Attractors for a second order nonautonomous lattice dynamical system with nonlinear damping

Xiaoming Fana,b,*, Yaguang Wangb

a School of Applied Mathematics, University of Electronic Science and Technology, Chengdu 610054, PR China
b Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, PR China

Received 11 February 2006; received in revised form 13 December 2006; accepted 18 December 2006
Available online 20 December 2006
Communicated by A.P. Fordy

Abstract

In this Letter, the existence of compact pullback attractors is considered for a second order nonautonomous lattice dynamical system with nonlinear damping arising from spatial discretization of wave equations in \mathbb{R}^k. And the finite-dimensional approximations of the attractors are studied. Finally, an upper bound of fractal dimension of the attractors is obtained.

© 2006 Elsevier B.V. All rights reserved.

MSC: 37L60; 37L30

Keywords: Lattice system; Pullback attractor; Approximation; Fractal dimension

1. Introduction

Lattice dynamical systems (LDSes) are infinite systems of ordinary differential equations (lattice ODEs) or of difference equations [2]. Lattice systems arise in many applications, for example, in chemical reaction theory [11,16], image processing and pattern recognition [10,15,19], material science [6,13], biology [5,17,18], electrical engineering, laser systems [12], etc. They possess their own form, but in some cases, they arise as spatial discretizations of partial differential equations.

Let $k \in \mathbb{N}$ be a fixed positive integer. Denote by

$$\ell^2 = \left\{ u \mid u = (u_i)_{i_1,i_2,\ldots,i_k} \in \mathbb{Z}^k, u_i \in \mathbb{R}, \sum_{i \in \mathbb{Z}^k} |u_i|^2 < +\infty \right\},$$

where \mathbb{Z} is the set of integers. Define a linear operator A acting on ℓ^2 in the following way: for any $u = (u_i)_{i_1,i_2,\ldots,i_k} \in \ell^2$, $i = (i_1,i_2,\ldots,i_k) \in \mathbb{Z}^k$,

$$(Au)_{i_1,i_2,\ldots,i_k} = 2ku_{i_1-1,i_2,\ldots,i_k} - u_{i_1,i_2-1,\ldots,i_k} - u_{i_1,i_2,\ldots,i_k-1} - \cdots - u_{i_1,i_2,\ldots,i_k+1} - u_{i_1+1,i_2,\ldots,i_k} - u_{i_1,i_2+1,\ldots,i_k} - \cdots - u_{i_1,i_2,\ldots,i_k+1}.$$

In this Letter, we will consider the following second order damped nonautonomous lattice dynamical system:

$$\begin{cases}
\ddot{u} + h'(\dot{u}) + Au + \lambda u + \tilde{g}(u,t) = \tilde{q}(t), & t \geq \tau, \quad \tau \in \mathbb{R}, \\
u(\tau) = (u_{i_0})_{i_1,i_2,\ldots,i_k} = u_0, & \dot{u}(\tau) = (u_{i_0})_{i_1,i_2,\ldots,i_k} = u_{i_0}.
\end{cases}$$

* Corresponding author.
E-mail address: fanxm@uestc.edu.cn (X. Fan).

0375-9601/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
where $\lambda > 0$, $u = (u_i)_{i \in \mathbb{Z}^d}$, $\dot{u} = (\dot{u}_i)_{i \in \mathbb{Z}^d}$ and $\ddot{u} = (\ddot{u}_i)_{i \in \mathbb{Z}^d}$ denote the first and the second order time derivatives respectively, and $h(\dot{u}) = (h(\dot{u}_i))_{i \in \mathbb{Z}^d}$, $\ddot{q}(u, t) = (g(q_i(t)))_{i \in \mathbb{Z}^d} \in \mathcal{C}_b(\mathbb{R}, \ell^2)$, the space of bounded continuous functions (operators) from \mathbb{R} into ℓ^2.

The equation in (1) can be regarded as a discrete analogue of the following nonautonomous wave equation in \mathbb{R}^k

$$\partial_t u + h(\partial_t u) - \Delta u + \lambda u + g(u, t) = q(x, t)$$

(2)

which arises in various areas of mathematical physics, where Δ is the Laplace operator.

Recently, various properties of the solutions to lattice dynamical systems have been studied by many authors (see [1,3,4] and the references therein). Bates et al. in [4] proved the existence of a global attractor for the first-order autonomous lattice dynamical systems and investigated the approximation of the attractor by the corresponding ones of finite-dimensional ordinary differential equations. Zhou [21–23] applied these results to study the first order and the second order dissipative autonomous lattice dynamical systems and investigated the approximation of the attractor by the corresponding ones of finite-dimensional ordinary differential equations.

Definition 2. A family $\mathcal{A} = \{\mathcal{A}(t)\}_{t \in \mathbb{R}}$ of nonempty subsets of \mathbb{R} is called a pullback absorbent family if for any $\tau \in \mathbb{R}$ and $u_0 \in \mathcal{A}(\tau)$, there exists a unique weak solution $u(t) = u(t; \tau, u_0)$ satisfying

$$\left\{ \begin{array}{l}
\frac{du}{dt} = F(u, t), \quad t > \tau, \\
u(\tau) = u_0
\end{array} \right.$$

(3)

and $u \in C([\tau, T]; \mathcal{H}), F(u(t), t) \in L^1(\tau, T; \mathcal{H}^*)$, for any fixed $T > \tau$. Define the solution operator $U(t, \tau) (t \geq \tau)$ as $U(t, \tau)u_0 = u(t; \tau, u_0)$, $\tau \leq t$, $u_0 \in \mathcal{A}(\tau)$. We know that the map family $\{U(t, \tau)\}_{t \geq \tau}$ is a process determined by (3). In this Letter, we shall always denote dist the Hausdorff semidistance of sets as follows:

$$\text{dist}(B, C) = \sup_{x \in B} \inf_{y \in C} \|x - y\|$$.

for any $B, C \subset \mathcal{H}$.

Denote $\mathcal{P}(\mathcal{H})$ the family of all nonempty subsets of \mathcal{H}, and \mathfrak{T} the class of all families $\mathcal{D} = \{D(t), t \in \mathbb{R}\} \subset \mathcal{P}(\mathcal{H})$. For a given nonempty subclass $\mathcal{D} \subset \mathfrak{T}$, we introduce:

Definition 1. The process $U(t, \tau)$ is said to be pullback \mathcal{D}-asymptotically compact if for any fixed t, and $\mathcal{D} = \{D(t), t \in \mathbb{R}\} \in \mathcal{D}$, and any sequences $t_n \to +\infty$, $x_n \in D(-t_n)$, the sequence $\{U(t_n, -t_n)x_n\}_{n \geq 1}$ possesses a convergent subsequence.

Definition 2. A family $\mathcal{B} = \{B(t), t \in \mathbb{R}\} \subset \mathfrak{T}$ is said to be pullback \mathcal{D}-absorbing if for any $\mathcal{D} = \{D(t), t \in \mathbb{R}\} \in \mathcal{D}$, there exists $T_0(\mathcal{D})$ such that

$$U(t, \tau)D(t) \subset B(t), \quad \text{for all } \tau \leq t - T_0(\mathcal{D}).$$

Definition 3. A family $\mathcal{C} = \{C(t), t \in \mathbb{R}\} \subset \mathfrak{T}$ is said to be pullback \mathcal{D}-attracting if for all $\mathcal{D} = \{D(t), t \in \mathbb{R}\} \in \mathcal{D}$,

$$\lim_{\tau \to -\infty} \text{dist}(U(t, \tau)D(t), C(t)) = 0.$$
\textbf{Definition 4.} Let $\hat{A} = \{A(t)\}_{t \in \mathbb{R} \in \mathcal{R}}$ be a time dependent family of compact sets. \hat{A} is said to be a (global) pullback \mathcal{D}-attractor ($A(t)$ is a pullback attractor at the time t) if it satisfies

1. \hat{A} is pullback \mathcal{D}-attracting,
2. \hat{A} is invariant, i.e.

$$U(t, \tau)A(\tau) = A(t), \quad \text{for all } t \geq \tau.$$

\textbf{Theorem 1.} Suppose the process $U(t, \tau)$ determined by (3) is pullback \mathcal{D}-asymptotically compact, and there exists $\hat{B} = \{B(t), \quad t \in \mathbb{R}\}_{t \in \mathcal{D}}$ which is pullback \mathcal{D}-absorbing. Then, the family \hat{A} is defined by

$$A(t) = \bigcup_{s \geq 0} \bigcup_{\tau \geq s} U(t, -\tau)B(-\tau)$$

is a global pullback \mathcal{D}-attractor which is minimal in the sense that if $\hat{C} \in \mathcal{R}$ is a family such that $C(t)$ is closed and $\lim_{t \to -\infty} \text{dist}(U(t, \tau)B(\tau), C(t)) = 0$, then $\hat{A}(t) \subset C(t)$ here.

As the proof of this theorem repeats that of Theorem 7 in [8], with slight modifications, we will omit it here.

For any $u = (u_i)_{i \in \mathbb{Z}_k} \in \ell^2$, $i = (i_1, i_2, \ldots, i_k) \in \mathbb{Z}_k^2$, we shall always denote by $\|i\| = \max_{1 \leq j \leq k} |i_j|$ in the following discussion. For any $u = (u_i)_{i \in \mathbb{Z}_k} \in \ell^2, i = (i_1, i_2, \ldots, i_k) \in \mathbb{Z}_k$, define the operators B_j, \tilde{B}_j and $A_j, j \in \{1, 2, \ldots, k\}$ from ℓ^2 to itself as follows:

$$\ell_j - \hat{B}_ju_i = u(i_1, i_2, \ldots, i_k) - u(i_1, i_2, \ldots, i_k), \quad \ell_j - \hat{B}_ju_i = u(i_1, i_2, \ldots, i_k) - u(i_1, i_2, \ldots, i_k),$$

$$\ell_j - \hat{B}_ju_i = 2u(i_1, i_2, \ldots, i_k) - u(i_1, i_2, \ldots, i_k) - u(i_1, i_2, \ldots, i_k). \quad (4)$$

Obviously, we have

$$A = A_1 + A_2 + \cdots + A_k, \quad A_j = B_j \tilde{B}_j = \tilde{B}_j B_j, \quad j = 1, 2, \ldots, k. \quad (5)$$

For any $u = (u_i)_{i \in \mathbb{Z}_k}, v = (v_i)_{i \in \mathbb{Z}_k} \in \ell^2$, we define their inner products and norms as follows

$$(u, v) = \sum_{i \in \mathbb{Z}_k} u_i v_i, \quad \|u\| = \left(\sum_{i \in \mathbb{Z}_k} |u_i|^2 \right)^{1/2},$$

$$(u, v)_k = \sum_{j=1}^k (B_j u, B_j v) + \lambda(u, v), \quad \|u\|_k = \sum_{j=1}^k \|B_j u\|^2 + \|u\|.$$

It is obvious that for any $u = (u_i)_{i \in \mathbb{Z}_k} \in \ell^2$,

$$\|B_j u\|^2 \leq 4\|u\|^2, \quad \lambda(u, v)_k \leq \|u\|_k^2 \leq (4k + \lambda)\|u\|^2.$$ \quad (7)

So, the norms $\| \cdot \|$ and $\| \cdot \|_k$ are equivalent to each other. By using (5), we obtain for any $u = (u_i)_{i \in \mathbb{Z}_k}, v = (v_i)_{i \in \mathbb{Z}_k} \in \ell^2$

$$(Au, v) = \sum_{j=1}^k (B_j u, B_j v) = \sum_{j=1}^k (\tilde{B}_j u, \tilde{B}_j v). \quad (8)$$

Denote by ℓ^2, ℓ^2_k the spaces with the inner products and norms in (6), respectively,

$$\ell^2 = \ell^2(\ell, \ell, \| \cdot \|), \quad \ell^2_k = \ell^2(\ell, \ell, \| \cdot \|_k)$$

then ℓ^2 is a Hilbert space. By (7), ℓ^2_k is also a Hilbert space.

Let $E = \ell^2_k \times \ell^2$ endowed with the inner product and norm as: for any $\varphi_j = (u^{(j)}_i, v^{(j)}_i) = ((u^{(j)}_i), (v^{(j)}_i))_{i \in \mathbb{Z}_k} \in E, j = 1, 2$,

$$(\varphi_1, \varphi_2)_E = (u^{(1)}_i, v^{(1)}_i) + (v^{(1)}_i, v^{(1)}_i), \quad \|\varphi\|_E^2 = \|u\|_k^2 + \|v\|^2, \quad \forall \varphi = (u, v) = ((u_i), (v_i))_{i \in \mathbb{Z}_k} \in E.$$

For convenience, we often denote $\|\varphi\|_E^2 = \sum_{i \in \mathbb{Z}_k} \|\varphi_i\|^2$ where $\varphi = (\varphi_i)_{i \in \mathbb{Z}_k} \in E$.

Let $G(s, t) = \int_0^t g(r, t)dr$. For the problem (1), we always assume that there exist four positive constants c_1, c_2, α_1 and α_2 such that

(H1) $g(0, 0) \equiv 0, \sg s, t \geq c_1 G(s, t) \geq 0, \forall s, t \in \mathbb{R}.$

(H2) $G'(s, t) \leq c_2 G(s, t), \forall s, t \in \mathbb{R}, (0 < c_2 \leq \frac{c_1}{2})$. \varepsilon is as (9) below).
Theorem 2. There exists a nondecreasing continuous function $K(r) : \mathbb{R}^+ \to \mathbb{R}^+$ with $K(0) = 0$ such that
\[
\sup_{t \in \mathbb{R}} \sup_{|s| \leq t} |g'_j(s, t)| \leq K(r),
\]
where $\mathbb{R}^+ = [0, +\infty)$.

(H4) $h(0) = 0$, $\alpha_1 \leq h'(s) \leq \alpha_2$, $\forall s \in \mathbb{R}$.

Then (1) can be written as
\[
\begin{aligned}
\dot{S}(t, \tau) &\in \mathbb{R}^2 \\
&= S(t, \tau)B + \frac{\varepsilon}{2} \left| \int_0^1 \dot{h}(v(t) - \varepsilon u(t)) - \varepsilon (v(t) - \varepsilon u(t)) + A_0 u(t) + \lambda u(t) \right| dt,
\end{aligned}
\]
where
\[
\begin{aligned}
H(\varphi) &= \left(\frac{\varepsilon}{2} |v(t) - \varepsilon u(t) - \varepsilon (v(t) - \varepsilon u(t)) + A_0 u(t) + \lambda u(t)| \right), \\
F(\varphi, t) &= \left(\frac{0}{-\bar{g}(u(t)) \bar{q}(t)} \right).
\end{aligned}
\]
From (H3) and (H4), it is easily checked that $-H(\varphi) + F(\varphi, t)$ is locally Lipschitz continuous in φ from E to E. By the standard theory of differential equations, we obtain the existence and uniqueness of a local solution to the system (10) with initial data $\varphi(\tau) = \varphi_0 \in E$.

Theorem 2. For any initial data $\varphi_0 = (u_0, v_0)^T \in E$, there exists a unique local solution $\varphi(t) = (u(t), v(t))^T$ of (10) with $\varphi(\tau) = \varphi_0$ such that $\varphi(t) \in C^1([\tau, \tau + T], E)$ for any $T > 0$. Furthermore, $\varphi(t) = \varphi(t, \varphi_0)$ is continuous on φ_0 in E.

In fact, it will be showed in Lemma 2 below that the local $\varphi(t)$ of (10) exists globally, that is, $\varphi(t) \in C^1([\tau, +\infty), E)$. It implies that the map
\[
S(t, \tau) : \varphi(\tau) = \varphi_0 \mapsto \varphi(t), \quad E \mapsto E
\]
(11)
generates a continuous process from E to itself.

We present a positivity of the nonlinear operator $H(\varphi)$, which will play an important role later.

Lemma 1. For any $\varphi = (u, v)^T \in E$,
\[
(H(\varphi), \varphi)_E \geq \frac{\varepsilon}{2} \|v\|^2 + \frac{\alpha_1}{2} \|v\|^2.
\]

Proof. By definition, we have
\[
(H(\varphi), \varphi)_E = \varepsilon \|Bu\|^2 + \lambda \|u\|^2 + \varepsilon^2 (u, v) + (\bar{h}(v - \varepsilon u), v) - \varepsilon \|v\|^2
\]
and by using the mean value theorem and (H4),
\[
\epsilon^2 (u, v) + (\bar{h}(v - \varepsilon u), v) = \epsilon^2 (u, v) + \sum_{i \in \mathbb{Z}^2} \bar{h}'(\tau_i (v_i - \varepsilon u_i)) (v_i - \varepsilon u_i) v_i \geq \alpha_1 \|v\|^2 - \varepsilon (\alpha_2 - \epsilon) \|u\| \cdot \|v\|, \quad \tau_i \in (0, 1)
\]
follows
\[
(H(\varphi), \varphi)_E - \frac{\varepsilon}{2} \|v\|^2 - \frac{\alpha_1}{2} \|v\|^2 \geq \frac{\varepsilon}{2} \|Bu\|^2 + \lambda \|u\|^2 + \left(\frac{\alpha_1}{2} - \frac{3\varepsilon}{2} \right) \|v\|^2 - \frac{\varepsilon \alpha_1}{\sqrt{\lambda}} \|Bu\|^2 + \lambda \|u\|^2)^{1/2} \|v\|
\]
which implies the conclusion by noting
\[
\epsilon (\alpha_1 - 3\varepsilon) = \frac{\epsilon^2 \alpha_2}{\lambda}. \quad \Box
\]

Lemma 2. There exists an open ball $O = O(0, r_0)$ of E, centered at 0 with radius r_0, such that for any bounded set B of E, there exists $T_0(B) > 0$ (independent of t) such that
\[
S(t, \tau) B \subset O, \quad \forall \tau \leq t - T_0(B), \text{ fixed } t
\]
which implies that the process $S(t, \tau)$ possesses a bounded absorbing set in E.

Proof. Let \(\varphi(t) = (u(t), v(t))^T \) be the solution of (10) with the initial data \(\varphi_0 = (u_0, v_0)^T \), where \(v(t) = \bar{u} + \varepsilon u \). Taking the inner product \((\cdot, \cdot)\) on both sides of the system (10) with \(\varphi(t) \), it follows

\[
\frac{1}{2} \frac{d}{dt} \| \varphi(t) \|_E^2 + (H(\varphi(t)), \varphi(t)) + (\bar{g}(u(t), \bar{u}) + \varepsilon \tilde{g}(u(t), u), \varphi(t)) = (\tilde{\varphi}, v).
\]

(12)

By (H1) and (H2), we have

\[
e(\bar{g}(u,t), u) \geq \varepsilon c_1 \sum_{i \in \mathbb{Z}^k} G(u_i,t) = \varepsilon c_1 G(u,t),
\]

(13)

\[
(\bar{g}(u,t), \dot{u}) = \sum_{i \in \mathbb{Z}^k} \left(g(u_i,t), \dot{u}_i \right) = \frac{d}{dt} \sum_{i \in \mathbb{Z}^k} G(u_i,t) - \sum_{i \in \mathbb{Z}^k} G_t(u_i,t) \geq \frac{d}{dt} \tilde{G}(u,t) - \frac{\varepsilon c_1}{2} \tilde{G}(u,t)
\]

(14)

where \(\tilde{G}(u,t) = \sum_{i \in \mathbb{Z}^k} G(u_i,t) \).

Let \(\kappa = \min\{1, \frac{1}{2}\} \) and

\[
y(t) = \| \varphi(t) \|_E^2 + 2\tilde{G}(u,t) \geq \| \varphi(t) \|_E^2.
\]

(15)

By Lemma 1, (13)–(15) and the Cauchy inequality, we easily obtain

\[
\frac{d}{dt} y + \varepsilon \kappa y \leq \frac{1}{\varepsilon c_1} \sup_{t \in \mathbb{R}} \tilde{q}(t) \| \varphi(t) \|_E^2.
\]

(16)

By the Gronwall inequality and (15), we have

\[
\| \varphi(t) \|_E^2 \leq y(t) e^{-\varepsilon \kappa (t - \tau)} + \frac{1}{\varepsilon \kappa c_1} \sup_{t \in \mathbb{R}} \tilde{q}(t) \| \varphi(t) \|_E^2 (1 - e^{-\varepsilon \kappa (t - \tau)}).
\]

(17)

By (H1) and (H3), it follows

\[
\sum_{i \in \mathbb{Z}^k} G(u_{i0},t) \leq \frac{1}{c_1} \sum_{i \in \mathbb{Z}^k} \left(u_{i0}, g(u_{i0},t) \right) \leq \frac{1}{c_1} \sup_{t \in \mathbb{R}} \| \varphi(t) \|_E^2,
\]

where \(\| u_0 \| \leq r \). So, from (17) we get

\[
\| \varphi(t) \|_E^2 \leq \left(1 + \frac{2}{c_1 \lambda} \right) r^2 e^{-\varepsilon \kappa (t - \tau)} + \frac{1}{\varepsilon \kappa c_1} \sup_{t \in \mathbb{R}} \| \tilde{q}(t) \|_E^2,
\]

(18)

where \(\| \varphi_0 \|_E \leq r \). For any bounded set \(B \) of \(E \), \(B \subseteq O(0,r(B)) \) where \(r(B) = \sup_{y \in B} \| y \|_E \), there exists \(T_0(B) \geq 0 \) such that for any \(s \geq T_0(B) \)

\[
\left(1 + \frac{2}{c_1 \lambda} \right) r^2 e^{-\varepsilon \kappa s} \leq \frac{1}{2} r^2_0,
\]

where \(r^2_0 = \frac{2}{\varepsilon \kappa c_1} \sup_{t \in \mathbb{R}} \| \tilde{q}(t) \|_E^2 \). By (18), the assertion is ensured. \(\square \)

By (18), we easily obtain

Corollary 1. There exists \(T_0 = T_0(r_0) \geq 0 \) such that \(S(t, \tau)O \subseteq O \) for any \(\tau \leq t - T_0 \), fixed \(t \).

Notation. We shall always see \(O, r_0 \) and \(T_0 \) as given in Lemma 2 and Corollary 1 in the following discussion.

By Lemma 2, we know that the trajectory starting from any bounded set finally enters into \(O(0,r_0) \). From now on, we denote by \(\mathcal{D} \) the class of all families \(\mathcal{D} = \{ D(t), t \in \mathbb{R} \} \subseteq \mathcal{P}(E) \) such that \(D(t) \subseteq O(0,r_0) \), where \(\mathcal{P}(E) \) is the class of all nonempty subsets of \(E \) and \(O(0,r_0) \) is the closed ball of \(O(0,r_0) \) in \(E \). To obtain the existence of pullback \(\mathcal{D} \)-attractor for the process \(\{ S(t, \tau) \}_{t \geq \tau} \) associated with (10) in \(E \), we need to prove the pullback asymptotic compactness of \(\{ S(t, \tau) \}_{t \geq \tau} \). For this purpose, we first give an important lemma as follows:

Lemma 3. Let \(\varphi(t) = (u(t), v(t))^T \) be the solution of (10) with initial data \(\varphi_0 = (u_0, v_0)^T \in O \), where \(v(t) = \bar{u} + \varepsilon u \). Then for any \(\varepsilon > 0 \), there exist \(T_\varepsilon \geq T_0 \) and \(N_\varepsilon > 0 \) such that

\[
\sum_{i \in \mathbb{Z}^k} \sum_{j=1}^k \left(|B_j u(t_i) |^2 + \lambda |u_i(t) |^2 + |v_i(t) |^2 \right) \leq \varepsilon
\]

(19)

for any \(\tau \leq t - T_\varepsilon \), fixed \(t \).
Proof. Choosing a smooth function \(\theta(s) \in C^1(\mathbb{R}^+, \mathbb{R}) \) satisfying

\[
\theta(s) = 0, \quad 0 \leq s \leq 1,
\]

\[
0 \leq \theta(s) \leq 1, \quad 1 \leq s \leq 2,
\]

\[
\theta(s) = 1, \quad s \geq 2
\]

and there exists a constant \(C_0 \) such that \(|\theta'(s)| \leq C_0 \) for \(s \in \mathbb{R}^+ \).

Let \(M \) be some fixed integer. For any \((x_i)_{i \in \mathbb{Z}^k}, (y_i)_{i \in \mathbb{Z}^k} \in \ell^2 \). Set \(\tilde{x}_i = \theta\left(\frac{\|x\|}{M}\right)x_i, \tilde{x} = (\tilde{x}_i)_{i \in \mathbb{Z}^k} \) and \(\tilde{y}_i = \theta\left(\frac{\|y\|}{M}\right)y_i, \tilde{y} = (\tilde{y}_i)_{i \in \mathbb{Z}^k} \). It is easy to check that

\[
|\langle Ax, \tilde{y} \rangle - \langle A\tilde{x}, y \rangle| \leq \frac{kC_0}{\sqrt{\lambda M}}(\lambda \|x\|^2 + \|y\|^2),
\]

\((A\tilde{x}, \tilde{x}) = (Ax, \tilde{x}) \geq \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|x\|}{M}\right) \|B_j x_i\|^2 - \frac{2kC_0}{M} \|x\|^2. \]

(21)

Let \(t \geq T_0 \). Denote with

\[
\tilde{u}_i = \theta\left(\frac{\|\tilde{u}\|}{M}\right)u_i, \quad \tilde{v}_i = \theta\left(\frac{\|\tilde{v}\|}{M}\right)v_i, \quad \text{for any } i \in \mathbb{Z}^k.
\]

Let \(\tilde{w}(t) = (\tilde{u}, \tilde{v})^T = (\tilde{u}_i, \tilde{v}_i)_{i \in \mathbb{Z}^k} \). Taking the inner product \((\cdot , \cdot)_E \) on both sides of the system (10) with \(\tilde{w}(t) \), we have

\[
(\dot{\tilde{w}}, \tilde{w})_E + (H(\varphi), \dot{\tilde{w}})_E = (F(\varphi, t), \dot{\tilde{w}})_E.
\]

(22)

To estimate \((H(\varphi), \dot{\tilde{w}})_E \), we first have

\[
e(\tilde{u}, \tilde{v}) \geq \varepsilon \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|\tilde{u}\|}{M}\right) \|B_j u_i\|^2 - \frac{2\varepsilon kC_0}{M} \|u\|^2,
\]

\[
\lambda e(u, \tilde{u}) - \lambda v, \tilde{u} + \lambda u, \tilde{v} + \varepsilon^2 (u, \tilde{v}) - \varepsilon (v, \tilde{v}) = \lambda \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|\tilde{u}\|}{M}\right) \|u_i(t)\|^2 - \varepsilon \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|\tilde{u}\|}{M}\right) \|v_i(t)\|^2 + \varepsilon^2 \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|\tilde{u}\|}{M}\right) u_i v_i,
\]

\[
-(A\tilde{u}, \tilde{u}) - (A\tilde{v}, \tilde{v}) \geq -\frac{kC_0}{\sqrt{\lambda M}} \|\tilde{w}\|^2,
\]

\[
(h(v - \varepsilon u), \tilde{v}) \geq \alpha_1 \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|\tilde{v}\|}{M}\right) \|v_i(t)\|^2 - \varepsilon (\alpha_2 - \varepsilon) \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|\tilde{v}\|}{M}\right) u_i v_i.
\]

By a proof similar to Lemma 1, the above inequalities and Corollary 1, we obtain

\[
(H(\varphi), \dot{\tilde{w}})_E = e(A\tilde{u}, \tilde{v}) - (A\tilde{v}, \tilde{u}) + \lambda e(u, \tilde{u}) - \lambda v, \tilde{u} + (A\tilde{u}, \tilde{v}) + \lambda u, \tilde{v} + \varepsilon^2 (u, \tilde{v}) - \varepsilon (v, \tilde{v}) + (h(v - \varepsilon u), \tilde{v})
\]

\[
\geq \varepsilon \frac{\chi}{2} + \alpha_1 \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|\tilde{u}\|}{M}\right) \|v_i(t)\|^2 - \frac{2kC_0 r_0}{\lambda M}(\sqrt{\chi} + \varepsilon)
\]

(23)

where

\[
\chi = \sum_{i \in \mathbb{Z}^k} \left(\theta\left(\frac{\|\tilde{u}\|}{M}\right) \|B_j u_i(t)\|^2 + \lambda |u_i(t)|^2 + |v_i(t)|^2\right) + 2 \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|\tilde{u}\|}{M}\right) G(u_i, t).
\]

Similar to the discussion in (14), we have

\[
(\dot{\tilde{w}}, \tilde{w})_E + (\tilde{g}(u, t), \tilde{v}) = (\dot{\tilde{w}}, \tilde{w})_E + (\tilde{g}(u, t), \tilde{u} + \varepsilon \tilde{u}) \geq \frac{1}{2} \frac{d}{dt} \chi + \frac{\varepsilon \alpha_1}{2} \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|\tilde{u}\|}{M}\right) G(u_i, t).
\]

(24)

Substituting (23), (24) and the obvious inequality

\[
(\tilde{q}(t), \tilde{v}) \leq \frac{1}{\alpha_1} \sup_{\tilde{u} \in \mathbb{R}^k} \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|\tilde{u}\|}{M}\right) |q_i(t)|^2 + \frac{\alpha_1}{2} \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|\tilde{u}\|}{M}\right) |v_i(t)|^2
\]

into (22), we get

\[
\frac{d}{dt} \chi + \varepsilon \kappa \chi \leq \frac{1}{\alpha_1} \sup_{\tilde{u} \in \mathbb{R}^k} \sum_{i \in \mathbb{Z}^k} \theta\left(\frac{\|\tilde{u}\|}{M}\right) |q_i(t)|^2 + \frac{4kC_0^3}{\lambda M}(\sqrt{\chi} + \varepsilon).
\]

(25)
For any $\epsilon > 0$, choose a suitable positive integer $N_\epsilon > 0$ such that
\[
\frac{1}{\alpha_1} \sup_{t \in [0, T]} \sum_{i \in \mathbb{Z}^k} \theta \left(\frac{2||i||}{N_\epsilon} \right) |q_i(t)|^2 + \frac{8kC_0r_0^2}{\lambda N_\epsilon} (\sqrt{x} + \epsilon) \leq \frac{\epsilon \delta K}{2}.
\]
(26)

By using (26) and the Gronwall inequality in (25),
\[
\chi \leq \left(1 + \frac{2}{c_1 \lambda} K \left(\frac{r_0}{\chi} \right) \right)^2 e^{-\epsilon K (t - t')} + \frac{\epsilon}{2} (1 - e^{-\epsilon K (t - t')}).
\]
(27)

Choosing $T_\epsilon = \max\{(\log(1 + \frac{2}{c_1 \lambda} K (\frac{r_0}{\chi})) + 2 \log r_0 - \log \epsilon + \log 2)/\epsilon K, T_0\}$, from (27), we obtain
\[
\sum_{i \in \mathbb{Z}^k} \left(\theta \left(\frac{2||i||}{N_\epsilon} \right) \sum_{j=1}^k \left(|B_j u_i(t)|^2 + \lambda |u_i(t)|^2 + |v_j(t)|^2 \right) \right) \leq \epsilon,
\]
\forall \tau \leq t - T_\epsilon

which implies
\[
\sum_{i \not\in N_{N_\epsilon}} \sum_{j=1}^k \left(|B_j u_i(t)|^2 + \lambda |u_i(t)|^2 + |v_j(t)|^2 \right) \leq \sum_{i \in \mathbb{Z}^k} \left(\theta \left(\frac{2||i||}{N_\epsilon} \right) \sum_{j=1}^k \left(|B_j u_i(t)|^2 + \lambda |u_i(t)|^2 + |v_j(t)|^2 \right) \right) \leq \epsilon
\]
for all $\tau \leq t - T_\epsilon$. \qed

Lemma 4. The process $\{S(t, \tau)\}_{\tau \geq t}$ is pullback \mathcal{D}-asymptotically compact in E.

Proof. Since O is an absorbing set for the process $S(t, \tau)$, without loss of generality, let $\{\varphi_n\} \subset O$. By Corollary 1, $\{S(t, -t_n)\varphi_n\} \subset O$ for a fixed t, where $t_n \to +\infty$ as $n \to +\infty$. Since E is a Hilbert space, there exist $\varphi_0 \in E$ and a subsequence of $\{S(t, -t_n)\varphi_n\}$ (still denoted by $\{S(t, -t_n)\varphi_n\}$) such that
\[
S(t, -t_n)\varphi_n \to \varphi_0, \quad \text{weakly in } E, \quad n \to \infty.
\]
(28)

Since $\varphi_0 \in E$, for any $\epsilon > 0$, there exists a positive integer $N_1(\epsilon) > 0$ such that
\[
\sum_{||i|| \geq N_1(\epsilon)} ||\varphi_0||^2 \leq \frac{\epsilon^2}{4}.
\]

By Lemma 3, there exists a positive integer $N_2(\epsilon) > 0$ and $T_\epsilon \geq T_0$ such that
\[
\sum_{||i|| \geq N_2(\epsilon)} ||S(t, -t_n)\varphi_{ni}||^2 \leq \frac{\epsilon^2}{4}, \quad \forall t_n \geq T_\epsilon - t.
\]

So, choosing $N_\epsilon = \max\{N_1(\epsilon), N_2(\epsilon)\}$, we have
\[
\sum_{||i|| \geq N_\epsilon} ||S(t, -t_n)\varphi_{ni} - \varphi_0||^2 \leq \sum_{||i|| \geq N_\epsilon} ||S(t, -t_n)\varphi_{ni}||^2 + \sum_{||i|| \geq N_\epsilon} ||\varphi_0||^2 \leq \frac{\epsilon^2}{2}, \quad \forall t_n \geq T_\epsilon - t.
\]
(29)

By (28), as $n \to \infty$,
\[
S(t, -t_n)\varphi_n \to \varphi_0, \quad \text{strongly in } \mathbb{R}_{\infty, \lambda}^{(2N_\epsilon + 1)^d} \times \mathbb{R}_{\infty, \lambda}^{(2N_\epsilon + 1)^d}
\]
where $||.|| \leq N_\epsilon$ and $\mathbb{R}_{\infty, \lambda}^{(2N_\epsilon + 1)^d} \times \mathbb{R}_{\infty, \lambda}^{(2N_\epsilon + 1)^d}$ will be defined as the beginning of the next section, which is a finite-dimensional subspace of E. So, there exists a positive integer $n_\epsilon > 0$ such that for any $n \geq n_\epsilon$,
\[
t_n \geq T_\epsilon - t, \quad \sum_{||i|| \leq N_\epsilon} ||S(t, -t_n)\varphi_{ni} - \varphi_0||^2 \leq \frac{\epsilon^2}{2}.
\]
(30)

Together with (29) and (30), for any $\epsilon > 0$, there exists a positive integer $n_\epsilon > 0$ such that for all $n \geq n_\epsilon$,
\[
||S(t, -t_n)\varphi_n - \varphi_0||_E \leq \epsilon
\]
which implies that $S(t, \tau)$ is pullback \mathcal{D}-asymptotically compact. \qed

By Theorem 1, Lemmas 2 and 4, we obtain the existence of the attractors for the process $S(t, \tau)$.

Lemma 5. Denote by $H(\phi_n)$ with ϕ_n and $\bar{\phi}_n$. A process $S(t, \tau)$ is said to be (uniformly in the past) pullback asymptotically compact if there exists T^* such that, given $\{(t_n, \tau_n)\}_{n \geq 1}$ a sequence satisfying
\[
\lim_{n \to +\infty} (t_n - \tau_n) = +\infty, \quad \tau_n \leq t_n \leq T^* \quad (n \geq 1)
\]
and $\{u_{0n}\}_{n \geq 1}$ a bounded sequence, the sequence $\{S(t_n, \tau_n)u_{0n}\}_{n \geq 1}$ has a convergent subsequence in E.

Lemma 5. The process $S(t, \tau)$ associated with (10) is (uniformly in the past) pullback asymptotically compact.

Proof. Let us define for each $n \geq 1$
\[
g_n(u, t) = \begin{cases} g(u, t + \tau_n), & \text{if } t < T^* - \tau_n, \\ 0, & \text{if } t > T^* - \tau_n, \end{cases}
\]
and $\bar{g}_n(u, t) = (g_n(u, t))_{i \in \mathbb{Z}^k}, \bar{q}_n(t) = (q_i(t))_{i \in \mathbb{Z}^k}$. Let $v_n = \bar{u}_n + \varepsilon u_n$ and $\phi_n = (u_n, v_n)^T$. Denote by $S_n(s, 0)\varphi_{0n} = \phi_n(s), s \geq 0$ with ϕ_n being the unique solution of
\[
\begin{cases}
\varphi_n + H(\phi_n) = F_n(\phi_n, s), & s > 0, \\
\phi_n(0) = \varphi_{0n},
\end{cases}
\]
where $H(\cdot)$ is as in (10), and
\[
F_n(\varphi, t) = \left(\begin{array}{c}
0 \\
-\bar{g}(u, t) + \bar{q}_n(t)
\end{array}\right).
\]
Then, it is not difficult to see that
\[
S(s + \tau_n, \tau_n)\varphi_{0n} = S_n(s, 0)\varphi_{0n}, \quad \text{for any } s \in [0, T^* - \tau_n].
\]
In fact, $S(s + \tau_n, \tau_n)\varphi_{0n}$ satisfies (32) for $s \in [0, T^* - \tau_n]$. Taking $s = t_n - \tau_n$, we obtain
\[
S(t_n, \tau_n)\varphi_{0n} = S_n(t_n - \tau_n, 0)\varphi_{0n}, \quad n \geq 1.
\]
Corollary 1 and Lemmas 2–4 are all true for $S_n(t_n - \tau_n, 0)$ after slight modifications. Taking into account (32) and (33), the assertion in the lemma follows directly. \hfill \Box

Theorem 4. The pullback D-attractor $A = \{A(t)\}_{t \in \mathbb{R}}$ defined by Theorem 3 satisfies for any fixed T^*
\[
\bigcup_{\tau \leq T^*} A(\tau) \quad \text{is relatively compact in } E.
\]

Proof. Denote by \mathcal{M} the set of all $y \in E$ for which there exists a sequence $\{(t_n, \tau_n)\}_{n \geq 1} \subset \mathbb{R}^2$ satisfying (31), and a sequence $\{\varphi_{0n}\}_{n \geq 1} \subset O$, such that $\lim_{n \to +\infty} \|S(t_n, \tau_n)\varphi_{0n} - y\|_E = 0$.

Observe first that
\[
A(t) \subset \mathcal{M}, \quad \text{for all } t \leq T^*.
\]
In fact, by the definition of A, if $t \leq T^*$, and $y \in A(t)$, there exist sequences $\tau_n \leq t$ and $\{\varphi_{0n}\}_{n \geq 1} \subset O$ such that $\lim_{n \to +\infty} \|S(t_n, \tau_n)\varphi_{0n} - y\|_E = 0$ where $\tau_n \to -\infty$ as $n \to +\infty$. Consequently, taking $t_n = t$ for all $n \geq 1$, we obtain that $y \in \mathcal{M}$.

On the other hand, \mathcal{M} is a relatively compact subset of E. In fact, if $\{y_k\}_{k \geq 1} \subset \mathcal{M}$ is a given sequence, for each $k \geq 1$, we can take a pair $(t_k, \tau_k) \in \mathbb{R}^2$ and an element $\varphi_{0k} \in O$ such that $t_k \leq T^*$, $t_k - \tau_k \geq k$, and $\|S(t_k, \tau_k)\varphi_{0k} - y_k\|_E \leq \frac{1}{k}$. Then, by Lemma 5, it is immediate that we can extract from $\{y_k\}_{k \geq 1}$ a subsequence that converges in E. \hfill \Box
3. Approximations of the attractors

In this section, we present the approximations to the attractors $\mathcal{A}(t), t \in \mathbb{R}$ by the uniform attractors of finite-dimensional ordinary differential systems.

Let $n \in \mathbb{N}$ be a positive integer. Set

$$
\omega = (\omega(-n, -n, \ldots, -n), \omega(-n, -n, \ldots, -n, -n+1), \ldots, \omega(-n, -n, \ldots, -n), \omega(-n, -n, \ldots, -n, -n+1), \ldots, \omega(-n, -n, \ldots, -n, -n+1), \ldots, \omega(n, n, \ldots, n, -n+1), \ldots, \omega(n, n, \ldots, n, n)).
$$

(34)

For convenience, we always denote by

$$
\mathbb{R}_{\infty}^{(2n+1)k} = \{ \omega = (\omega_i)_{i \in \mathbb{Z}^k} \in \ell^2 \mid \omega_i \text{ with subscripts of components of } \omega \text{ are ordered as in (34) and } \omega_i = 0, \|i\| > n \} \tag{35}
$$

with the same inner product and norm as those of ℓ^2 and denote $\mathbb{R}_{\infty}^{(2n+1)k}$ the space $\mathbb{R}_{\infty}^{(2n+1)k}$ with the same inner product and norm as those of ℓ^2. Let $E_n = \mathbb{R}_{\infty}^{(2n+1)k} \times \mathbb{R}_{\infty}^{(2n+1)k}$ with the same inner product and norm as those of \mathbb{E}.

Let $\tilde{u} = (\tilde{u}_i)_{i \in \mathbb{Z}^k} \in \mathbb{R}_{\infty}^{(2n+1)k}$. In this section, note that $\tilde{u}_{(i_1, \ldots, i_{j+1}, \ldots, i_k)}$ is replaced by $\tilde{u}_{(i_1, \ldots, -i_{j+1}, \ldots, i_k)}$, and $\tilde{u}_{(i_1, \ldots, -n-1, i_{j+1}, \ldots, i_k)}$ by $\tilde{u}_{(i_1, \ldots, -i_{j+1}, \ldots, i_k)}$, $j = 1, \ldots, k$ in the definition of the operator A given in (4) and (5). We consider the $(2n+1)^k$-dimensional ODEs with initial data in $\mathbb{R}_{\infty}^{(2n+1)k}$:

$$
\begin{aligned}
\tilde{u} + \tilde{h}(\tilde{u}) + A\tilde{u} + \lambda \tilde{u} + \tilde{g}(\tilde{u}, t) &= \tilde{q}(t), & t \geq \tau, & t \in \mathbb{R}, \\
\tilde{u}(\tau) &= \tilde{u}_0 \in \mathbb{R}_{\infty}^{(2n+1)k}, & \tilde{u}(\tau) &= \tilde{u}_{10} \in \mathbb{R}_{\infty}^{(2n+1)k},
\end{aligned}
$$

(36)

where

$$
\tilde{u} = (\tilde{u}_i)_{i \in \mathbb{Z}^k}, \quad \tilde{h}(\tilde{u}) = (h(\tilde{u}_i))_{i \in \mathbb{Z}^k}, \quad \tilde{g}(\tilde{u}, t) = (g(\tilde{u}_i, t))_{i \in \mathbb{Z}^k} \in \mathbb{R}_{\infty}^{(2n+1)k}
$$

and $\tilde{q}(t)$ satisfying $\tilde{q}_i(t) = q_i(t)$, for $\|i\| \leq n$, while $\tilde{q}_i(t) = 0$, for $\|i\| > n$.

Let $\tilde{v} = \tilde{u} - \varepsilon \tilde{u}$ and $\tilde{\varphi} = (\tilde{u}, \tilde{v})^T$. Then (36) can be written as

$$
\tilde{\varphi} + H(\tilde{\varphi}) = \tilde{F}(\tilde{\varphi}, t), \quad \tilde{\varphi}(\tau) = \tilde{\varphi}_0 = (\tilde{u}_0, \tilde{v}_0 + \varepsilon \tilde{u}_0)^T, \quad t > \tau,
$$

(37)

where H is as in (10) and

$$
\tilde{F}(\tilde{\varphi}, t) = \begin{pmatrix}
0 \\
-\tilde{g}(\tilde{u}, t) + \tilde{q}(t)
\end{pmatrix}.
$$

Obviously, the problem (37) is well-posed in E_n, that is, for any $\tilde{\varphi}_0 \in E_n$, there exists an unique solution $\tilde{\varphi}(t) \in C^1([\tau, +\infty), E_n)$. Furthermore, $\tilde{\varphi}(t) = \tilde{\varphi}(t, \tilde{\varphi}_0)$ is continuous on $(t, \tilde{\varphi}_0)$ in $[\tau, +\infty) \times E_n$. It implies that the mapping

$$
\begin{aligned}
S_n(t, \tau) : \tilde{\varphi}(\tau) = \tilde{\varphi}_0 = (\tilde{u}_0, \tilde{v}_0)^T \mapsto \tilde{\varphi}(t) = (\tilde{u}(t), \tilde{v}(t))^T, & E_n \mapsto E_n
\end{aligned}
$$

(38)

generates a continuous process from E_n to itself for any $n \in \mathbb{N}$.

By using [9] and some computation similar to Lemmas 2–4, we obtain

Lemma 6. For any $\varepsilon > 0$, there exist $T(\varepsilon) \geq T_0$ and $K_n(\varepsilon) > 0$ such that the solution of $\tilde{\varphi}(t) = (\tilde{\varphi}_i(t))_{i \in \mathbb{Z}^k} = (\tilde{u}(t), \tilde{v}(t)) \in O_{E_n}(0, r_0)$ of (37) with initial data in $O_{E_n}(0, r_0)$, $\tilde{v} = \tilde{u}(t) + \varepsilon \tilde{u}(t)$ satisfying

$$
\sum_{K_n(\varepsilon) \leq \|i\| \leq n} \sum_{j=1}^k \left(|B_j \tilde{u}_i(t)|^2 + \lambda |\tilde{u}_i(t)|^2 + |\tilde{v}(t)|^2 \right) \leq \varepsilon
$$

(39)

for all $\tau \geq t - T(\varepsilon)$, fixed t.

Lemma 7. For the process $S_n(t, \tau)$ associated with (37), $S_n(t, \tau) O_{E_n}(0, r_0) \subset O_{E_n}(0, r_0)$, $S_n(t, \tau) \subset O_{E_n}(0, r_0)$, $\tau \leq t - T_0$, fixed t. Furthermore, the process $S_n(t, \tau)$ possesses nonempty compact uniform attractors $\mathcal{A}_n(t) \subset O_{E_n}(0, r_0)$, $t \in \mathbb{R}$ in E_n for any $n \in \mathbb{N}$.

Lemma 8. If $\varphi_0(0) \in \mathcal{A}_n(0)$, then there exists a subsequence $\{\varphi_{n_k}(0)\}$ of $\{\varphi_0(0)\}$ and $\varphi_0 \in \mathcal{A}(0)$ such that $\varphi_{n_k}(0)$ converges to φ_0 in E.
Proof. The lemma is a direct result from some computation similar to the proof of Lemma 7 in [23]. We will omit it here. □

As a direct consequence of Lemma 8, we obtain the upper semicontinuity of $A(t)$.

Theorem 5. $\text{dist}(A_n(t), A(t)) = 0$, as $n \to +\infty$, for any $t \in \mathbb{R}$, where the Hausdorff semidistance dist is defined as in Section 2.

4. Dimension of the attractors

The purpose of this section is to study the dimension of the attractors for the nonautonomous lattice dynamical system by using Theorem 3.2 in [7].

For any $n \in \mathbb{N}$, let E_n^\perp is orthogonal to E_n and $E_n \otimes E_n^\perp = E$ where E_n is defined at the beginning of Section 3. Q_n is the projector mapping E onto the subspace E_n^\perp of codimension $2(n+1)$. A

Lemma 9. For any $\varphi_0, \psi_0 \in A(\tau)$, there exists a positive integer $N^* = N^*(\epsilon, r_0, q)$ and $T^* = T^*(\epsilon, r_0) > \max\{T_0, \frac{2}{\epsilon}\log 2\}$ such that for any $T \geq T^*$,

\[
\begin{align*}
\|S(t + T, \tau)\varphi_0 - S(t + T, \tau)\psi_0\|_E &\leq e^{\frac{1}{2}(K(\epsilon/\sqrt{\lambda})/\sqrt{\lambda})T} \|\varphi_0 - \psi_0\|_E, \\
\|Q_n S(t + T, \tau)\varphi_0 - Q_n S(t + T, \tau)\psi_0\|_E &\leq e^{-\frac{1}{2}T} \|\varphi_0 - \psi_0\|_E.
\end{align*}
\] (40)

Proof. Let $S(t, \tau)\varphi_0 = \varphi(t) = (u, v)^T$ where $v = \tilde{u} + \epsilon u$, and $S(t, \tau)\psi_0 = \psi(t) = (\tilde{v}(t), \tilde{v}(t))^T$ where $\tilde{v}(t) = \tilde{u}(t) + \epsilon \tilde{u}(t)$. Since $\varphi_0, \psi_0 \in A(\tau)$, then $\varphi(t), \psi(t) \in O$ for all $t \geq \tau$. Let $\phi(t) = S(t, \tau)\varphi_0 - S(t, \tau)\psi_0 = \varphi(t) - \psi(t) = (w(t), z(t))^T$ where $z(t) = \tilde{w}(t) + \epsilon w(t)$, then $\phi(t)$ satisfies

\[
\dot{\phi} + H(\varphi) - H(\psi) + (0, \tilde{g}(u, t) - \tilde{g}(\tilde{u}, t))^T = 0, \quad \phi(\tau) = \varphi_0 - \psi_0.
\] (42)

Similar to Lemma 1, we have

\[
\langle H(\varphi) - H(\psi), \phi \rangle_E \geq \frac{\epsilon}{2} \|\phi\|_E^2 + \frac{\alpha_1}{2} \|z\|^2.
\] (43)

By (H3),

\[
\left\| (\tilde{g}(u, t) - \tilde{g}(\tilde{u}, t), z) \right\| \leq \frac{K(\epsilon/\sqrt{\lambda})}{2\sqrt{\lambda}} \|\phi\|_E^2.
\] (44)

Taking the inner product $(\cdot, \cdot)_E$ in (42) with ϕ, by (43), (44) and the Gronwall inequality, we have

\[
\|\psi(t) - \psi(t)\|^2 \leq e^{K(\epsilon/\sqrt{\lambda})(t - \tau)} \|\varphi_0 - \psi_0\|^2.
\] (45)

So, (40) is obtained.

Denote $\varphi_n(t) = Q_n \varphi(t), \psi_n(t) = Q_n \psi(t)$ and $\phi_n(t) = Q_n(\varphi(t) - \psi(t)) = Q_n \phi(t) = (w_n, z_n)^T$. Taking the inner product $(\cdot, \cdot)_E$ in (42) with ϕ_n, we have

\[
\frac{d}{dt} \|\phi_n\|_E^2 + \epsilon \|\phi_n\|_E^2 + 2(\tilde{g}(u, t) - \tilde{g}(\tilde{u}, t), \phi_n) \leq 0,
\] (46)

where $\|\phi_n\|_E^2 = \sum_{\|k\| > n} \|\phi_k\|^2$.

By the mean value theorem,

\[
\left\| (\tilde{g}(u, t) - \tilde{g}(\tilde{u}, t), z_n) \right\| \leq \sum_{\|k\| > n} |g_n'(u_t + \theta k(\tilde{u}_t - u_t), t)| |w_t| \cdot |z_n|.
\]

where $\theta_k \in (0, 1), i \in \mathbb{Z}^k$. By (H3) and Lemma 3, there exists a positive integer $N^* = N^*(\epsilon, r_0, q)$ and $T^* = T^*(\epsilon, r_0) > T_0$ such that for any $\|k\| > N^*$, and $t \geq \tau + T^*$,

\[
|g_n'(u_t + \theta k(\tilde{u}_t - u_t), t)| \leq \frac{\epsilon \sqrt{\lambda}}{2}.
\]

So,

\[
\left\| (\tilde{g}(u, t) - \tilde{g}(\tilde{u}, t), z_{N^*}) \right\| \leq \frac{\epsilon}{4} \sum_{\|k\| > N^*} \|\phi_k\|^2.
\] (47)

By (46), (47) and the Gronwall inequality, we have

\[
\|\phi_{N^*}\|^2 \leq e^{-\frac{\epsilon}{2}(t-\tau)} \|\varphi_0 - \psi_0\|_E^2.
\] □
Theorem 6. (1) If \(K(r_0/\sqrt{\lambda}) < \varepsilon \sqrt{\lambda} \), then the fractal dimension \(d_f(A(t)) \) of \(A(t) \) satisfies
\[
d_f(A(t)) = 0
\]
for all \(t \in \mathbb{R} \).

(2) If \(K(r_0/\sqrt{\lambda}) \geq \varepsilon \sqrt{\lambda} \), then for any \(\sigma \geq 0 \) such that \((2\sqrt{2})^{2(2N^*+1)} (\sqrt{2})^\sigma < 1 \) for some \(T \), the following inequality holds
\[
d_f(A(t)) \leq 2(2N^* + 1)^k + \sigma, \quad t \in \mathbb{R}
\]
for all \(t \in \mathbb{R} \), where \(N^* \) as that of Lemma 9.

Proof. Let \(l = l(T) = e^{1/(K(r_0/\sqrt{\lambda})/\sqrt{\lambda} - \varepsilon)T} \), \(\delta = \delta(T) = e^{-4/2} \) where \(T \geq T^* \) as that of Lemma 9. Since \(E_{N^*}^\bot \) is a subspace of codimension \(2(2N^* + 1)^k \) in \(E \), by using Theorem 3.2 in [7], we easily obtain the results. \(\square \)

By the above theorem and Lemma 9, we have the following result

Corollary 2. Let \(T \geq T^* \) as that of Lemma 9. If \(K(r_0/\sqrt{\lambda}) \geq \varepsilon \sqrt{\lambda} \), then for any \(t \in \mathbb{R} \),
\[
d_f(A(t)) \leq 2(2N^* + 1)^k \left(1 + \frac{2(K(r_0/\sqrt{\lambda})/\sqrt{\lambda} - \varepsilon)T + 4 \log 3 + 6 \log 2}{\varepsilon T - 2 \log 2} \right).
\]
Furthermore, for any \(t \in \mathbb{R} \),
\[
d_f(A(t)) \leq 2(2N^* + 1)^k \left(1 + \frac{2(K(r_0/\sqrt{\lambda})/\sqrt{\lambda} - \varepsilon)T^* + 4 \log 3 + 6 \log 2}{\varepsilon T^* - 2 \log 2} \right).
\]

Remark. Indeed, Theorem 6 and Corollary 2 hold for the global attractor for the autonomous lattice dynamical system of [23]. That is, the attractor is finite-dimensional.

Acknowledgements

The authors thank the reviewers very much for their reading carefully this Letter and giving useful suggestions.

This work is sponsored by Shanghai Postdoctoral Scientific Program and Young Fund of UESTC, partially supported by a key project from NSFC under the grant 10531020.

References