Lecture Note 2: Convex function

Xiaoqun Zhang
Shanghai Jiao Tong University

Last updated: March 15, 2017
1.1 Convex functions

- Definition on one variable: f defined on a nonempty interval I is said to be convex on I if

 $$f(\alpha x + (1 - \alpha)x') \leq \alpha f(x) + (1 - \alpha)f(x')$$

 for all pairs of points (x, x') in I and all $\alpha \in (0, 1)$.

- Criterion of increasing slopes: A function f is convex on an interval I iff for all $x_0 \in I$, the slope-function $s(x) = \frac{f(x) - f(x_0)}{x - x_0}$ is increasing on $I\setminus\{x_0\}$.

 Proof. Let $x_0 = \alpha x_1 + (1 - \alpha)x_2$. By convexity, we have $\alpha f(x_0) + (1 - \alpha)f(x_0) \leq \alpha f(x_1) + (1 - \alpha)f(x_2)$, then $s(x_1) \leq s(x_2)$.

- Let a function f be differentiable with an increasing derivative on an open interval I, then f is convex on I.

- Let a function f be twice differentiable with a non-negative second derivative on an open interval I. Then f is convex on I.

Definition 1 A function $f : C \to \mathbb{R}$, where $C \subset \mathbb{R}^n$ and $C \neq \emptyset$, is convex if

- C is convex;

- For every $x, y \in C$ and every $\lambda \in [0, 1]$ one has

 $$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

More definitions:
Lecture note 2 Convex optimization

- **Concave**: if \(-f\) is convex, \(f\) is called concave.

- **Strictly convex**: if the inequality is strict whenever \(x \neq y\), and \(0 < \lambda < 1\), \(f\) is called strictly convex.

- **Strongly convex**: if there exist \(c > 0\) s.t.
 \[
 f(\alpha x + (1 - \alpha)x') \leq \alpha f(x) + (1 - \alpha)f(x') - \frac{1}{2}c\alpha(1 - \alpha)\|x - x'\|^2
 \]
 for all \(x, x' \in C\) and \(\alpha \in (0, 1)\). We say that \(f\) is strongly convex on \(C\) with modulus of strong convexity \(c\).

Theorem 1 The function \(f\) is strongly convex on \(C\) with modulus \(c\) if and only if the function \(f - \frac{1}{2}c\|\cdot\|^2\) is convex on \(C\).

- **Extended value of \(f\)**. Define
 \[
 \tilde{f}(x) = \begin{cases} f(x), & x \in \text{dom}(f); \\ +\infty, & x \notin \text{dom}(f). \end{cases}
 \]

 1. For all \(x, y \in \mathbb{R}^n\), all \(\alpha \in [0, 1]\), \(\tilde{f}(\alpha x + (1 - \alpha)y) \leq \alpha \tilde{f}(x) + (1 - \alpha)\tilde{f}(y)\).
 2. Arithmetic operations involving \(+\cdot\): \((+\infty) + (+\infty) = +\infty; (-\infty) + (-\infty) = -\infty; (+\infty) + (-\infty) \text{ undefined.} \)
 \(+(\infty) \times (\pm\infty) = \pm\infty\);

- The domain (or effective domain) of \(f\) is the nonempty set such as \(f(x) < \infty\), denoted as \(\text{dom}(f) = \{x \in C | f(x) < \infty\}\) and the epigraph \(f\) is a subset in \(\mathbb{R}^n \times \mathbb{R}\) defined as \(\text{epi}(f)(x) = \{(x, t) \in \mathbb{R}^{n+1} : x \in \text{dom}(f); f(x) \leq t\}\).

Theorem 2 Let \(f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}\) be not identically equal to +\(\infty\). The three properties below are equivalent:

1. \(f\) is convex (in the sense of definition).
2. Its epigraph \(\text{epi}(f)\) is a convex set in \(\mathbb{R}^n \times \mathbb{R}\).
3. Its strict epigraph is a convex set in \(\mathbb{R}^n \times \mathbb{R}\).

Proof.

"only if": If \(f\) is convex, \(f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)\). let \((x, t) \in \text{epi}(f)\) and \((y, t_2) \in \text{epi}(f)\). then
 \[
 f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \leq \lambda t_1 + (1 - \lambda)t_2.
 \]

Thus \((\lambda x + (1 - \lambda)y, \lambda t_1 + (1 - \lambda)t_2) \in \text{epi}(f)\). It yields \(\text{epi}(f)\) is convex.

"if part": if \(\text{epi}(f)\) is convex, for \((x, f(x)) \in \text{epi}(f)\) and \((y, f(y)) \in \text{epi}(f)\), \(f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)\). Thus \(f\) is convex.
• The sub level sets \(S_r(f) := \{ x \in \mathbb{R}^n : f(x) \leq r \} \) of a (proper) convex function \(f \) are convex (possibly empty). Conversely it is not necessarily true (such a function is called quasi-convex).

• Closed convex function: If we want to minimize a function \(f \) on some compact set \(K \), we do not need to bother with existence if \(f \) is known to be closed (or l.s.c) and this holds even if \(K \) is not contained in dom(\(f \)).

Lower semi-continuous (ls.c): a function \(f \) is l.s.c if, for each \(x \in \mathbb{R}^n \),
\[
\liminf_{y \to x} f(y) \geq f(x).
\]

Proposition 1 For \(f : \mathbb{R}^n \times \mathbb{R} \cup \{ +\infty \} \), the following three properties are equivalent:

- \(f \) is l.s.c on \(\mathbb{R}^n \);
- epigraph \(\text{epi}(f) \) is a closed set in \(\mathbb{R}^n \);
- the sublevel-sets \(S_r(f) \) are closed (possibly empty) for all \(r \in \mathbb{R} \).

Definition 2 The function \(f : \mathbb{R}^n \to \mathbb{R} \cup \{ \infty \} \) is said to be closed if it is l.s.c everywhere, or if its epigraph is closed, or if its sublevel-sets are closed.

Examples of convex functions:

1. **Example on \(\mathbb{R} \):**
 - Linear function \(f(x) = ax + b \)
 - \(e^{ax} \) for any \(a \in \mathbb{R} \).
 - \(x^\alpha \) on \(\mathbb{R}_{++} \) for \(\alpha \geq 1 \) or \(\alpha \leq 0 \). (\(f'(x) = \alpha x^{\alpha-1} \) and \(f''(x) = \alpha(\alpha - 1)x^{\alpha-2} \).)
 - \(|x|^p \) on \(\mathbb{R} \) for \(p \geq 1 \).
 - \(x \ln x \) on \(\mathbb{R}_{++} \) (negative entropy).
 - Some concave functions: \(ax + b, x^\alpha \) on \(\mathbb{R}_{++} \) for \(0 \leq \alpha \leq 1 \), log(\(x \)) on \(\mathbb{R}_{++} \).

2. **Example on \(\mathbb{R}^n \):**
 - All affine function \(f(x) = a^T x + b \).
 - All norms are convex
 \[
 \|x\|_p = \left(\sum_{i=1}^{p} |x_i|^p \right)^{1/p}, \quad \text{for } p \geq 1
 \]
 \[
 \|x\|_\infty = \max_i |x_i|
 \]
 - Max function \(f(x) = \max\{x_1, \ldots, x_n\} \) is convex on \(\mathbb{R}^n \).
Lecture note 2

Convex optimization

- Quadratic-over-linear function: $f(x, y) = \frac{x^2}{y}$, $y > 0$ dom $f = \mathbb{R} \times \mathbb{R}_{++}$

- Log-sum-exp: $f(x) = \log(e^{x_1} + \cdots + e^{x_n})$ is convex on \mathbb{R}^n.
 Note: Log-sum-exp function is a differentiable approximation of max function $f_\beta(x) = \frac{1}{\beta} \log(e^{\beta x_1} + \cdots + e^{\beta x_n})$
 \[
 \max_{x_1, \ldots, x_n} \leq f_\beta(x) \leq \max_i \{x_1, \ldots, x_n\} + \frac{1}{\beta} \log n
 \]

- Geometry mean $f(x) = (\prod_{i=1}^n x_i)^\frac{1}{n}$ is concave on dom(f) = \mathbb{R}^n_{++}.

3. Examples in $\mathbb{R}^{m \times n}$

- Affine function $X \in \mathbb{R}^{m \times n}$:
 \[
 f(X) = \sum_i \sum_j A_{ij} X_{ij} + b \\
 = \sum_i (A^T X)_{ii} + b \\
 = \text{tr}(A^T X) + b
 \]

- Spectral norm
 \[
 f(x) = \|x\|_2 = (\lambda_1(x^T x))^{1/2}
 \]

- Nuclear norm
 \[
 f(x) = \|x\|_*
 \]

- Sum of largest eigenvalues of a symmetric matrix A. $f_m(A) := \sum_{j=1}^m \lambda_j(A)$ has also the representation $f_m(A) = \sup\{Q^T Q = I_m\} \text{ trace}(QAQ^T) = \text{ trace}(QQ^T A)$.

- Volume of ellipsoids: still in symmetric matrices $S_n(\mathbb{R})$, define the function $f(A) := \log(\det(A^{-1}))$ for positive definite A, otherwise $+\infty$. is convex.

4. Indicator and support functions: given a nonempty subset $S \subset \mathbb{R}^n$, the function $\chi_S : \mathbb{R}^n \to \mathbb{R} \times \{\infty\}$ defined by
 \[
 \chi_S := \begin{cases}
 0; & \text{if } x \in S, \\
 \infty & \text{if not}
 \end{cases}
 \]

is called the indicator function of S. χ_S is (closed and) convex if and only if S is (closed and) convex. Indeed, $\text{epi} \chi_S = S \times \mathbb{R}_+$ by definition.

The support function of a nonempty subset S is defined as

\[
\sigma_S(x) := \sup\{\langle s, x \rangle : s \in S\}
\]

is convex. In fact its epigraph $\text{epi}(\sigma_S)$ is convex cone in $\mathbb{R} \times \mathbb{R}$.
1.2 Elemental properties of convex function

- Jensen’s inequality

Proposition 2 Let \(f \) be convex and \(\text{dom}(f) = Q \), then for every convex combination \(\sum_i \lambda_i x_i \) of points from \(Q \), one has

\[
f(\sum_i \lambda_i x_i) \leq \sum_i \lambda_i f(x_i)
\]

Proof. Using the equivalence definition \(\text{epi}(f) \) is convex.

- Convexity of sub-level sets.

Let \(f \) be a convex function with the domain \(Q \), then any real \(\alpha \), the set

\[
\text{Lev}_\alpha(f) := \{x \in Q, f(x) \leq \alpha\}
\]

is convex.

(\text{convexity} \Rightarrow \text{convex sub-level sets}, but converse isn’t true).

(any sub-level set is convex \Rightarrow \text{quasiconvex}).

1.3 Operations that preserving convexity of functions

- Non-negative weighted sum: if \(f \) and \(g \) are convex, then \(\lambda f + \mu g \) is convex for any \(\lambda, \mu \geq 0 \).

- Affine substitutions is convex: If \(f \) is convex, then \(f(Ax + b) \) is convex.

- Pointwise max/sup: let \(\{f_j\}_{j \in J} \) for \(J \) be an arbitrary family of convex functions. Then \(f : \sup\{f_j : j \in J\} \) is convex (assume it is not identically \(\infty \)).

- Convex monotone superposition: Let \(f : \mathbb{R}^n \to \mathbb{R} \) be convex, and \(g : \mathbb{R} \to \mathbb{R} \) be convex and increasing. Then the composite \(g \circ f : x \to g(f(x)) \) is convex (set \(g(\infty) = \infty \) and \(g \circ f \) is not identically \(\infty \)).

- Partial (marginal) minimization: if \(f(x, y) \) is jointly convex, and let \(C \) be nonempty closed convex set and let \(g(x) = \inf_{y \in C} f(x, y) \) is proper and if \(f \) is bounded below on the set \(\{x\} \times C \) for any \(x \in \mathbb{R}^n \), then \(g \) is convex.

Proof.

By the boundedness of \(\{x\} \times C \) for any \(x \in \mathbb{R}^n \). The inf on \(y \) is attained on any \(x \). Thus \(\text{epi}(g) = \{(x, t) | \text{for some} y \in C, (x, y, t) \in \text{epi}(f)\} \) and it is the projection of \(\text{epi}(f) \) onto \(\mathbb{R}^n \times \mathbb{R} \). Therefore \(\text{epi}(g) \) is the image of a convex under a linear mapping and it is convex.

Example:
Lecture note 2 Convex optimization

– consider $f(x, y) = x^T A x + 2x^T B y + y^T C y$ with $\begin{pmatrix} A & B \\ B^T & C \end{pmatrix}$ positive semi-definite, C is positive definite minimizing over y gives $g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T) x$, g is convex, hence Schur complement $A - BC^{-1}B^T$ is positive semi-definite.
– Distance to a set: $\text{dist}(x, S) = \inf_{y \in S} \|x - y\|$ is convex if S is convex.

• Dilation and perspectives of a function: Dilation: $f_u u = uf(x/u)$ is still convex ($\text{epi}(f_u) = u\text{epi}(f)$, $\text{sr}(f_u) = u\text{sr}(f)$.)
Perspectives: $\tilde{f}(u, x) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ defined by

$$\tilde{f}(u, x) := \begin{cases} uf(x/u) & u > 0 \\ +\infty & \text{if not} \end{cases}$$

is convex in \mathbb{R}^{n+1}.

Proof.

It is better to look at \tilde{f} with "epigraph".

$$\text{epi}(\tilde{f}) = \{(u, x, r) \in \mathbb{R}^*_+ \times \mathbb{R}^n \times \mathbb{R} : f(x/u) \leq r/u\}$$
$$= \{u(1, x', r') : u > 0, (x', r') \in \text{epi}(f)\}$$
$$= \cup_{u > 0} \{u(\{1\} \times \text{epi}(f))\}$$

and it is therefore a convex cone.

Example:

– $f(x) = x^T x$ convex, $f(x, t) = x^T x/t = tf(x/t)$ is convex.
– $f(x) = -\log(x)$ is convex, hence relative entropy $g(x, t) = t \log t - t \log x$ is convex on \mathbb{R}^+_+.
– KullbackLeibler (KL) divergence divergence between $u, v \in \mathbb{R}^+_+$:

$$D_{kl}(u, v) = \sum_{i=1}^{n} (u_i \log(u_i/v_i) - u_i + v_i)$$

is convex since it is negative entropy plus linear function of u and v.
– If f is convex, then $g(x) = (c^T x + d)f((Ax + b)/(c^T x + d))$ is convex on $\text{dom}(g) = \{c^T x + d > 0(Ax + b)/(c^T x + d) \in \text{dom}(f)\}$.

• Restriction of a convex function to a line: If $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the function $g : \mathbb{R} \to \mathbb{R}$,

$$g(t) = f(x + tv), \quad \text{dom}(g) = \{t | x + tv \in \text{dom}(f)\}$$
is convex for any \(x \in \text{dom}(f) \), \(v \in \mathbb{R}^n \). This means that one can check convexity of \(f \) by checking convexity of functions of one variable.

Proof.

When \(f(x) \) is convex, derive \(g(t) \) is convex by checking the definition. Conversely, for any \(x_0, x_1 \), consider \(g(t) = f(x_0 + t(x_1 - x_0)) \) and let \(t = 0 \) and \(t = 1 \).

Example:

Consider \(f : S^n \to \mathbb{R} \) with \(f(X) = \log \det(X) \), \(\text{dom}(f) = S^n_{++} \).

\[
g(t) = \log \det(X + tV) = \log \det(X) + \log \det(I + tX^{-\frac{1}{2}}VX^{-\frac{1}{2}}) = \log \det(X) + \sum_{i=1}^n \log(1 + t\lambda_i) \text{ where } \lambda_i \text{ are the eigenvalues of } X^{-\frac{1}{2}}VX^{-\frac{1}{2}}. \]

\(g \) is concave in \(t \) (for any choice of \(X \in S^n_{++}, V \)); hence \(f \) is concave.

1.4 Differential criteria of convexity

Consider \(C \subset \mathbb{R}^n \) be nonempty and convex and a function \(f \) is defined on \(C \) (\(f(x) < \infty \) for all \(x \in C \)). We consider \(f \) is convex and differentiable on \(C \).

Theorem 3 (First order condition) Let \(f \) be a function differentiable on an open set \(\Omega \subset \mathbb{R}^n \), and let \(C \) be a convex subset of \(\Omega \). Then

- \(f \) is convex on \(C \) if and only if
 \[
f(x) \geq f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle, \quad \text{for all } (x_0, x) \in C \times C
 \]

- \(f \) is strictly convex on \(C \) if and only if strict inequality holds in the above inequality whenever \(x \neq x_0 \).

- \(f \) is strongly convex with modulus \(c \) on \(C \) if and only if for all \((x_0, x) \in C \times C \),
 \[
f(x) \geq f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle + \frac{1}{2}c\|x - x_0\|^2
 \]

Proof.

1. Let \(f \) be convex on \(C \), for arbitrary \((x_0, x) \in C \times C \) and \(\alpha \in (0, 1) \), we have
 \[
f(\alpha x + (1 - \alpha)x_0) - f(x_0) \leq \alpha(f(x) - f(x_0))
 \]

Divide by \(\alpha \) and let \(\alpha \to 0 \), the lefthand side reduces to

\[
\frac{f(x_0 + \alpha(x - x_0)) - f(x_0)}{\alpha} \to \langle \nabla f(x_0), x - x_0 \rangle
\]

and the inequality is established.
Conversely, take x_1 and x_2 in C, $\alpha \in (0,1)$ and set $x_0 = x_2 + \alpha(x_1 - x_2)$, by assumption

$$f(x_i) \geq f(x_0) + \langle \nabla f(x_0), x_i - x_0 \rangle$$

we obtain the convex combination

$$\alpha f(x_1) + (1 - \alpha) f(x_2) \geq f(x_0) + \langle \nabla f(x_0), \alpha x_1 + (1 - \alpha)x_2 - x_0 \rangle$$

which is the definition of convex function.

2. Similar for strictly convex for $x_0 \neq x$

3. Apply the proof in 1) on the function $f - \frac{1}{2}c\|\cdot\|^2$.

Example:

Non-negativity of Kullback-Leibler (KL) divergence

$$D_{\text{kl}}(u,v) = \sum_{i=1}^{n} (u_i \log(u_i/v_i) - u_i + v_i)$$

as

$$D_{\text{kl}}(u,v) = \phi(u) - \phi(v) - \langle \phi(v), u - v \rangle$$

where $\phi(x) = \sum_i u_i \log u_i$ is convex.

Definition 3 Let $C \subset \mathbb{R}^n$ be convex. The mapping $F : C \to \mathbb{R}^n$ is said to be monotone [resp. strictly monotone, resp. strongly monotone with modulus $c > 0$] on C when, for all $x, x' \in C$,

$$\langle F(x) - F(x'), x - x' \rangle \geq 0$$

[resp.$\langle F(x) - F(x'), x - x' \rangle > 0$ whenever $x \neq x'$, resp.$\langle F(x) - F(x'), x - x' \rangle \geq c\|x - x'\|^2$].

Theorem 4 (monotonicity of gradient) Let f be a function differentiable on an open set $\Omega \subset \mathbb{R}^n$, and let C be convex subset of Ω. Then f is convex [resp. strictly convex, resp. strongly convex with modulus c] on C if and only if its gradient ∇f is monotone [resp. strictly monotone, strongly monotone with modulus c].

Proof.

Combine the case for "convex \equiv monotone" and "strongly convex \equiv strongly monotone" allowing $c = 0$.

Let f be strongly convex on C, and for arbitrary $x, x_0 \in C$, we have

$$f(x) \geq f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle + \frac{1}{2}c\|x - x_0\|^2$$

$$f(x_0) \geq f(x) - \langle \nabla f(x), x - x_0 \rangle + \frac{1}{2}c\|x - x_0\|^2$$

and mere addition leads to ∇f is strongly monotone.
Conversely, let \((x_0, x_1)\) be a pair in \(C\) and consider \(\phi(t) := f(x_t)\) where \(x_t := x_0 + t(x_1 - x_0)\) for \(t\) in an open interval containing \([0, 1]\) and \(\phi\) is well-defined differentiable. Its derivative at \(t\) is \(\phi'(t) = \langle \nabla f(x_t), x_1 - x_0 \rangle\). Thus for \(0 \leq t' < t \leq 1\) we have
\[
\phi'(t) - \phi'(t') = \langle \nabla f(x_t) - \nabla f(x_{t'}), x_1 - x_0 \rangle = \frac{1}{t-t'} \langle \nabla f(x_t) - \nabla f(x_{t'}), x_t - x_{t'} \rangle
\]
and the monotonicity for \(\nabla f\) shows that \(\phi'\) is increasing, \(\phi\) is therefore convex.

For strongly convex, set \(t' = 0\), and use the strongly monotonicity \(\phi'(t') - \phi'(0) \geq \frac{1}{t} c \|x_t - x_0\|^2 = tc \|x_1 - x_0\|^2\). On the other hand, we have
\[
\phi(1) - \phi(0) - \phi'(0) = \int_0^1 [\phi'(t) - \phi'(0)] dt \geq \frac{1}{2} c \|x_1 - x_0\|^2
\]
which by definition of \(\phi\), is just the definition of strongly convex function.

Theorem 5 (Second order differentiation) Let \(f\) be twice differentiable on an open convex set \(\Omega \subset \mathbb{R}^n\). Then

- \(f\) is convex on \(\Omega\) iff \(\nabla^2 f(x_0)\) is positive semi-definite for all \(x_0 \in \Omega\).
- if \(\nabla^2 f(x_0)\) is positive definite for all \(x_0 \in \Omega\), then \(f\) is strictly convex on \(\Omega\).
- \(f\) is strongly convex with modulus \(c\) on \(\Omega\) if and only if the smallest eigenvalue of \(\nabla^2 f(\cdot)\) is minorized by \(c\) on \(\Omega\): for all \(x_0 \in \Omega\) and all \(d \in \mathbb{R}^n\),
\[
\langle \nabla^2 f(x_0), d \rangle \geq c \|d\|^2
\]

Proof. Suppose \(f\) is convex. As \(f\) is twice differentiable, we have
\[
f(x + \delta x) = f(x) + \nabla f(x)^T \delta x + \frac{1}{2} (\delta x)^T \nabla^2 f(x) \delta x + R(x; \delta x) \|\delta x\|^2
\]
where \(R(x; \delta x) \to 0\) as \(\delta x \to 0\). As \(f\) is convex, by the first-order condition,
\[
f(x + \delta x) \geq f(x) + \nabla f(x)^T \delta x
\]
Hence
\[
\delta x^T \nabla^2 f(x) \delta x + R(x; \delta x) \|\delta x\|^2 \geq 0
\]
for any \(\delta x\). Let \(\delta x = \epsilon d\) and taking \(\epsilon \to 0\) yields \(d^T \nabla^2 f(x) d \geq 0\) for any \(d\), thus \(\nabla^2 f(x) \geq 0\). It is easy to check when \(\nabla^2 f(x) \geq 0\), the first order condition hold, thus \(f\) is convex. Note: similarly \(f\) is concave iff \(\text{dom}(f)\) is convex and \(\nabla^2 f(x)\) is negative semi-definite for \(x \in \text{dom}(f)\).

Examples:

- Quadratic function \(f(x) = \frac{1}{2} x^T P x + q^T x + r\) with \(P \in \mathbb{S}^n\) is convex if \(P \in \mathbb{S}^n_+\), \((\nabla f(x)) = P x + q, \nabla^2 f(x) = P\). Special case: \(f(x) = \|Ax - b\|^2\) is convex as \(\nabla^2 f(x) = 2A^T A\) is positive semi-definite for any \(A\).
• Quadratic over linear \(f(x, y) = \frac{x^2}{y} \) for \(y > 0 \). Show the Hessian matrix is
\[
\nabla^2 f(x, y) = \frac{2}{y^2} \begin{pmatrix}
y^2 & -yx \\
-yx & x^2
\end{pmatrix} = \frac{2}{y^2} \begin{pmatrix} y & x \\
x & -x
\end{pmatrix}.
\]

• Log-sum-exp: \(f(x) = \log(\sum_{k=1}^{n} \exp(x_k)) \) is convex. Show the Hessian matrix
\[
\nabla^2 f(x) = \frac{1}{1^T z} \text{diag}(z) - \frac{1}{(1^T z)^2} z z^T
\]
is positive semi-definite for \(z_k = \exp(x_k) \). In fact
\[
\max\{x_1, x_2, \cdots, x_n\} \leq f(x) \leq \max\{x_1, \cdots, x_n\} + \log n,
\]
so \(f \) can be viewed as a differentiable approximation of the max function.

• Geometric mean: \(f(x) = (\prod_{k=1}^{n} x_k)^{1/n} \) on \(\mathbb{R}^n_+ \) is concave.

1.5 Conjugacy

The conjugate of \(f \):
\[
f^*(y) := \sup_{x \in \text{dom}(f)} \langle y, x \rangle - f(x)
\]

Figure 1.1: A function \(f : \mathbb{R} \to \mathbb{R} \), and a value \(y \in \mathbb{R} \). The conjugate function \(f^*(y) \) is the maximum gap between the linear function \(yx \) and \(f(x) \). If \(f \) is differentiable, this occurs at a point \(x \) where \(f'(x) = y \).

• The domain of \(f^*(y) \) consists of \(y \in \mathbb{R}^n \) for which the supremum is finite.

• \(f^* \) is convex even \(f \) is not convex since \(f^* \) is a set supremum of a convex (affine function of \(y \)).

• For differentiable function, the mapping \(f \to f^* \) is called Legendre-Fenchel transform.

Examples:
Lecture note 2 Convex optimization

- $f(x) = a^T x + b$, $f^*(y) = \sup_x y^T x - ax - b$ is bounded iff $y = a$. $\text{dom}(f^*) = \{a\}$ and $f^*(a) = b$.

- Negative logarithm $f(x) = -\log(x)$, $\text{dom}(f) = \mathbb{R}_{++}$.

\[
f^*(y) = \sup_{x \in \text{dom}(f)} y^T x + \log(x) = \begin{cases} \text{unbounded} & y \geq 0 \\ -\log(-y) - 1 & y < 0 \end{cases}
\]

(for $x = -\frac{1}{y}$) when $\text{dom}(f^*) = \{y < 0\}$.

- $f(x) = e^x$. For $y < 0$, $xy = e^x$ is unbounded (let $x \to -\infty$); For $y > 0$, when $x = \log y$, $xy - e^x$ reaches its maximum and $f^*(y) = y \log y - y$. For $y = 0$, $f^*(y) = \sup -e^x = 0$, thus $f^*(y) = y \log y - y$ (with $0 \log 0 = 0$).

- Strictly convex quadratic: $f(x) = \frac{1}{2}x^T Q x$, $Q \in S^n_{++}$. $y^T x - \frac{1}{2}x^T Q x$ is bounded above for all x, maximum at $Q^{-1}y = x$, thus $f^*(y) = \frac{1}{2}y^T Q^{-1} y$.

- Indicator function: let $I_S(x) = \begin{cases} 0 & x \in S \\ +\infty & \text{if not} \end{cases}$, thus $I_S^*(y) = \sup_{x \in S} y^T x$ (support function of S).

- Log-sum-sup: $f(x) = \log(\sum_{i=1}^n e^{x_i})$, $f^*(y) = \begin{cases} \sum_{i=1}^n y_i \log y_i & y \geq 0, 1^T y = 1 \\ +\infty & \text{if not} \end{cases}$

- Norm: let $\| \cdot \|$ be a norm in \mathbb{R}^n, with dual norm $\| \cdot \|^*$. We will show that the conjugate of $f(x) = \| x \|$ is

\[
f^*(y) = \begin{cases} 0 & \|y\|^* \leq 1 \\ +\infty & \text{if not} \end{cases}
\]

Recall that $\|y\|^* = \sup\{\|y^T x\|, \|y\| \leq 1\}$. For $\|y\|^* > 1$, by definition, there exists z such that $\|z\| \leq 1$ and $y^T z > 1$. Let $x = tz$ and $t \to \infty$, then

$y^T x - \|x\| = t(y^T z - \|z\|) \to \infty$, thus $f^*(y)$ is unbounded. Conversely, if $\|y\|^* \leq 1$, then $y^T x \leq \|y\|^* \|x\|$ and $y^T x - \|x\| \leq 0$ and the maximum is attained at $x = 0$. Thus

\[
f^*(y) = \begin{cases} 0 & \|y\|^* \leq 1 \\ +\infty & \text{if not} \end{cases}
\]

- Norm square: let $f(x) = \frac{1}{2}\| x \|^2$ for some norm. Then $f^*(y) = \frac{1}{2}\|y\|^2$.

Properties of conjugate functions

- Fenchel’s inequality: $f^*(y) + f(x) \geq x^T y$ (Young’s inequality for differentiable f). Example: $x^T y \leq 1/2 x^T Q x + 1/2 y^T Q^{-1} y$.

- Conjugate of conjugate: if f is convex and f is closed, then $f^{**} = f$.
Suppose f is convex and differentiable with $\text{dom}(f) = \mathbb{R}^n$. Any maximizer x^* s.t. $\nabla f(x^*) = y$ and conversely if x^* s.t $y = \nabla f(x^*)$, then x^* maximize $y^T x - f(x)$ and $f^*(y) = \nabla f(x^*)^T x^* - f(x^*) = y^T (\nabla f)^{-1}(y) - f((\nabla f)^{-1}(y))$. Thus $df^*(y) = \langle y, dx \rangle + \langle x^*, y \rangle - \langle \nabla f(x^*), dx^* \rangle = \langle dy, x^* \rangle$. Thus $\nabla f^*(y) = x^*$.

Scaling and composition with affine transformation: for $a > 0, b \in \mathbb{R}$ $g(x) = ax + b$, thus $g^*(y) = a f^*(y/a) - b$. Suppose that $A \in \mathbb{R}^{n \times n}$ is nonsingular and $b \in \mathbb{R}^n$, then the conjugate of $f(Ax + b)$ is $g^*(y) = f^*(A^{-T} y) - b^T A^{-T} y$ with $\text{dom} g^* = A^T \text{dom} f^*$.

Sum of independent function $f(u, v) = f_1(u) + f_2(v)$ where f_1, f_2 are both convex with conjugate $f^*(w, z) = f_1^*(w) + f_2^*(z)$

Convexity of the conjugation: if $\text{dom}(f_1) \cap \text{dom}(f_2) \neq \emptyset$, and $\alpha \in (0, 1)$, then

$$[\alpha f_1 + (1 - \alpha)f_2]^* \leq \alpha f_1^* + (1 - \alpha)f_2^*$$