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a b s t r a c t

Let S be any set of points in the Euclidean plane R2. For any p = (x, y) ∈ S, put
SW (p) = {(x′, y′) ∈ S : x′ < x and y′ < y} and NE(p) = {(x′, y′) ∈ S : x′ > x and y′ > y}.
Let GS be the graph with vertex set S and edge set {pq : NE(p) ∩ NE(q) 6= ∅ and SW (p) ∩
SW (q) 6= ∅}. We prove that the graphH with V (H) = {u, v, z, w, p, p1, p2, p3} and E(H) =
{uv, vz, zw, wu, p1p3, p2p3, pu, pv, pz, pw, pp1, pp2, pp3} and the graph H ′ obtained from
H by removing the edge pp3 are both minimal forbidden subgraphs for the class of graphs
of the form GS .

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

We start with some notation and terminology. For a few undefined terms in the paper, we will follow common practice.
A graph G is a pair (V (G), E(G)) of sets where V (G) 6= ∅ and E(G) ⊆

(
V (G)
2

)
. For any {u, v} ∈ E(G), we often denote it by

uv and say that u and v are adjacent in G. A vertex of G is isolated if it appears in no members of E(G). If G′ is a graph with
V (G′) = {w1, w2, . . . , wt} ⊆ V (G) and E(G′) = E(G) ∩

(
V (G′)
2

)
, we say that G′ is an induced subgraph of G and often denote

it by G[w1, w2, . . . , wt ]. A proper induced subgraph of G is one of its induced subgraph other than itself. We often write G−v
for the subgraph G[V (G) \ {v}].
In what follows, H stands for the graph with V (H) = {u, v, z, w, p, p1, p2, p3} and E(H) = {uv, vz, zw, wu, p1p3, p2p3,

pu, pv, pz, pw, pp1, pp2, pp3} and H ′ denotes the graph obtained from H by deleting the edge pp3. For an illustration, see
Fig. 1. For any n ≥ 3, we use the notation Cn = (v1v2 · · · vn) for the cycle of length n, namely the graph with vertex set
{v1, . . . , vn} and edge set {v1v2, v2v3, . . . , vn−1vn, vnv1}. The path of length n, denoted Pn, is the graph obtained from Cn+1
by deleting one edge. The complete graph Kn is the graph on n vertices and E(G) =

(
V (G)
2

)
. For a graph G and a class of graphs

C , we say thatG is a forbidden subgraph for C provided nomember of C hasG as an induced subgraph andwe callG aminimal
forbidden subgraph for C if it is a forbidden subgraph for C but none of its proper induced subgraphs are.
Let S be a set of points ofR2. For any p ∈ S, put SW (p) = {(x′, y′) ∈ S : x′ < x and y′ < y} andNE(p) = {(x′, y′) ∈ S : x′ >

x and y′ > y}. Let GS designate the graph with vertex set S and edge set {pq : NE(p)∩NE(q) 6= ∅ and SW (p)∩ SW (q) 6= ∅}.
Since the set S determines a poset of dimension at most two [1,2,10], we call GS the double competition graph of a poset
of dimension at most two [5–7,9,11,12]. We mention that the dimension of any poset P = (V , <) is the minimum positive
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Fig. 1. The graphs H and H ′ .

integer n for which there is a mapping from V to Rn such that p < q in P if and only if all components of f (q) − f (p) are
positive.
LetD = {GS : S ⊆ R2}. The graph classD was first introduced and studied by Kim, Kim and Rho [7]. Developing the work

in [7], Wu and Lu [12] showed some necessary conditions for a graph to lie in D , including that D is a proper subclass of
trapezoid graphs. This paper aims to further understand the structure of D . We list our main results below which combine
to assert that both H and H ′ are minimal forbidden subgraphs for D .

Theorem 1. H and H ′ are both forbidden subgraphs for D .

Theorem 2. No proper induced subgraphs of either H or H ′ can be forbidden subgraphs for D .

2. Proof of Theorem 1

In this section we fix the notation S to refer to a nonempty subset of R2. For any point p = (x, y) ∈ R2, we write X(p)
and Y (p) for x and y, respectively. Let

SE(p) = {p′ ∈ S : p′ 6= p, X(p′) ≥ X(p), Y (p′) ≤ Y (p)},
NW (p) = {p′ ∈ S : p′ 6= p, X(p′) ≤ X(p), Y (p′) ≥ Y (p)},

and
US = {

−→pq : p ∈ S, q ∈ SW (p)} = {−→pq : q ∈ S, p ∈ NE(q)},
VS = {

−→pq : p ∈ S, q ∈ SE(p)} = {−→pq : q ∈ S, p ∈ NW (q)}.
For any p, p′ ∈ S, an observation which will be used often implicitly is:
SW (P) ∩ SW (p′) = SW ((min{X(p), X(p′)},min{Y (p), Y (p′)})),
NE(P) ∩ NE(p′) = NE((max{X(p), X(p′)},max{Y (p), Y (p′)})).

In particular, if X(p) ≤ X(p′) and Y (p) ≤ Y (p′), which is surely the case when
−→
p′p ∈ US , we have

SW (p) ⊆ SW (p′) and NE(p′) ⊆ NE(p). (1)
We are ready to go into a discussion of the point distributions which are enforced by the appearance of several small

induced subgraphs of GS . The proof of Theorem 1 will follow quickly from these discussions.

2.1. 2P1

Lemma 3. Let a, b, c be three points of S such that ab ∈ E(GS), ac, bc 6∈ E(GS) and c is not isolated in GS . Then we have either
c ∈ NW (a) ∩ NW (b) or c ∈ SE(a) ∩ SE(b).

Proof. Without loss of generality, there are two cases to consider,
−→
ab ∈ US or

−→
ab ∈ VS .

Case 1:
−→
ab ∈ US . In light of the observation in Eq. (1) and the fact that ac, bc 6∈ E(GS) and that none of a, b, c is isolated, we

conclude that c 6∈ NE(b) ∪ SW (a) and hence c ∈ (NW (a) ∩ NW (b)) ∪ (SE(a) ∩ SE(b)) follows.

Case 2:
−→
ab ∈ VS . By observation in Eq. (1) and the fact that ac, bc 6∈ E(GS) and that none of a, b, c is isolated, we have

c 6∈ NE(a) ∪ SW (a) ∪ NE(b) ∪ SW (b). Hence, to finish the proof we need to exclude the possibility that it holds both
X(a) ≤ X(c) < X(b) and Y (b) ≤ Y (c) < Y (a). But for such a case, we will have SW (c) ⊇ SW (a) ∩ SW (b) and
NE(c) ⊇ NE(a) ∩ NE(b). We thus deduce from ab ∈ E(GS) that ac, bc ∈ E(GS), a contradiction. �

Lemma 4. Suppose that p, p′, r, r ′ ∈ S are four vertices such that GS[p, p′, r, r ′] has only two edges pp′ and rr ′. Then it holds
either r, r ′ ∈ NW (p) ∩ NW (p′) or r, r ′ ∈ SE(p) ∩ SE(p′).
Proof. Putting a = p, b = p′, c = r or r ′ in Lemma 3, we get that r, r ′ ∈ (NW (a) ∩ NW (b)) ∪ (SE(a) ∩ SE(b)). Note
that for any point t ∈ NW (a) ∩ NW (b) and any point t ′ ∈ SE(a) ∩ SE(b), it holds that a, b 6∈ NW (t) ∪ SE(t ′) =
(NW (t) ∩ NW (t ′)) ∪ (SE(t) ∩ SE(t ′)). Now taking a = r, b = r ′, c = p or p′ in Lemma 3, we arrive at the required
claim. �
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2.2. P2

Lemma 5. Suppose p1, p2, p ∈ S are three points such that GS[p1, p2, p] contains just two edges p1p and p2p. Then neither
{
−→pp1,
−→pp2} ⊆ VS nor {

−→p1p,
−→p2p} ⊆ VS can happen.

Proof. Our strategy is to deduce from {−→pp1,−→pp2} ⊆ VS and {
−→p1p,
−→p2p} ⊆ VS , respectively, that p1p2 ∈ E(GS), yielding a

contradiction.
Suppose {−→pp1,

−→pp2} ⊆ VS . Then we know that there is s ∈ S such that X(s) > max{X(p1), X(p2)} and Y (s) > Y (p) ≥
max{Y (p1), Y (p2)} and there is s′ ∈ S such that Y (s′) < min{Y (p1), Y (p2)} and X(s′) < X(p) ≤ min{X(p1), X(p2)}. This
implies that s ∈ NE(p1) ∩ NE(p2) and s′ ∈ SW (p1) ∩ SW (p2). Consequently, p1p2 ∈ E(GS), as desired.
Suppose {−→p1p,

−→p2p} ⊆ VS . Then we know that there is s ∈ S such that Y (s) > max{Y (p1), Y (p2)} and X(s) > X(p) ≥
max{X(p1), X(p2)} and there is s′ ∈ S such that X(s′) < min{X(p1), X(p2)} and Y (s′) < Y (p) ≤ min{Y (p1), Y (p2)}. This
implies that s ∈ NE(p1) ∩ NE(p2) and s′ ∈ SW (p1) ∩ SW (p2). Consequently, p1p2 ∈ E(GS), as wanted. �

2.3. K5 − 2P1

Lemma 6 ([7, Theorem 8][12, Lemma 38]). Suppose that (uvzw) = GS[u, v, z, w]. Then after a suitable relabeling of the four
vertices u, v, z, w ∈ R2, we must have

−→uv,
−→zw ∈ US and −→uz ,−→vw ∈ VS . (2)

Lemma 7. Let (uvzw) be an induced cycle of GS such that Eq. (2) holds. Then

(1) SW (v), SW (w),NE(u) and NE(z) are all nonempty;
(2) SW (v) ∩ SW (w) = ∅ and NE(u) ∩ NE(z) = ∅.

Proof. (1) This is obviously true as none of u, v, z, w is isolated in GS .
(2) Since vw 6∈ E(GS), to show that SW (v) ∩ SW (w) = ∅, it suffices to demonstrate that NE(v) ∩ NE(w) 6= ∅. But

Eqs. (1) and (2) guarantee that NE(v) ⊇ NE(u) while uw ∈ E(GS) tells us that NE(u) ∩ NE(w) 6= ∅. It thus follows
NE(v) ∩ NE(w) ⊇ NE(u) ∩ NE(w) 6= ∅, as was to be shown.
Since uz 6∈ E(GS), to show that NE(u) ∩ NE(z) = ∅, it suffices to demonstrate that SW (u) ∩ SW (z) 6= ∅. But

Eqs. (1) and (2) guarantee that SW (z) ⊇ SW (w) while uw ∈ E(GS) tells us that SW (u) ∩ SW (w) 6= ∅. It hence follows
SW (u) ∩ SW (z) ⊇ SW (u) ∩ SW (w) 6= ∅, finishing the proof. �

Let (uvzw) be an induced cycle of GS for which Eq. (2) holds. Eq. (2) along with Lemma 7 allows us to pick x1, x2, y1, y2
such that

x1 = min{X(q) : q ∈ SW (w)}, x2 = max{X(q) : q ∈ NE(u)},
y1 = min{Y (q) : q ∈ SW (v)}, y2 = max{Y (q) : q ∈ NE(z)}.

(3)

An immediate consequence of Eq. (3) is that

SW ((x1, Y (w))) = SW ((X(v), y1)) = NE((x2, Y (u))) = NE((X(z), y2)) = ∅. (4)

We further defineRu,v,z,w(S) to be

{p ∈ S : x1 < X(p) < x2 and y1 < Y (p) < y2}

and call it the rectangle determined by (uvzw). For an illustration, see Fig. 2.
It is easy to see that for any p ∈ Ru,v,z,w(S)we have

X(v) < X(p) < X(z) and Y (w) < Y (p) < Y (u). (5)

Lemma 8. Suppose (uvzw) is an induced subgraph of GS such that Eq. (2) holds. Let x1, x2, y1, y2 ∈ R be as specified in Eq. (3).
Then, we have the followings:

(1) If X(p) ≤ x1, then pw 6∈ E(GS).
(2) If Y (p) ≤ y1, then pv 6∈ E(GS).
(3) If X(p) ≥ x2, then pu 6∈ E(GS).
(4) If Y (p) ≥ y2, then pz 6∈ E(GS).
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Fig. 2. The shaded part is the rectangleRu,v,z,w(S) determined by (uvzw).

Proof. (1) If X(p) ≤ x1, then

SW (p) ∩ SW (w) = SW ((min{X(p), X(w)},min{Y (p), Y (w)})) ⊆ SW ((x1, Y (w))).

By Eq. (4), we get SW (p) ∩ SW (w) = ∅ and hence pw 6∈ E(GS) follows.
(2) If Y (p) ≤ y1, then

SW (p) ∩ SW (v) = SW ((min{X(p), X(v)},min{Y (p), Y (v)})) ⊆ SW ((X(v), y1)).

By Eq. (4), we obtain SW (p) ∩ SW (v) = ∅ and hence pv 6∈ E(GS) follows.
(3) If X(p) ≥ x2, then

NE(p) ∩ NE(u) = NE((max{X(p), X(u)},max{Y (p), Y (u)})) ⊆ NE((x2, Y (u))).

By Eq. (4), we have NE(p) ∩ NE(u) = ∅ and thus yield pu 6∈ E(GS).
(4) If Y (p) ≥ y2, then

NE(p) ∩ NE(z) = NE((max{X(p), X(z)},max{Y (p), Y (z)})) ⊆ NE((X(z), y2)).

It follows from Eq. (4) that NE(p) ∩ NE(z) = ∅. This implies that pz 6∈ E(GS) and then we are done. �

Lemma 9. Let S ′ = {u, v, z, w, p} ⊂ S. If E(GS[S ′]) =
(
S′

2

)
\ {uz, vw}, then, up to vertex relabeling, Eq. (2) holds and

p ∈ Ru,v,z,w(S).

Proof. Lemmas 6 and 8 conspire to give this result. �

2.4. Final proof

Proof of Theorem 1. Let H∗ denote the graph H or H ′. We assume that H∗ is an induced subgraph of GS and try to derive a
contradiction. Note that for our arguments below to hold whether or not pp3 ∈ E(H∗) does not matter. Applying Lemma 9
to the subgraph GS[u, v, z, w, p], we can without loss of generality assume that u, v, z, w satisfy Eq. (2) and know that

p ∈ Ru,v,z,w(S). (6)

We proceed to make use of Lemma 4 on GS[z, w, p1, p3], GS[z, w, p2, p3], GS[u, v, p1, p3], GS[u, v, p2, p3], GS[u, w, p1, p3],
GS[u, w, p2, p3], GS[z, v, p1, p3] and GS[z, v, p2, p3]. According to Eq. (2), what we obtain is the fact that it holds either

p1, p2, p3 ∈ SE(z) ∩ SE(w), (7)

or

p1, p2, p3 ∈ NW (u) ∩ NW (v). (8)

We next turn to GS[p, p1, p2] and conclude from Lemma 5 that neither {
−→pp1,
−→pp2} ⊆ VS nor {

−→p1p,
−→p2p} ⊆ VS can happen.

But Eqs. (5) and (6) together with Eq. (7) give {−→pp1,
−→pp2} ⊆ VS while Eqs. (5) and (6) together with Eq. (8) bring to us

{
−→p1p,
−→p2p} ⊆ VS . This violates our former conclusion and then ends the proof. �

3. Proof of Theorem 2

A graph G is an interval graph if each v ∈ V (G) can be assigned an interval Iv on the real line such that uv ∈ E(G) if and
only if Iu ∩ Iv 6= ∅. An asteroidal triple in a graph is a triple of (independent) vertices such that between any two there exists
a path avoiding the (closed) neighborhood of the third.
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Fig. 3. H∗ − p, H∗ − p1 and H∗ − p3 as induced subgraphs of GS .

Lemma 10 (Lekkerkerker and Boland [8]). A graph is an interval graph if and only if it has no asteroidal triple and it does not
contain any cycle of length greater than or equal to four as an induced subgraph.

Lemma 11 (Kim, Kim and Rho [7, Theorem 10]). Every interval graph is an induced subgraph of GS for some S ⊆ R2.

Proof of Theorem 2. Let H∗ stand for either H or H ′. Our task is to show that for any b ∈ V (H∗), H∗ − b can be an induced
subgraph of GS for some S ⊆ R2.
Suppose b ∈ {u, v, z, w}. Using Lemma 10, we can check that H∗ − b is an interval graph. Henceforth, the result follows

from Lemma 11.
Observe that H∗ − p1 and H∗ − p2 are isomorphic. So it remains to consider b ∈ {p, p1, p3}. We give the distributions of

S ⊆ R2 in Fig. 3 for which GS has H∗− b as induced subgraphs for b = p, p1, p3 from left to right, respectively. Note that we
use a bullet for the location of any point from {u, v, z, w, p, p1, p2, p3} and a circle for each remaining point in S. Also note
that for the middle picture, we should remove the point a to kill the edge pp3 when H∗ = H ′. In all these cases, each point
indicated by a circle is an isolated vertex in GS . �

4. Concluding remarks

The incomparability graph of a poset P = (V , <) is the graph with vertex set V and edge set {uv ∈
(
V
2

)
: neither u < v

nor v < u holds }. Due to the earlier work on the graph class D [7,12], to show that G 6∈ D , we can proceed as follows: if G is
not an incomparability graph, thenG 6∈ D; if G is an incomparability graph of a poset P , then construct two associated graphs
DP andBP and if either of them is not bipartite we also conclude that G 6∈ D . It has been shown that G is the incomparability
graph of a poset P with a bipartiteDP if and only ifG is a trapezoid graph [3,4]while for any incomparability graphG of a poset
P ,BP is totally determined by G and does not depend on the choice of P [12]. We can find posets P and P ′ with respective
incomparability graphs H and H ′ such thatBP , DP , BP ′ , DP ′ are all bipartite. This means that our Theorem 1 does detect a
new obstruction for a graph to lie in D . It is known that the set of forbidden subgraphs for the double competition graphs
of posets of dimension one is just the set of all graphs other than the disjoint unions of complete graphs [12, Example 3]. It
is not clear whether or not a good forbidden subgraph characterization for D will be possible. We also wonder whether H
and/or H ′ could be an induced subgraph of the double competition graph of a poset of dimension 3.
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