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Abstract

This paper investigates some properties of the number of subtrees of a tree with

given degree sequence. These results are used to characterize trees with the given

degree sequence that have the largest number of subtrees, which generalizes the recent

results of Kirk and Wang. These trees coincide with those which were proven by

Wang and independently Zhang et al. to minimize the Wiener index. We also provide

a partial ordering of the extremal trees with different degree sequences, some extremal

results follow as corrollaries.
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1 Introduction

All graphs in this paper will be finite, simple and undirected. A tree T = (V,E) is a con-

nected, acyclic graph whereV(T) andE(T) denote the vertex set and edge set respectively.

We refer to vertices of degree 1 ofT as leaves. The unique path connecting two vertices

u, v in T will be denoted byPT(u, v). The number of edges onP(u, v) is called distance

distT(u, v), or for shortdist(u, v) between them. We call a tree (T, r) rooted at the ver-

tex r (or just byT if it is clear what the root is) by specifying a vertexr ∈ V(T). The

heightof a vertexv of a rooted treeT with root r is hT(v) = distT(r, v). For any two dif-

ferent verticesu, v in a rooted tree (T, r), we say thatv is a successorof u andu is an

ancestorof v if PT(r, u) ⊂ PT(r, v). Furthermore, ifu andv are adjacent to each other and

distT(r, u) = distT(r, v) − 1, we say thatu is the parentof v andv is a child of u. Two

verticesu, v are siblings of each other if they share the same parent. A subtree of a tree will

often be described by its vertex set.

The number of subtrees of a tree has received much attention.It is well known that

the pathPn and the starK1,n−1 have the most and least subtrees among all trees of order

n, respectively. The binary trees that maximize or minimize the number of subtrees are

characterized in [5, 7].

Formulas are given to calculate the number of subtrees of these extremal binary trees.

These formulas use a new representation of integers as a sum of powers of 2. Number

theorists have already started investigating this new binary representation [1]. Also, the

sequence of the number of subtrees of these extremal binary trees (with 2l leaves,l =

1, 2, · · ·) appears to be new [4]. Later, a linear-time algorithm to count the subtrees of a tree

is provided in [11].

In a related paper [6], the number of leaf-containing subtrees are studied for binary

trees. The results turn out to be useful in bounding the number of acceptable residue con-

figurations. See [3] for details.

An interesting fact is that among binary trees of the same size, the extremal one that

minimizes the number of subtrees is exactly the one that maximizes some chemical indices

such as the well known Wiener index, and vice versa. In [2], subtrees of trees with given

order and maximum vertex degree are studied. The extremal trees coincide with the ones

for the Wiener index as well. Such correlations between different topological indices of

trees are studied in [8].

Recently, in [13] and [9] respectively, extremal trees are characterized regarding the

Wiener index with a given degree sequence. Then it is naturalto consider the following
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question.

Problem 1.1 Given the degree sequence and the number of vertices of a tree, find the upper

bound for the number of subtrees, and characterize all extremal trees that attain this bound.

It will not be a surprise to see that such extremal trees coincide with the ones that attain

the minimum Wiener index. Along this line, we also provide anordering of the degree

sequences according to the largest number of subtrees. Withour main results, Theorems 2.3

and 2.4, one can deduce extremal graphs with the largest number of subtrees in some classes

of graphs. This generalizes the results of [5], [2], etc.

The rest of this paper is organized as follows: In Section 2, some notations and the main

theorems are stated. In Section 3, we present some observations regarding the structure of

the extremal trees. In Section 4, we present the proofs of themain theorems. In Section

5, we show, as corollaries, characterizations of the extremal trees in different categories of

trees including previously known results.

2 Preliminaries

For a nonincreasing sequence of positive integersπ = (d0, · · · , dn−1) with n ≥ 3, let Tπ
denote the set of all trees withπ as its degree sequence. We can construct a special

tree T∗π ∈ Tπ by using breadth-first search method as follows. Firstly, label the ver-

tex with the largest degreed0 as v01 (the root). Secondly, label the neighbors ofv0 as

v11, v12, . . . , v1d0 from left to right and letd(v1i) = di for i = 1, · · · , d0. Then repeat

the second step for all newly labeled vertices until all degrees are assigned. For exam-

ple, if π = (4, 4, 3, 3, 3, 3, 3, 2, 1, 1, 1,1,1, 1,1,1, 1,1,1), T∗π is shown in Fig. 1. There

is a vertexv01 (the root) in layer 0 with the largest degree 4; its four neighbors are la-

beled asv11, v12, v13, v14 in layer 1, with degrees 4, 3, 3, 3 from left to right; nine vertices

v21, v22, · · · , v29 in layer 2; five verticesv31, v32, v33, v34, v35 in layer 3. The number of ver-

tices in each layeri, denoted bysi can be easily calculated ass0 = 1, s1 = d0 = 4,

s2 = d1 + d2 + d3 + d4 − s1 = 4+ 3+ 3+ 3− 4 = 9, ands3 = d5 + · · · + d13− s2 = 5.
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Figure 1

To explain the structure and properties ofT∗π , we need the following notation from [12].

Definition 2.1 ([12]) Let T = (V,E) be a tree with root v0. A well-ordering≺ of the vertices

is called a BFS-ordering if≺ satisfies the following properties.

(1) If u, v ∈ V, and u≺ v, then h(u) ≤ h(v) and d(u) ≥ d(v);

(2) If there are two edges uu1 ∈ E(T) and vv1 ∈ E(T) such that u≺ v, h(u) = h(u1) − 1

and h(v) = h(v1) − 1, then u1 ≺ v1.

We call trees that have a BFS-ordering of its vertices a BFS-tree.

It is easy to see thatT∗π has a BFS-ordering and any two BFS-trees with degree sequenceπ

are isomorphic (for example, see [12]). And the BFS-trees are extremal with respect to the

Laplacian spectral radius.

Let π = (d0, · · · , dn−1) and π′ = (d′0, · · · , d
′
n−1) be two nonincreasing sequences. If

∑k
i=0 di ≤

∑k
i=0 d′i for k = 0, · · · , n − 2 and

∑n−1
i=0 di =

∑n−1
i=0 d′i , then the sequenceπ′ is said

to major the sequenceπ and denoted byπ ⊳ π′. It is known that the following holds (for

example, see [10] or [12]).

Proposition 2.2 (Wei [10]) Let π = (d0, · · ·dn−1) and π′ = (d′0, · · · , d
′
n−1) be two nonin-

creasing graphic degree sequences. Ifπ ⊳ π′, then there exists a series of graphic degree

sequencesπ1, · · · , πk such thatπ ⊳ π1 ⊳ · · · ⊳ πk ⊳ π
′, whereπi andπi+1 differ at exactly two

entries, say dj (d′j) and dk (d′k) of πi (πi+1), with d′j = d j + 1, d′k = dk − 1 and j< k.

The main results of this paper can be stated as follows.
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Theorem 2.3 With a given degree sequenceπ, T∗π is the unique tree with the largest number

of subtrees inTπ.

Theorem 2.4 Given two different degree sequencesπ andπ1. If π ⊳ π1, then the number of

subtrees of T∗π is less than the number of subtrees of Tπ1.

3 Some Observations

In order to prove Theorems 2.3 and 2.4, we need to introduce some more terminologies.

For a vertexv of a rooted tree (T, r), let T(v), the subtree induced byv, denote the subtree

of T (rooted atv) that is induced byv and all its successors. For a treeT and vertices

v1,v2,. . . ,vm−1,vm of T, let fT(v1,v2,. . . ,vm−1,vm) denote the number of subtrees of T that

contain the verticesv1,v2,. . .,vm−1,vm. In particular,fT(v) denotes the number of subtrees of

T that containv. Letϕ(T) denote the number of non-empty subtrees ofT.

Let W be a tree andx, y be two vertices ofW. The pathPW(x, y) from x to y can be de-

noted byxmxm−1 . . . x2x1y1y2 . . . ym−1ym for odddist(x, y) or xmxm−1 . . . x2x1zy1y2 . . . ym−1ym

for evendist(x, y), wherexm ≡ x, ym ≡ y. Let G1 be the graph resulted fromW by deleting

all edges inPW(x, y). The connected components (inG1) containingxi, yi andzare denoted

by Xi, Yi andZ, respectively, fori = 1, 2, . . . ,m. We also letX≥k be the connected compo-

nent ofW containingxk after deleting the edgexk−1xk andY≥k be the connected component

of W containingyk after deleting the edgeyk−1yk, for k = 1, · · · ,m. Figure 2 shows such a

labelling according to a path of odd length (withoutz).

Xk−1

. . .

X2 X1 Y1 Y2

. . .

Yk−1

X≥k Y≥k
xk xk−1 x2 x1 y1 y2 yk−1 yk

Figure 2: Labelling of a path and the components

We need the next two lemmas from [2] to proceed.

Lemma 3.1 ([2]) Let W be a tree with a path PW(xm, ym) = xmxm−1 . . . x2x1(z)y1y2 . . . ym−1ym

from xm to ym. If fXi (xi) ≥ fYi (yi) for i = 1, 2, . . . ,m, then fW(xm) ≥ fW(ym). Furthermore, if

this inequality holds, then fW(xm) = fW(ym) if and only if fXi(xi) = fYi (yi) for i = 1, 2, . . . ,m.
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Now let X andY be two rooted trees with rootsx′ andy′. Let T be a tree containing

verticesx andy. Then we can buildT′ by identifying the rootx′ of X with x of T and the

root y′ of Y with y of T, andT′′ by identifying the rootx′ of X with y of T and the rooty′

of Y with x of T.

TX Y
x y

TY X
x y

Figure 3: ConstructingT′ (left) andT′′ (right)

Lemma 3.2 ([2]) Let T ,T′,T′′ be as in Figure 2. If f(x) ≥ fW(y) and fX(x) ≤ fY(y), then

ϕ(T′′) ≥ ϕ(T′) with equality if and only if fT(x) = fT(y) or fX(x′) = fY(y′).

From Lemmas 3.1 and 3.2, we immediately achieve the following observation. We

leave the proof to the reader.

Lemma 3.3 Let T be a tree inTπ and P(xm, ym) = xmxm−1 . . . x2x1(z)y1y2 . . . ym−1ym be a

path of T. Let T′ be the tree from T by deleting the two edges xkxk+1 and ykyk+1 and adding

two edges xk+1yk and yk+1xk. If fXi(xi) ≥ fYi (yi) for i = 1, · · · , k and1 ≤ k ≤ m− 1, and

fX≥k+1(xk+1) ≤ fY≥k+1(yk+1), then

ϕ(T) ≤ ϕ(T′)

with equality if and only if fX≥k+1(xk+1) = fY≥k+1(yk+1) or fXi(xi) = fYi (yi) for i = 1, · · · , k.

For convenience, we refer to trees that maximize the number of subtrees asoptimal. In

terms of the structure of the optimal tree, we have the following version of Lemma 3.3.

Corollary 3.4 Let T be an optimal tree inTπ and P(xm, ym) = xmxm−1 . . . x2x1(z)y1y2 . . . ym−1ym

be a path of T. If fXi(xi) ≥ fYi (yi) for i = 1, · · · , k with at least one strict inequality and

1 ≤ k ≤ m− 1, then fX≥k+1(xk+1) ≥ fY≥k+1(yk+1).

Lemma 3.5 Let T be an optimal tree inTπ and P(xm, ym) = xmxm−1 . . . x2x1(z)y1y2 . . . ym−1ym

be a path of T. If fXi(xi) ≥ fYi (yi) for i = 1, · · · , k with at least one strict inequality and

1 ≤ k ≤ m− 1, then fXk+1(xk+1) ≥ fYk+1(yk+1) .
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Proof. If k = m− 1, then by Corollary 3.4, the assertion holds sincefX≥m(xm) = fXm(xm)

and fY≥m(ym) = fYm(ym). Hence we assume that 1≤ k ≤ m− 2. Suppose thatfXk+1(xk+1) <

fYk+1(yk+1). Denote byM the number of subtrees ofT not containing verticesxk andyk. Let

W be the connected component ofT by deleting the two edgesxkxk+1 andykyk+1 containing

verticesxk andyk. Then

ϕ(T) =
{

1+ fXk+1(xk+1)[1 + fX≥k+2(xk+2)]
}

[ fW(xk) − fW(xk, yk)] +
{

1+ fYk+1(yk+1)[1 + fY≥k+2(yk+2)]
}

[ fW(yk) − fW(xk, yk)] +
{

1+ fXk+1(xk+1)[1 + fX≥k+2(xk+2)]
} {

1+ fYk+1(yk+1)[1 + fY≥k+2(yk+2)]
}

fW(xk, yk) + M.

Oh the other hand, letT′ be the tree fromT by deleting four edgesxkxk+1, xk+1xk+2, ykyk+1

andyk+1yk+2 and adding four edgesxkyk+1, yk+1xk+2, ykxk+1 andxk+1yk+2. Clearly,T′ ∈ Tπ
and

ϕ(T′) =
{

1+ fYk+1(yk+1)[1 + fX≥k+2(xk+2)]
}

[ fW(xk) − fW(xk, yk)] +
{

1+ fXk+1(xk+1)[1 + fY≥k+2(yk+2)]
}

[ fW(yk) − fW(xk, yk)] +
{

(1+ fYk+1(yk+1)[1 + fX≥k+2(xk+2)]
} {

1+ fXk+1(xk+1)[1 + fY≥k+2(yk+2)]
}

fW(xk, yk) + M.

Hence

ϕ(T′) − ϕ(T) = ( fYk+1(yk+1) − fXk+1(xk+1)){[1 + fX≥k+2(xk+2)][ fW(xk) − fW(xk, yk)] −

[1 + fY≥k+2(yk+2)][ fW(yk) − fW(xk, yk)] + fw(xk, yk)( fX≥k+2(xk+2) − fY≥k+2(yk+2))}.

Obviously, we havefW(yk) > fW(xk, yk) and fW(xk) > fW(xk, yk). By Lemma 3.1, we

have fW(xk) > fW(yk). Further by Corollary 3.4, we havefX≥k+1(xk+1) ≥ fY≥k+1(yk+1). Since

fX≥k+1(xk+1) = fXk+1(xk+1)(1 + fX≥k+2(xk+2)) and fY≥k+1(yk+1) = fYk+1(yk+1)(1 + fY≥k+2(yk+2)),

we have fX≥k+2(xk+2) ≥ fY≥k+2(yk+2) since we assumedfXk+1(xk+1) < fYk+1(yk+1). Therefore,

ϕ(T′) > ϕ(T) > 0, contradicting to the optimality ofT. So the assertion holds.

Lemma 3.6 Let P be a path of an optimal T inTπ whose end vertices are leaves.

(i) If the length of P is odd (2m− 1), then the vertices of P can be labeled as xmxm−1 · · · x1

y1y2 · · · ym such that

fX1(x1) ≥ fY1(y1) ≥ fX2(x2) ≥ fY2(y2) ≥ · · · ≥ fXm(xm) = fYm(ym) = 1.

(ii) If the length of P is even (2m), then the vertices of P can be labeled as xm+1xmxm−1 · · · x1

y1y2 · · · ym such that

fX1(x1) ≥ fY1(y1) ≥ fX2(x2) ≥ fY2(y2) ≥ · · · ≥ fXm(xm) ≥ fYm(ym) = fXm+1(xm+1) = 1.
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Proof. We provide the proof of part (i), part (ii) can be shown in a similar manner.

Obviously, the vertices ofP may be labeled asxr xr−1 · · · x1y1y2 · · · ys such thatfX1 the

maximum amongfXi and fX j for i = 1, 2, · · · , r and j = 1, 2, · · · , s, wherer + s = 2m.

Therefore, there is only one of the following three cases:

Case 1:If the number of the maximum components is one, then there exists a 1≤ k ≤ m

such that

fX1(x1) > fY1(y1), fY1(y1) = fX2(x2), · · · , fYk−1(yk−1) = fXk(xk), fYk(yk) > fXk+1(xk+1) (1)

Next we will prove (1). It is divided into three subcases.

Case 1.1:If fY1(y1) > fX2(x2), then we havek = 1 and (1)holds.

Case 1.2:If fY1(y1) < fX2(x2), then the vertices ofP may be relabeled such thatyi is instead

by xi+1 for i = 1, · · · , s andXi is instead byyi−1 for i = 2, · · · , r. Hence it is the same as the

subcase 1.1.

Case 1.3:If fY1(y1) = fX2(x2). Then we must havefY2(y2) > fX3(x3) or fY2(y2) < fX3(x3) or

fY2(y2) = fX3(x3).

Case 1.3.1:If fY2(y2) > fX3(x3), then we havek = 2 and (1)holds.

Case 1.3.2: If fY2(y2) < fX3(x3), then the vertices ofP may be relabeled such thatyi is

instead byxi+1 for i = 1, · · · , s andXi is instead byyi−1 for i = 2, · · · , r. Hance, the case is

the same as the subcase 1.3.1.

Case 1.3.3:If fY2(y2) = fX3(x3), we can continue to analyze likefY1(y1) = fX2(x2). Then we

havek ≥ 3 and (1)holds. Next we will prove that if (1) holds, then we must have

r = s= m.

Otherwise, ifr < s, then by Lemma 3.5,fXi(xi) ≥ fYi(yi) for i = 1, · · · , r. Hence by

Corollary 3.4 we havefX≥r (xr) ≥ fY≥r (yr). On the other hand, it is clear thatfX≥r (xr) = 1 and

fY≥r (yr) ≥ 2, contradiction.

If r > s, thenr ≥ s+2 sincer+s= 2m. Now we consider the path from vertexxs+1 to ys.

By Lemma 3.5, we havefYi(yi) ≥ fXi+1(xi+1) for i = 1, · · · , s. Further, by Corollary 3.4, we

have fY≥s(ys) ≥ fX≥s+1(xs+1). Similarly, sincefY≥s(ys) = 1 and fX≥s+1(xs+1) ≥ 2, contradiction.

Thereforer = s= m.

Now by Lemma 3.5 applied to the path fromxm to ym, we havefXi(xi) ≥ fYi (yi) for

i = 1, · · · ,m. On the other hand, by Lemma 3.5 applied to the path fromym−1 to xm, we

have fYi(yi) ≥ fXi+1(xi+1) for i = 1, 2, . . . ,m− 1. Hence the assertion holds.

Case 2: If the number of the maximum components is 2k ≥ 2. Then the pathP can be

8



labeled asxmxm−1 · · · x1y1y2 · · · ym such that

fX1(x1) = fY1(y1) = · · · = fXk(xk) = fYk(yk) > fXk+1(xk+1) ≥ fYk+1(yk+1), (2)

and the verticesx1, x2, · · · , xk, y1, y2, · · · , yk are in the maximum components respectively.

That is to say all the maximum components are adjoining. Otherwise, there must be two

pair vertices satisfying the first inequality in (1). Hence either of them, the vertices ofP

may be labeled asxr1 xr1−1 · · · x1y1y2 · · · ys1 or xr2xr1−1 · · · x1y1y2 · · · ys2. By the case 1, we

can haver1 = r2 = s1 = s2 = m. But it is impossible.Therefore, if there are more than

one component with the most subtrees containing the vertex on the pathP, then all of them

must adjoin.

Case 3:If the number of the maximum components is 2k+ 1 > 2. Then the pathP can be

labeled asxmxm−1 · · · x1y1y2 · · · ym such that

fX1(x1) = fY1(y1) = · · · = fXk(xk) = fYk(yk) = fXk+1(xk+1) > fYk+1(yk+1), (3)

We omits the details.

Then Cases (2) or (3) can be handled in the same manner, we omitthe details here.

Following the conditions in Lemma 3.6, we have the following.

Lemma 3.7 (i) If case (i) of Lemma 3.6 holds, then

fT(x1) ≥ fT(y1) > fT(x2) ≥ fT(y2) > · · · > fT(xm) ≥ fT(ym).

Moreover, if fT(xk) = fT(yk) for some1 ≤ k ≤ m, then fT(xi) = fT(yi) for i = k, · · · ,m.

(ii) If case (ii) of Lemma 3.6 holds, then

fT(x1) > fT(y1) ≥ fT(x2) > fT(y2) ≥ · · · ≥ fT(xm) > fT(ym) ≥ fT(xm+1).

Moreover, if fT(yk) = fT(xk+1) for some1 ≤ k ≤ m, then fT(yi) = fT(xi+1) for i = k, · · ·m.

Proof. We only prove part (i), part (ii) is similar.

For any 2≤ k ≤ m, let Wk−1 be the connected component ofT containing verticesxk−1

andyk−1 after removing the edgesxk−1xk andyk−1yk. Fork = 1 andk = m, it is easy to see

fT(x1) − fT(y1) = fX1(x1)(1+ fX≥2(x2)) − fY1(y1)(1+ fY≥2(y2))

and

fT(xm) − fT(ym) = fXm(xm)(1+ fWm−1(xm−1)) − fYm(ym)(1+ fWm−1(ym−1)).

9



Moreover,

fT(xk) = fXk(xk)(1+ fX≥k+1(xk+1))(1+ fWk−1(xk−1)+ fWk−1(xk−1, · · · , yk−1) fYk(yk)(1+ fY≥k+1(yk+1)))

(4)

and

fT(yk) = fYk(yk)(1+ fY≥k+1(yk+1))(1+ fWk−1(yk−1)+ fWk−1(yk−1, · · · , xk−1) fXk(xk)(1+ fX≥k+1(xk+1))).

(5)

By equations (4) and (5), we have

fT(xk) − fT(yk) = fXk(xk)(1+ fWk−1(xk−1))(1+ fX≥k+1(xk+1))

− fYk(yk)(1+ fWk−1(yk−1))(1+ fY≥k+1(yk+1)). (6)

Now we claim that for 1≤ k ≤ m− 1,

fX≥k+1(xk+1) ≥ fY≥k+1(yk+1), (7)

If there is at least one strict inequality infXi(xi) ≥ fYi (yi) for i = 1, · · · , k, then by Lemma 3.5,

(7) holds.

If fXi(xi) = fYi (yi) for i = 1, · · · , k and there exists ak < l < m such thatfXi(xi) = fYi (yi)

for i = 1, · · · , l − 1 and fXl(xl) > fYl(yl). Then by Lemma 3.5, we havefX≥l+1(xl+1) ≥

fY≥l+1(yl+1). Moreover,

fX≥k+1(xk+1) =
l
∑

j=k+1

j
∏

i=k+1

fXi(xi) + fX≥l+1(xl+1)
l
∏

i=k+1

fXi(xi) (8)

and

fY≥k+1(yk+1) =
l
∑

j=k+1

j
∏

i=k+1

fYi (yi) + fY≥l+1(yl+1)
l
∏

i=k+1

fYi (yi). (9)

By equations (8) and (9), the claim holds.

If fXi(xi) = fYi (yi) for i = 1, · · · ,m, then by equations (8) and (9), we havefX≥k+1(xk+1) =

fY≥k+1(yk+1) and the claim holds.

Hence (7) is proved.

On the other hand, by Lemma 3.1, we havefWk−1(xk−1) ≥ fWk−1(yk−1). Together with (7),

we see that (6)≥ 0. Then fT(xk) ≥ fT(yk).

Now we prove fT(yk) ≥ fT(xk+1) for any 1 ≤ k ≤ m− 1. Let Uk be the connected

component ofT containing vertexxk after removing the edgesyk−1yk (if k = 1, lety0 = x1)
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andxkxk+1. Then

fT(yk) = fYk(yk)(1+ fY≥k+1(yk+1))(1+ fUk(yk−1) + fUk(yk−1, · · · , xk) fXk+1(xk+1)(1+ fX≥k+2(yk+2)))

(10)

and

fT(xk+1) = fXk+1(xk+1)(1+ fX≥k+2(xk+2))(1+ fUk(xk)+ fUk(xk, · · · , yk−1) fYk(yk)(1+ fY≥k+1(yk+1))).

(11)

Similar to (7), we can show thatfY≥k+1(yk+1) ≥ fX≥k+2(xk+2). By Lemma 3.1, we have

fUk(yk−1) ≥ fUk(xk). Hence (10) and (11) imply that

fT(yk) − fT(xk+1) = fYk(yk)(1+ fUk(yk−1))(1+ fY≥k+1(yk+1))

− fXk+1(xk+1)(1+ fUk(xk))(1+ fX≥k+2(xk+2))

= fY≥k(yk)(1+ fUk(yk−1)) − fX≥k+1(xk+1)(1+ fUk(xk)) ≥ 0. (12)

Moreover, if fT(xk) = fT(yk) for some 1≤ k ≤ m, then by (6), we have

fXk(xk) = fYk(yk), fX≥k(xk) = fY≥k(yk), fWk−1(xk−1) = fWk−1(yk−1). (13)

SincefX≥k = fXk(xk)(1+ fX≥k+1(xk+1)) and fY≥k = fYk(yk)(1+ fY≥k+1(yk+1)), we havefX≥k+1(xk+1) =

fY≥k+1(yk+1) by (13). On the other hand, since

fWk(xk) = fXk(xk)(1+ fWk−1(xk−1) + fWk−1(xk−1, · · · , yk−1) fYk(yk))

and

fWk(yk) = fYk(yk)(1+ fWk−1(yk−1) + fWk−1(yk−1, · · · , xk−1) fXk(xk)),

we havefWk(xk) = fWk(yk) by (13). Hence

fT(xk+1) = fX≥k+1(xk+1)(1+ fWk(xk) + fWk(xk, · · · , yk) fY≥k+1(yk+1))

= fY≥k+1(yk+1)(1+ fWk(yk) + fWk(xk, · · · , yk) fX≥k+1(xk+1)) = fT(yk+1). (14)

Therefore we havefT(xi) = fT(yi) for i = k, · · · ,m.

Finally, we prove thatfT(yi) > fT(xi+1) for i = 1, · · · ,m− 1. Suppose thatfT(yk) =

fT(xk+1) for some 1≤ k ≤ m. Then by equation (12), we havefYk(yk) = fXk+1(xk+1) and

fY≥k(yk) = fX≥k+1(xk+1). Moreover,

fYk(yk)(1+ fY≥k+1(yk+1)) = fY≥k(yk) = fX≥k+1(xk+1) = fXk+1(xk+1)(1+ fX≥k+2(xk+2)).

11



Hence fY≥k+1(yk+1) = fX≥k+2(xk+2). Continuing this way in an inductive manner, we have

fY≥m−1(ym−1) = fX≥m(xm). But fY≥m−1(ym−1) ≥ 2 and fX≥m(xm) = 1, contradiction.

Combining the above results, we have proved part (i).

The next Lemma relates the number of subtrees to the structure of the tree.

Lemma 3.8 For a path P(xm, ym) = xmxm−1 . . . x2x1(z)y1y2 . . . ym−1ym in an optimal tree T,

if fXi(xi) ≥ fYi (yi) for i = 1, · · · , k, 1 ≤ k ≤ m− 1, then d(xk) ≥ d(yk).

Moreover, if fXi(xi) = fYi (yi) for i = 1, · · · , k, 1 ≤ k ≤ m− 1, then d(xk) = d(yk).

Proof. Suppose thatd(xk) < d(yk), let r = d(yk) − d(xk) ≥ 1 andykui ∈ Y≥k for i = 1, · · · , r.

Further letW be the connected component ofT containing verticesxk and yk after

removing ther edgesyku1, · · · , ykur . Let X be the single vertexxk and letY be the connected

component ofT containing vertexyk after removing all edges incident toyk except for

the r edgesyku1, · · · , ykur . Since fXi(xi) ≥ fYi (yi) for i = 1, · · · , k, it is easy to see that

fW(xk) > fW(yk) and fX(xk) = 1 < 2 ≤ fY(yk). By Lemma 3.2, there exists another tree

T′ ∈ Tπ such thatϕ(T) < ϕ(T′), contradicting to the optimality ofT.

Therefore the assertion holds. The case of equality is similar.

From Lemmas 3.6, 3.7 and 3.8 we have the following Lemma that decides the ‘center’

of the optimal tree.

Lemma 3.9 Let T be an optimal tree inTπ . If fT(v0) = max{ fT(v), v ∈ V(T)}, then

d(v0) = max{d(v), v ∈ V(T)}.

Proof. The assertion clearly holds for small trees, so we assume that |V(T)| ≥ 4. Suppose

thatd(v0) < max{d(v), v ∈ V(T)}. Then there exists a vertexw such thatd(v0) < d(w). By

Theorem 9.1 in [5],fT(v) is maximized at one or two adjacent vertices ofT. Thus we have

fT(v0) > fT(v) for v ∈ V(T) \ {v0}, or fT(v0) = fT(v1) > fT(v) for v ∈ V(T) \ {v0, v1} and

v0v1 ∈ E(T).

Case 1: fT(v0) > fT(v) for v ∈ V(T) \ {v0}. Hence,fT(v0) > fT(w). It is easy to see thatv0 is

not a leaf (otherwise, letu be a neighbor ofv0 and we havefT(u) > fT(v0)). Let P be a path

containing vertexv0 andw whose end vertices are leaves. Let the length ofP be 2m− 1

(the even length case is similar). Then by Lemma 3.6, the vertices ofP can be labeled as

P = xm · · · x1y1 · · · ym such that

fX1(x1) ≥ fY1(y1) ≥ fX2(x2) ≥ fY2(y2) ≥ · · · ≥ fXm(xm) = fYm(ym) = 1.
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Hence by Lemma 3.7, we have

fT(x1) ≥ fT(y1) ≥ fT(x2) ≥ fT(y2) ≥ . . . ≥ fT(xm) ≥ fT(ym).

Thereforex1 must bev0 and w must bexk for 2 ≤ k ≤ m or yj for 1 ≤ j ≤ m. By

Lemma 3.8, we haved(v0) = d(x1) ≥ d(xk) = d(w) or d(v0) = d(x1) ≥ d(yj) = d(w),

contradiction. Hence the assertion holds.

Case 2: fT(v0) = fT(v1) > fT(v) for v ∈ V(T) \ {v0, v1} andv0v1 ∈ E(T). If w = v1, then by

Lemma 3.8, we haved(w) = d(v1) = d(v0) < d(w), contradiction.

Hence we assume thatw , v1. First note thatv0 andv1 are not leaves. LetP be a

path containing verticesv0, v1 andw whose end vertices are leaves. Let the length ofP be

2m− 1 (the even case is similar), then by Lemma 3.6, the vertices of P can be labeled as

P = xm · · · x1y1 · · · ym such that

fX1(x1) ≥ fY1(y1) ≥ fX2(x2) ≥ fY2(y2) ≥ · · · ≥ fXm(xm) ≥ fYm(ym) = 1.

Hence by Lemma 3.7, we have

fT(x1) ≥ fT(y1) ≥ fT(x2) ≥ fT(y2) ≥ . . . ≥ fT(xm) ≥ fT(ym).

Therefore{x1, y1} = {v0, v1} and w must bexk or yk for 1 < k ≤ m. By Lemma 3.8,

d(v0) ≥ d(w) andd(v1) ≥ d(w), contradiction.

Combining cases (1) and (2), the assertion is proved.

Lemma 3.10 Let T be an optimal tree inTπ. If there is a path P= ulul−1 · · ·u1v0v1 · · · vk

with fT(v0) = max{ fT(v) : v ∈ V(P)}, fT(u1) ≥ fT(v1), and l= k (or l = k+ 1), then

fT(u1) ≥ fT(v1) ≥ fT(u2) ≥ · · · ≥ fT(uk) ≥ fT(vk) (or ≥ fT(uk+1))

and

d(u1) ≥ d(v1) ≥ d(u2) ≥ · · · ≥ d(uk) ≥ d(vk) (or ≥ d(uk+1)).

Proof. Clearly, there exists a pathQ that contains the pathP and its end vertices are leaves.

We assumel = k (the l = k+ 1 case is similar).

Let the length ofQ be 2m−1 (the even length case is similar). By Lemmas 3.7 and 3.8,

The vertices ofQ can be labeled asQ = xmxm−1 · · · x1y1 · · · ym such that

fT(x1) ≥ fT(y1) > fT(x2) ≥ fT(y2) > . . . > fT(xm) ≥ fT(ym)
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and

d(x1) ≥ d(y1) ≥ d(x2) ≥ d(y2) ≥ · · · ≥ d(xm) = d(ym) = 1.

Case 1: v0 = x1. We must haveu1 = y1 andv1 = x2. Thenui = yi andvi = xi+1 for

i = 1, · · · , k. Hence the assertion holds.

Case 2: v0 = xi for i > 1. Then fT(v0) ≥ fT(x1) ≥ fT(y1) ≥ fT(xi) = fT(v0), which

implies fT(x1) = fT(y1) = fT(v0) and contradicts to Theorem 9.1 in [5].

Case 3:v0 = yi. Theni = 1 and fT(x1) = fT(y1) = fT(v0). We must haveu1 = x1 and

v1 = y2. Thenui = xi andvi = yi+1 for i = 1, · · · , k. So the assertion holds.

Now for an optimal treeT inTπ, letv0 ∈ V(T) be the root ofT with fT(v0) = max{ fT(v) :

v ∈ V(T)} andd(v0) = max{d(v) : v ∈ V(T)}.

Corollary 3.11 If there is a path P= uk · · ·u1wv1v2 · · · vk with dist(uk, v0) = dist(vk, v0) =

dist(w, v0) + k and fT(u1) ≥ fT(v1), then

fT(u1) ≥ fT(v1) ≥ fT(u2) ≥ · · · ≥ fT(uk) ≥ fT(vk)

and

d(u1) ≥ d(v1) ≥ d(u2) ≥ · · · ≥ d(uk) ≥ d(vk).

If there is a path P= uk+1 · · ·u1wv1v2 · · · vk with dist(uk+1, v0) = dist(vk, v0) + 1 =

dist(w, v0) + k+ 1 and fT(u1) ≥ fT(v1), then

fT(u1) ≥ fT(v1) ≥ fT(u2) ≥ · · · ≥ fT(uk) ≥ fT(vk) ≥ fT(uk+1)

and

d(u1) ≥ d(v1) ≥ d(u2) ≥ · · · ≥ d(uk) ≥ d(vk) ≥ d(uk+1).

Proof. If w = v0, then the assertion follows from Lemma 3.10. Ifw , v0, then there exists a

pathQ containing verticesuk, · · · , u1,w, v0 whose end vertices are leaves. By Lemma 3.10,

we havefT(w) ≥ fT(u1) ≥ · · · ≥ fT(uk). Similarly, there exists a pathR containing vertices

vk, · · · , v1,w, v0 whose end vertices are leaves and we havefT(w) ≥ fT(v1) ≥ · · · ≥ fT(vk).

ThereforefT(w) = max{ fT(v) : v ∈ V(P)}, the assertion follows from Lemma 3.10.

4 Proofs of Theorems 2.3 and 2.4

Now we are ready to prove Theorems 2.3 and 2.4.
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Proof. of Theorem 2.3. LetT be an optimal tree inTπ. By Lemma 3.9, there exists a vertex

v0 such thatfT(v0) = max{ fT(v) : v ∈ V(T)} andd(v0) = max{d(v) : v ∈ V(T)}. Let v0

be the root ofT and putVi = {v : dist(v, v0) = i} for i = 0, · · · , p+ 1 with V(T) =
⋃p+1

i=0 Vi.

Denote by|Vi | = si for i = 1, · · · , p + 1. We now can relabel the vertices ofV(T) by

the recursion method. ForV0, relabelv0 by v01 as the root of treeT. The vertices ofV1

(consisting of all neighborsv01) are relabeled asv11, · · · , v1,s1, satisfying:

fT(v11) ≥ fT(v12) ≥ · · · ≥ fT(v1,s1)

and

fT(v1i) = fT(v1 j) implies d(v1i) ≥ d(v1 j) for 1 ≤ i < j ≤ s1.

Generally, we assume that all vertices ofVi are relabeled as{vi1, · · · , vi,si } for i = 1, · · · , t.

Now consider all vertices inVt+1. SinceT is tree, it is easy to see thats1 = d(v01) and

st+1 = |Vt+1| = d(vt1) + · · · + d(vt,st) − st.

Hence for 1≤ r ≤ st, all neighbors inVt+1 of vtr are relabeled as

vt+1,d(vt1)+···+d(vt,r−1)−(r−1)+1, · · · , vt+1,d(vt1)+···+d(vt,r )−r

and satisfy the conditions:

fT(vt+1,i) ≥ fT(vt+1, j) (15)

and

fT(vt+1,i) = fT(vt+1, j) implies d(vt+1,i) ≥ d(vt+1, j) (16)

for d(vt1)+ · · ·+d(vt,r−1)− (r −1)+1 ≤ i < j ≤ d(vt1)+ · · ·+d(vt,r )− r. In this way, we have

relabeled all vertices ofV(T) =
⋃p+1

i=0 Vi. Therefore, we are able to define a well-ordering

of vertices inV(T) as follows:

vik ≺ vjl , if 0 ≤ i < j ≤ p+ 1 or i = j and 1≤ k < l ≤ si . (17)

We need to prove that this well-ordering is a BFS-ordering ofT. In other words,T is

isomorphic toT∗π.

We first prove, fort = 0, · · · , p+ 1, the following inequalities.

fT(vt1) ≥ fT(vt2) ≥ · · · ≥ fT(vt,st ) ≥ fT(vt+1,1) (18)
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and

d(vt1) ≥ d(vt2) ≥ · · · ≥ d(vt,st ) ≥ d(vt+1,1). (19)

For any two verticesvti andvt j with 1 ≤ i < j ≤ st, there exists a pathP = vti · · · vk+1,l

wkvk+1,r · · · vt j with l < r, wheredist(vti, v01) = dist(vt j , v01) = dist(wk, v01) + t − k. Then we

have fT(vk+1,l) ≥ fT(vk+1,r ), fT(vti) ≥ fT(vt j) andd(vti) ≥ d(vt j) by Corollary 3.11. On the

other hand, we consider the pathQ = vt+1,1vt1 · · · v11v01v1s1 · · · vt,st . Then fT(vt,st ) ≥ fT(vt+1,1)

andd(vt,st) ≥ d(vt+1,1) by Corollary 3.11. Therefore (18) and (19) hold fort = 0, · · · , p+ 1.

That is

fT(v01) ≥ fT(v11) ≥ · · · ≥ fT(v1,s1) ≥ fT(v21) ≥ · · · ≥ fT(v2,s2) ≥ · · · ≥ fT(vp+1,sp+1) (20)

and

d(v01) ≥ d(v11) ≥ d(v1,s1) ≥ d(v21) ≥ · · · ≥ d(v2,s2) ≥ d(vp+1,1) ≥ d(vp+1,sp+1). (21)

By (17), (20) and (21), it is easy to see that this well ordering satisfies all conditions

in Definition 2.1. HenceT has a BFS-ordering. Further, by Proposition 2.2 in [12],T is

isomorphic toT∗π . So T∗π is the unique optimal tree inTπ having the largest number of

subtrees.

Proof. of Theorem 2.4. By proposition 2.2, without loss of generality, we assume that

π = (d0, d1, · · · , di, · · · , d j, · · · , dn−1) andπ1 = (d0, d1, · · · , di + 1, · · · , d j − 1, · · · , dn−1) with

i < j, then we haveπ ⊳ π1. Let T∗π be the optimal tree inTπ. By the proof of Theorem 2.3,

the vertices ofT∗π can be labeled as theV = {v0, · · · , vn−1} such that

fT∗π(v0) ≥ fT∗π (v1) ≥ · · · ≥ fT∗π(vn−1)

and

d(v0) ≥ d(v1) ≥ · · · ≥ d(vn−1),

whered(vl) = dl for l = 0, · · · , n− 1. Moreover,v0 is the root ofT∗π . There exists a vertex

vk such thatvjvk ∈ E(T∗π) with k > j. Let W be the tree achieved fromT∗π by removing the

subtree induced byvk. Moreover, letX be the single vertexvi andY be the subtree induced

by vk with the edgevjvk added, respectively. Clearly,fT(vi) = fW(vi)+ fW(vi , vj)( fY(vj)− 1)

and fT(vj) = fW(vj) + fW(vj)( fY(vj) − 1). Hence byfW(vi , vj) < fW(vj) and fT(vi) ≥ fT(vj),

we havefW(vi) > fW(vj). On the other hand, letT1 be the tree fromT by deleting the edge

vjvk and adding the edgevivk. Then the degree sequence ofT1 is π1. By Lemma 3.2, we

haveϕ(T∗π) < ϕ(T1). Henceϕ(T∗π) < ϕ(T1) ≤ ϕ(T∗π1
).

The assertion is then proved.
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5 Applications of the Main Theorems

In the end we use Theorems 2.3 and 2.4 to achieve extremal graphs with the largest number

of subtrees in some classes of graphs. As corollaries, we provide proofs to some results in

[5], [2], etc.

LetT (1)
n,∆ be the set of all trees of ordern with the largest degree∆, T (2)

n,s be the set of all

trees of ordern with s leaves,T (3)
n,α be the set of all trees of ordern with the independence

numberα andT (4)
n,β be the set of all trees of ordern with the matching numberβ.

Corollary 5.1 ([5]) Let T be any tree of order n. Then














n+ 1

2















≤ ϕ(T) ≤ 2n−1 + n− 1

with left equality if and only if T is a path of order n and the right equality if and only if T

is the star K1,n−1.

Proof. Let T be a tree of ordern with degree sequenceτ. Let π1 = (2, · · · , 2, 1, 1) and

π2 = (n − 1, 1, · · · , 1) with n terms. Clearly the pathP of ordern is the only tree with the

degree sequenceπ1 and the starK1,n−1 of ordern is the only tree with degree sequenceπ2.

Furthermore,π1 ⊳ τ ⊳ π2. Hence by Theorems 2.3 and 2.4, the assertion holds.

Corollary 5.2 ([2]) There is only one optimal tree T∗
∆

in T (1)
n,∆ with ∆ ≥ 3, where T∗

∆
is T∗π

with degree sequenceπ as follows: Denote p= ⌈log(∆−1)
n(∆−2)+2
∆
⌉−1 and n− ∆(∆−1)p−2

∆−2 = (∆−

1)r+q for 0 ≤ q < ∆−1. If q = 0, putπ = (∆, · · · ,∆, 1, · · · , 1) with the number∆(∆−1)p−1−2
∆−2 +r

of degree∆. If q ≥ 1, putπ = (∆, · · · ,∆, q, 1, · · · , 1) with the number∆(∆−1)p−1−2
∆−2 + r of degree

∆.

Proof. For any treeT of ordern with the largest degree∆, let π1 = (d0, · · · , dn−1) be the

nonincreasing degree sequence ofT. Assume thatT∗
∆

hasp + 2 layers. Then there is a

vertex in layer 0 (i.e. the root), there are∆ vertices in layer 1, there are∆(∆− 1) vertices in

layer 2,· · ·, there are∆(∆− 1)p−1 vertices in layerp, there are at most∆(∆− 1)p vertices in

layer p+ 1. Hence

1+ ∆ + ∆(∆ − 1)+ · · · + ∆(∆ − 1)p−1 < n ≤ 1+ ∆ + ∆(∆ − 1)+ · · · + ∆(∆ − 1)p.

Thus

∆(∆ − 1)p − 2
∆ − 2

< n ≤
∆(∆ − 1)p+1 − 2

∆ − 2
.
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Hence

p = ⌈log(∆−1)
n(∆ − 2)+ 2

∆
⌉ − 1

and there exist integersr and 0≤ q < ∆ − 1 such that

n−
∆(∆ − 1)p − 2
∆ − 2

= (∆ − 1)r + q.

Therefore the degrees of all vertices from layer 0 to layerp−1 are∆ and there arer vertices

in layer p with degree∆. Denote bym= ∆(∆−1)p−1−2
∆−2 + r − 1. Then there arem+ 1 vertices

with degree∆ in T∗
∆
. Hence the degree sequence ofT∗

∆
∈ Tn,∆ is π = (d′0, · · · , d

′
n−1) with

d′0 = · · · = d′m = ∆, d′m+1 = · · · = d′n−1 = 1 for q = 0; and isπ = (d′0, · · · , d
′
n−1) with

d′0 = · · · = d′m = ∆, d′m+1 = q, d′m+2 = · · · = d′n−1 = 1 for q = 1. It follows fromdi ≤ ∆ that
∑k

i=0 di ≤
∑k

i=0 d′i for k = 0, · · · ,m. Further byd′i = 1 ≤ di for k = m+ 2, · · · , n− 1, we have

k
∑

i=0

di = 2(n− 1)−
n−1
∑

i=k+1

di ≤ 2(n− 1)−
n−1
∑

i=k+1

d′i =
k
∑

i=0

d′i

for k = m+ 1, · · ·n− 1. Thusπ1 ⊳ π. Hence by Theorems 2.3 and 2.4,ϕ(T) ≤ ϕ(T∗
∆
) with

equality if and only ifT = T∗
∆
.

Remark If ∆ = 3 in Corollary 5.2, then the result is precisely Theorem 2.1 in [7].

Corollary 5.3 There is only one optimal tree T∗s in T (2)
n,s where T∗s is obtained from t paths

of order q+ 2 and s− t paths of order q+ 1 by identifying one end of the s paths. Here

n− 1 = sq+ t, 0 ≤ t < s. In other words, for any tree of order n with s leaves,

ϕ(T) ≤ (q+ 2)t + (q+ 1)s−t+2

with equality if and only if T is T∗s.

Proof. Let T be any tree inT (2)
n,s with the nonincreasing degree sequenceπ1 = (d0, · · · , dn−1).

Thusdn−s−1 > 1 anddn−s = · · · = dn−1 = 1. Let T∗π be a BFS-tree with degree sequence

π = (s, 2, · · · , 2, 1, · · · , 1), where there are the numbers of 1′s in π. It is easy to see that

π1 ⊳ π. By Theorem 2.4, the assertion holds.

Corollary 5.4 There is only one optimal tree T∗α in T (3)
n,α, where T∗α is T∗π with degree se-

quenceπ = (α, 2, · · · , 2, 1, · · · , 1) with numbers n− α − 1 of 2′s andα of 1′s, i.e., T∗π is

obtained from the star K1,α by adding n− α − 1 pendent edges to n− α − 1 leaves of K1,α.

In other words, for any tree of order n with the independence numberα,

ϕ(T) ≤ 22α−n+13n−α−1 + 2n− α − 2

with equality if and only if T is T∗α.
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Proof. For any treeT of ordern with the independence numberα, let I be an independent

set ofT with sizeα andτ = (d0, · · · , dn−1) be the degree sequence ofT. If there exists a

leaf u with u < I , then there exists a vertexv ∈ I with (u, v) ∈ E(T). HenceI
⋃

{u} \ {v} is

an independent set ofT with sizeα. Therefore, one can always construct an independent

set ofT with sizeα that contains all leaves ofT. Hence there are at mostα leaves. Then

dn−α−1 ≥ 2 andτ ⊳ π. By Theorems 2.3 and 2.4, the assertion holds.

Corollary 5.5 There is only one optimal tree T∗
β

in T (4)
n,β , where T∗

β
is T∗π with degree se-

quenceπ = (n − β, 2, · · · , 2, 1, · · · , 1). Here the number of 1′s is n− β. That is, T∗π is

obtained from the star K1,n−β by addingβ − 1 pendent edges toβ − 1 leaves of K1,n−β. In

other words, for any T∈ T (4)
n,β ,

ϕ(T) ≤ 2n−2β+13β−1 + n− β − 2

with equality if and only if T is T∗
β
.

Proof. For any treeT of ordern with matching numberβ, let τ = (d0, · · · , dn−1) be the

degree sequence ofT. Let M be a matching ofT with sizeβ. SinceT is connected, there

are at leastβ vertices inT such that their degrees are at least two. Hencedβ−1 ≥ 2 andτ ⊳ π.

By Theorems 2.3 and 2.4, the assertion holds.
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