 14. Let G be a graph, W ∈ V (G)∗, S and Q be two disjoint subsets of V (G) such that

(i) S is a set of independent vertices in G, namely uv 6∈ E(G) for any u, v ∈ S;
(ii) For any v ∈ Q , we have NG(v) ⊆ S;
(iii) {v ∈ V (G) : |W |v is odd } = S ∪ Q .

If W is lit-onlyσ -allowable for G, then
∑
u∈S∪Q F G

u (W ) has the same parity as |{v ∈ Q : |NG(v)| is odd }|.

Proof. Let m = |W | and [m] = {1, 2, . . . ,m}. We use the notationWi to meanW[i,i] for any i ∈ [m].
For any P ∈

(
[m]
2

)
, we assume that the two elements in P are Pmin and Pmax where Pmin < Pmax.

Let I = {i : i ∈ [m],Wi ∈ V (G) \ S} andJ = {j : j ∈ [m],Wj ∈ S}. We choose a total ordering
C for V (G), only requiring it to fulfil that

u C v C w, ∀u ∈ V (G) \ (S ∪ Q ), v ∈ Q , w ∈ S. (5)

A pair P ∈
(
[m]
2

)
is said to be good ifWPminWPmax ∈ E(G) andWPmin C WPmax . A good pair is said to be

blue if it intersects both I andJ . Denote by G and B the set of good pairs and the set of blue pairs,
respectively. All calculations below are carried out over F2.
For any u ∈ V (G), put f (u) to be

|{P ∈ G : ∃i ∈ P,Wi = u}| = |{P ∈ G : WPmin = u}| + |{P ∈ G : WPmax = u}|.

For our purpose, let us determine f (u) in three cases depending on where u comes from, S,Q or
V (G) \ (S ∪ Q ).
We claim that f (u) = 0 for u ∈ V (G) \ (S ∪ Q ). It suffices to check this for u ∈ alph(W ). By

Condition (iii), the elements of {i : Wi = u} can be enumerated as i1 < i2 < · · · < i2α for some
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positive integer α. Let

U0 = {j : j < i1, {j, i1} ∈ G },

U2α = {j : j > i2α, {i2α, j} ∈ G },

and for t = 1, 2, . . . , 2α − 1, let

U1t = {j : it < j < it+1,Wj C u,Wju ∈ E(G)},

U2t = {j : it < j < it+1, u C Wj, uWj ∈ E(G)}.

The following calculation verifies our claim:

f (u) =
m∑
j=1

∣∣{P ∈ G : (Pmin = j,WPmax = u) or (Pmax = j,WPmin = u)
}∣∣

=

∑
j∈U0∪U2α

2α +
2α−1∑
t=1

(
(2α − t)|U1t | + t|U

2
t |
)
=

2α−1∑
t=1

t
∣∣U1t ∪ U2t ∣∣

=

2α−1∑
t=1

t
∣∣{j : it < j < it+1,Wju ∈ E(G)}∣∣ = 0, (6)

where the last equality is due to our assumption thatW is lit-only σ -allowable for G.
We next show that for any u ∈ Q it holds

f (u) = F G
u (W )+ |NG(u)|. (7)

Indeed, by Condition (iii) we can enumerate the elements of {i : Wi = u} as i1 < i2 < · · · < i2α−1
for some positive integer α. Let Vt = {j : it < j < it+1,Wj ∈ NG(u)} for t = 1, 2, . . . , 2α − 2. In
addition, let V0 = {j : j < i1,Wj ∈ NG(u)} and V2α−1 = {j : j > i2α−1,Wj ∈ NG(u)}. AsW is lit-only
σ -allowable for G, we see that

|Vt | = 0, t = 1, 2, . . . , 2α − 2. (8)

Combining this with Conditions (ii) and (iii), we obtain

F G
u (W ) = |V0| = |V0| +

2α−2∑
t=1

|Vt | = |V2α−1| +
2α−1∑
t=0

|Vt |

= |V2α−1| +
∑

v∈NG(u)

|W |v = |V2α−1| +
∑

v∈NG(u)

1

= |V2α−1| + |NG(u)|. (9)

By Conditions (ii) and (iii) together with (5), we get that

{P ∈ G : ∃i ∈ P,Wi = u} = {P ∈ G : WPmin = u,WPmax ∈ S}
= {(i, j) : 1 ≤ i < j ≤ m,Wi = u,Wj ∈ NG(u)}.

This combined with Eq. (8) leads us to

f (u) =
2α−1∑
s=1

|{j : j > is,Wj ∈ NG(u)}|

=

2α−1∑
s=1

2α−1∑
t=s

|Vt | = (2α − 1)|V2α−1|

= |V2α−1|. (10)

Comparing Eqs. (9) and (10) yields Eq. (7), as wanted.
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Now consider u ∈ S and let us proceed to show that

f (u) = F G
u (W ). (11)

Condition (iii) says that those positions i for which Wi = u can be listed as i1 < i2 < · · · < i2α−1
where α is a positive integer. By Condition (i), Eq. (5) and the definition of good pairs, we know that

{P ∈ G : WPmin ∈ S} = ∅.

It follows that

f (u) =
m∑
j=1

|{P ∈ G : Pmin = j,WPmax = u}|. (12)

For t = 1, . . . , 2α − 2, we set

Ut = {j : it < j < it+1, ∃P ∈ G , Pmin = j,WPmax = u}
= {j : it < j < it+1,Wj C u,Wju ∈ E(G)},

which, according to Condition (i) and Eq. (5), can be equivalently defined as

{j : it < j < it+1,Wju ∈ E(G)}.

Taking account of the fact thatW is lit-only σ -allowable, we then arrive at

|Ut | = 0, t = 1, . . . , 2α − 2. (13)

Eqs. (12) and (13) conspire to give

f (u) =
∑
j∈Fu

(2α − 1)+
2α−2∑
t=1

(2α − 1− t)|Ut |

= |Fu|,

where we use the notation Fu for {j : j < i1,Wju ∈ E(G)}. Noting that F G
u (W ) just counts the size of

Fu, this establishes Eq. (11).
After finishing the computation of f (u), let us look at |B| as a number in F2. First of all, we have

|B| =
∑
P∈B

1

=

∑
P∈B

∑
i∈P∩I

1

=

∑
P∈G

∑
i∈P∩I

1

=

∑
u∈V (G)\S

∑
P∈G : ∃i∈P,Wi=u

1

=

∑
u∈V (G)\S

f (u)

=

∑
u∈Q

(F G
u (W )+ |NG(u)|), (14)

where the last equality comes from Eqs. (6) and (7). We count |B| in another way:

|B| =
∑
P∈B

1

=

∑
P∈B

∑
j∈P∩J

1
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=

∑
P∈G

∑
j∈P∩J

1

=

∑
u∈S

∑
P∈G : ∃j∈P,Wj=u

1

=

∑
u∈S

f (u)

=

∑
u∈S

F G
u (W ), (15)

where the last equality is a consequence of Eq. (11). Putting together Eqs. (14) and (15), we obtain the
assertion of the theorem. �

Example 15. Let G be the path of length 1, say G = u1u2. LetW be the word u1u2. ThenW is lit-only
σ -allowable for G andF G

u1(W )+F G
u2(W ) = 1. This is consistent with our assertion in Lemma 14 if we

take S = {u1} and Q = {u2}. If we take S = {u1, u2} and Q = ∅, we see that the condition that S is an
independent set cannot be dropped from Lemma 14.

A bipartite graph is a graph whose vertex set is the union of two disjoint independent sets, called
partite sets of the graph.

Proposition 16. Let G be a bipartite graph with partite sets V1 and V2, where V1 = {v1, v2, . . . , v2t−1},
t ≥ 1. Assume that {NG(v) : v ∈ V1} is a set of linearly independent vectors. Further suppose that there
are U ⊆ V1 and B ⊆ V2 such that

(∗) |U ∩ NG(v)| is even if v ∈ B and is odd if v ∈ V2 \ B.

Then there is no sequence of lit-only moves starting from B and ending at Bσ(v1v2···v2t−1) in the σ -game
on G.

Proof. Let W be any word which is lit-only σ -allowable for G and B. Our task is to show that
BW 6= Bσ(v1v2···v2t−1). We proceed under the opposite assumption that BW = Bσ(v1v2···v2t−1) and try
to derive a contradiction. Set S = V1 ∩O and Q = V2 ∩O , where O = {u : |W |u is odd }. Considering
the bipartiteness of G and that NG(v), v ∈ V1, are linearly independent, we find that S = V1 and that

|NG(v) ∩ Q | ≡ 0 (mod 2) (16)

for each v ∈ V1. It follows from Eq. (16) that the number of vertices in Q with odd degrees is even and
then Lemma 14 ensures that∑

u∈S∪Q

F G
u (W ) ≡ 0 (mod 2). (17)

Another immediate consequence of Eq. (16) is that
∑
u∈Q |NG(u) ∩ U| is even. By Condition (*), this

means that

|Q ∩ (V2 \ B)| ≡ 0 (mod 2). (18)

Because W is lit-only σ -allowable for G and B, we deduce from B ⊆ V2 that F G
u (W ) is odd for each

u ∈ S = V1 and hence
∑
u∈S F G

u (W ) is odd. Consequently, we deduce from Eq. (17) that
∑
u∈Q F G

u (W )
is odd. This says that there are an odd number of vertices from V2\Bwhich are toggled an odd number
of times according toW . This is in contradiction with Eq. (18), as desired. �

Example 17 ([6, pp. 138–143][7, p. 826]). Let G be the graph with V (G) = {v1, v2, . . . , v8} and
E(G) = {v1v2, v2v3, v3v4, v4v5, v4v6, v6v7, v7v8}. Let B = {v5} and C = {v1, v8} = Bσ(v2v4v7). See
Fig. 2. Clearly G is a bipartite graph with partite sets V1 = {v2, v4, v7} and V2 = {v1, v3, v5, v6, v8}.
Let U = {v2, v7}. It is not hard to check that Proposition 16 shows we cannot reach C from B in the
lit-only σ -game. Observe that this means that we also cannot reach B from C in the lit-only σ -game
and this also follows from Proposition 16 with U = {v4}.
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Fig. 2. B can evolve to C in the σ -game but not in the lit-only σ -game.

Fig. 3. B can evolve to C in the σ -game but not in the lit-only σ -game.

Proposition 18. Let G be a graph, let B ⊆ V (G), and let W ∈ V (G)∗ be lit-only σ -allowable for G and B.
If S = {v ∈ V (G) : |W |v is odd } is an independent set, then |S \ B| is even.

Proof. Immediate from Lemma 14 by taking Q = ∅. �

Example 19 ([6, pp. 143–147][7, p. 826]). LetG be the bipartite graphwithV (G) = {v1, v2, . . . , v9} and
E(G) = {v1v2, v2v3, v3v4, v3v5, v5v6, v6v7, v7v8, v8v9}. Let B = {v1} and C = {v8}. See Fig. 3. Note
that Bσ(v2v5v7) = C and so B and C are in the same orbit of the σ -game on G. It is not hard to check
that the only set of linearly dependent neighborhoods in G is {N(v4),N(v5),N(v7),N(v9)}. Thus, if
Bσ(W ) = C then S = {v : |W |v is odd } is equal to either {v2, v4, v9} or {v2, v5, v7}. Since both are
independent sets and in both cases |S \ B| is odd, by Proposition 18, B and C are in different orbits in
the lit-only σ -game.

Proposition 20. Let G be a graph whose vertex set is partitioned into sets R and T . Denote {NG(v) ∈
FV (G)2 : v ∈ R} and {NG(v) ∈ FV (G)2 : v ∈ T } by R and T , respectively. Suppose that T is linearly
independent and span(T )∩span(R) = {0}. Further suppose that there is U ⊆ V (G) such that |U∩NG(v)|
is odd for each v ∈ R. Then starting from any configuration B ⊆ T , we cannot execute a sequence of lit-only
moves whose net effect is to press an odd number of vertices in R which form an independent set in G.

Proof. Assume to the contrary that there is a W ∈ V (G)∗ that is lit-only σ -allowable for G and
B such that Bσ(W ) − B =

∑2k+1
i=1 NG(ri) where r1, . . . , r2k+1 ∈ R. Observe that Bσ(W ) − B =∑

v∈S NG(v) +
∑

v∈S′ NG(v), where S = {v ∈ R : |W |v is odd} and S
′
= {v ∈ T : |W |v is odd}.

Because span(T ) ∩ span(R) = {0}, we conclude that

2k+1∑
i=1

NG(ri) =
∑
v∈S

NG(v) (19)

and that

0 =
∑
v∈S′
NG(v). (20)

As T is linearly independent, we deduce from Eq. (20) that S ′ = ∅. Taking the inner product withU on
both sides of Eq. (19) reveals that S is a set of odd cardinality. By now, an application of Proposition 18
gives the desired contradiction and hence ends the proof. �
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Finally, let us prove Theorem 6 as promised.

Proof of Theorem 6. Apply Proposition 20 with R = {v} and T = V (G) \ R. �

3.2. Line graph: A lifting result

All the above influences of the lit-only restriction on the σ -game are observed with the help of a
parity result, Lemma 14. By appealing to some other technique, we can also give a precise answer to
Problem 5when G is the line graph of a tree. To do this wewill need to review the notions of boundary
and coboundary maps on a graph.
The coboundary map on a graph G is the F2-linear map δG from FV (G)2 to FE(G)2 satisfying δG(v) =∑
v∈e∈E(G) e for each v ∈ V (G). The adjoint of δG, or the boundary map on G, is the F2-linear map δ>G

from FE(G)2 to FV (G)2 satisfying δ>G (ab) = a+ b for each ab ∈ E(G). The line graph of a graph G, denoted
by L(G), is the graph with V (L(G)) = E(G) and ef ∈ E(L(G)) if and only if |e ∩ f | = 1. For any
e = ab ∈ V (L(G)), a basic observation is that

NL(G)(e) = δG(a+ b) = δGδ>G (e). (21)

This says that if we start with δG(A) and push e ∈ V (L(G)) in the σ -game on L(G), we will arrive at
δG(A+ δ>G (e)). Note that |A+ δ

>

G (e)| and |A| have the same parity. Another thing to be noticed is that
for the configuration δG(A) of L(G), the pressing of e ∈ V (L(G)) will be a lit-only toggle if and only if
|δ>G (e)∩ A| = 1 and in such a case |A+ δ

>

G (e)| = |A|. By virtue of Eq. (21), we can lift the σ -game and
lit-only σ -game on L(G) to corresponding games on G; see [40] for more details.
Let T be a tree. Let Vi = {A ⊆ V (T ) : |A| = i} for i = 0, . . . , |V (T )|. As T is connected, we know

that

span{δ>T (e) : e ∈ E(T )} =
⋃
i even

Vi (22)

is a subspace of FV (T )2 of index two. Since T is a tree, it is easy to see that:

(∗∗) δT is a two-to-one surjective map with kernel {∅, V (T )}.

If V (T ) = n, it follows immediately from Eq. (21) and the preceding discussions the following [40,
Theorem 10]:

(A) When n is odd, the σ -game on L(T ) has only the orbit {δT (A) : A ∈ ∪i even Vi} = {δT (A) : A ∈
∪i odd Vi} and the orbits of the lit-only σ -game on L(T ) areO0, . . . ,O n−1

2
, whereOi = {δT (A) : A ∈

Vi} = {δT (A) : A ∈ Vn−i}, i = 0, . . . , n−12 ;
(B) When n is even, the σ -game on L(T ) has exactly two orbits {δT (A) : A ∈ ∪i even Vi} and
{δT (A) : A ∈ ∪i odd Vi} while the orbits of the lit-only σ -game on L(T ) are O0, . . . ,O n

2
, where

Oi = {δT (A) : A ∈ Vi} = {δT (A) : A ∈ Vn−i}, i = 0, . . . , n2 .

The next result characterizes those single moves in the σ -game on a line graph of a tree which
have no way to be replaced by a series of lit-only moves.

Theorem 21. Let T be a tree, B ( E(T ) and e ∈ E(T ) \ B. It is possible to reach Bσ(e) from B in the
lit-only σ -game on L(T ) if and only if B = δT (F) for some F ⊆ V (T ) such that δ>T (e) ∩ F = ∅ and
2|F | + 2 = |V (T )|.

Proof. Because T is a tree and e ∈ E(T ) \ B, we deduce from (**) that there exists a unique F ⊆ V (T )
such that B = δT (F) and that δ>T (e)∩F = ∅ (the complement of the given F is the only other set which
is sent by δT to B). By Eq. (21), we have δT (F)σ(e) = δT (F + δ>T (e)). Note that |F + δ

>

T (e)| = |F | + 2.
According to Claims (A) and (B) above, we conclude that Bσ(e) and B can lie in the same orbit of the
lit-only σ -game on L(T ) if and only if |F | + (|F | + 2) = |V (T )|. �
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Comparing Theorems 6 and 21 leads us to the by-product that the line graph of a tree on an even
number of vertices is singular. This is indeed a special case of a well-known result and several other
proofs without using the result on lit-only σ -game are available. We deviate a bit to report one such
proof below.

Fact 22 ([27,31,33]). The line graph of a connected graph G with |V (G)| ≥ 2 is nonsingular if and only if
G is a tree on an odd number of vertices.

Proof. Suppose G contains a cycle and let Y be the set of edges in a cycle of G. Clearly, δ>G (Y ) = ∅. We
thus conclude from Eq. (21) that L(G) is singular.
Assume that G is a tree T . The map δ>T is clearly injective. It now follows by (**), Eqs. (21) and (22),

and linearity that the kernel of the adjacency matrix of L(T ) contains a nonzero vector if and only if
|V (T )| is even. �

4. Concluding remarks

Lemma 14, which is proved by a double-counting argument, is our main tool for developing
sufficient conditions for two configurations to be in different lit-only orbits in the σ -game. While
we cannot hope for as succinct a characterization as Theorem 3 gives us for the σ+-game, perhaps it
would be possible to develop some necessary conditions.
Due to Theorem 1, Sutner posed the so-called minimum all-ones problem, which is to investigate

how to use theminimumpossible number ofmoves to transform the all-on configuration to the all-off
configuration in the σ+-game. This problem has been studied extensively; see [2] and its references.
Due to Corollary 4, it would be interesting to study the minimum all-ones problem for the lit-only
σ+-game.
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