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1 Introduction

All graphs in this paper will be finite, simple and undirectédtree T = (V, E) is a con-
nected, acyclic graph whekqT) andE(T) denote the vertex set and edge set respectively.
We refer to vertices of degree 1 ©fasleaves The unique path connecting two vertices
u,vin T will be denoted byPr(u,v). The number of edges d(u, V) is called distance
dist-(u, V), or for shortdist(u, v) between them. We call a tre&,{) rooted at the ver-
texr (or just by T if it is clear what the root is) by specifying a vertexe V(T). The
heightof a vertexv of a rooted tred with rootr is hr(v) = dist:(r,v). For any two dif-
ferent verticeau,v in a rooted treeT,r), we say that is a successof u andu is an
ancestorof v if Pr(r,u) c Pr(r,v). Furthermore, iu andv are adjacent to each other and
distr(r,u) = dist(r,v) — 1, we say that is the parentof v andv is achild of u. Two
verticesu, v are siblings of each other if they share the same parent. thexubf a tree will
often be described by its vertex set.

The number of subtrees of a tree has received much atteritios well known that
the pathP, and the staK;, ; have the most and least subtrees among all trees of order
n, respectively. The binary trees that maximize or minimize humber of subtrees are
characterized in [%,/7].

Formulas are given to calculate the number of subtrees etthgtremal binary trees.
These formulas use a new representation of integers as afspawers of 2. Number
theorists have already started investigating this newrpingpresentation [1]. Also, the
sequence of the number of subtrees of these extremal birey {with 2 leaves,l =
1,2,---) appears to be new![4]. Later, a linear-time algorithm tontdlie subtrees of a tree
is provided in[[11].

In a related paper_[6], the number of leaf-containing sw#strare studied for binary
trees. The results turn out to be useful in bounding the numbacceptable residue con-
figurations. See [3] for details.

An interesting fact is that among binary trees of the same, sie extremal one that
minimizes the number of subtrees is exactly the one thatmmagis some chemical indices
such as the well known Wiener index, and vice versal In [2jirees of trees with given
order and maximum vertex degree are studied. The extresed troincide with the ones
for the Wiener index as well. Such correlations betwedtedknt topological indices of
trees are studied in[[8].

Recently, in[[13] and[[9] respectively, extremal trees dnaracterized regarding the
Wiener index with a given degree sequence. Then it is natarabnsider the following



guestion.

Problem 1.1 Given the degree sequence and the number of vertices of éiteéhe upper
bound for the number of subtrees, and characterize all exdtérees that attain this bound.

It will not be a surprise to see that such extremal trees aénwith the ones that attain
the minimum Wiener index. Along this line, we also provideadering of the degree
sequences according to the largest number of subtreesoWithain results, Theorerms 2.3
and 2.4, one can deduce extremal graphs with the largestenohsubtrees in some classes
of graphs. This generalizes the results of [5], [2], etc.

The rest of this paper is organized as follows: In Sectiom&esnotations and the main
theorems are stated. In Section 3, we present some obsavatigarding the structure of
the extremal trees. In Section 4, we present the proofs oimthi@ theorems. In Section
5, we show, as corollaries, characterizations of the extérees in diferent categories of
trees including previously known results.

2 Preliminaries

For a nonincreasing sequence of positive integees (do, - - -, d,_1) with n > 3, let 7,
denote the set of all trees with as its degree sequence. We can construct a special
tree T: € 7, by using breadth-first search method as follows. Firstlelahe ver-
tex with the largest degred, asvp; (the root). Secondly, label the neighbors\gfas
Vi1, Vi, ..., Vig, from left to right and letd(vy) = d fori = 1,---,do. Then repeat
the second step for all newly labeled vertices until all éegrare assigned. For exam-
ple, if = = (4,4,3,3,3,3,3,2,1,1,1,1,1,1,1,1,1,1,1), T: is shown in Fig. 1. There
is a vertexvy; (the root) in layer 0 with the largest degree 4; its four nbgis are la-
beled as/ 1, vio, Vi3, V14 in layer 1, with degrees 4, 3, 3, 3 from left to right; nine et
Vo1, Voo, - -+, Vg N layer 2; five verticesss, Vao, Va3, Vag, Vas iN layer 3. The number of ver-
tices in each layer, denoted bys can be easily calculated & = 1, s, = dy = 4,
S=t+h+d3+ds—5=4+3+3+3-4=9 andss=ds +---+di3— S =5.
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Figure 1

To explain the structure and propertiesigf we need the following notation from [12].

Definition 2.1 ([12]) Let T = (V, E) be a tree with rooty. A well-ordering< of the vertices
is called a BFS-ordering ik satisfies the following properties.

(1) Ifu,v eV, and u< v, then Ifu) < h(v) and du) > d(v);

(2) If there are two edges wu« E(T) and vy € E(T) such that u< v, h(u) = h(u;) — 1
and h(v) = h(v;) — 1, then y < v;.

We call trees that have a BFS-ordering of its vertices a BES-t

It is easy to see thdt’ has a BFS-ordering and any two BFS-trees with degree seguenc
are isomorphic (for example, see [12]). And the BFS-treesatremal with respect to the
Laplacian spectral radius.

Let 7 = (do,---,dn-1) @andn’ = (dj,---,d’ ;) be two nonincreasing sequences. If
TEol < Ykod fork=0,---,n-2andYy d = X5 d, then the sequence is said
to major the sequence and denoted byt < . It is known that the following holds (for
example, see [10] or [12]).

Proposition 2.2 (Wei [10]) Letr = (do,---dy-1) andn’ = (dg,---,d’ ;) be two nonin-
creasing graphic degree sequencesx Kn’, then there exists a series of graphic degree
sequencesy, - - -, mg such thatr <y < - - - <« 1 < 1/, wheren; and ., differ at exactly two
entries, say g(di) and d (d;) of x; (7i;1), withd = dj + 1, d = di —1and j<k.

The main results of this paper can be stated as follows.



Theorem 2.3 With a given degree sequenceT; is the unique tree with the largest number
of subtrees iy

Theorem 2.4 Given two djferent degree sequencesindr;,. If 7 <x1, then the number of
subtrees of Jis less than the number of subtrees f. T

3 Some Observations

In order to prove Theorenis 2.3 and]2.4, we need to introduce snore terminologies.
For a vertexv of a rooted treeT, r), let T(v), the subtree induced by denote the subtree
of T (rooted atv) that is induced by and all its successors. For a tr€eand vertices
Vi,Vo,. .. Vm-1,Vm Of T, let fr(vy,Vo,... Vm-1,Vm) denote the number of subtrees of T that
contain the verticegy,Vv,,. . .,Vi_1,Vm. In particular,fr(v) denotes the number of subtrees of
T that contairv. Lety(T) denote the number of non-empty subtree$ of

Let W be a tree and, y be two vertices otV. The pathPy (X, y) from xto y can be de-
noted byX,Xm-1...XoX1Y1Y2. . . Ym-1Ym for odd dist(X, y) Or XmXm-1 ... XoX1ZWiVY>. .. Ym-1Ym
for evendist(x, y), wherex,, = X,ym = y. Let G; be the graph resulted frokV by deleting
all edges irPy(x, y). The connected components () containingx;, y; andz are denoted
by X, Y; andZ, respectively, for = 1,2,...,m. We also letX.x be the connected compo-
nent of W containingx, after deleting the edge_1 %« andYsx be the connected component
of W containingy after deleting the edgg 1Yk, fork = 1,---, m. Figure[2 shows such a
labelling according to a path of odd length (withaut

Yk

Figure 2: Labelling of a path and the components
We need the next two lemmas from [2] to proceed.

Lemma 3.1 ([2]) Let W be atree with a path\R(Xm, Ym) = XmXm-1 - - - XoX1(2Y1Y2 - . - Ym-1Ym
from X, to ym. If fx (x) > fv.(y;) fori =1,2,...,m, then §(xm) > fw(ym). Furthermore, if
this inequality holds, thepdxm) = fw(ym) if and only if & (x) = fy,(y;) fori=1,2,...,m.



Now let X andY be two rooted trees with rootg andy’. Let T be a tree containing
verticesx andy. Then we can build”’ by identifying the rootx’ of X with x of T and the
rooty of Y with y of T, andT” by identifying the rootx’ of X with y of T and the root/
of Y with x of T.

Figure 3: Constructin@”’ (left) andT"” (right)

Lemma 3.2 ([2]) Let T ,T’,T” be as in Figure 2. If {x) > fw(y) and &(x) < fv(y), then
o(T"”) = ¢(T’) with equality if and only if §(X) = fr(y) or fx(X) = fv(y).

From Lemma$_3]1 and 3.2, we immediately achieve the follgvahservation. We
leave the proof to the reader.

Lemma 3.3 Let T be a tree i, and RXm, Ym) = XmXm-1- .. X2X1(2Y1Y2. .. Ym-1Ym b€ @
path of T. Let T be the tree from T by deleting the two edgesx and yYk.1 and adding
two edges K1Yk and Y1 X If fx(x) > fy(y) fori = 1,---,kandl < k< m-1, and
szk+1(xk+1) < szk+1(yk+1)’ then

@(T) < o(T')

with equality if and only if £, ., (%1) = fv.,.s (k1) OF fx (%) = fy,(yi) fori=1,--- k.

For convenience, we refer to trees that maximize the nunftararees asptimal In
terms of the structure of the optimal tree, we have the fahgwersion of Lemma_313.

Corollary 3.4 LetT be an optimal tree i#i, and R Xm, Ym) = XmXm-1- - - X2X1(2Y1Y> . . . Ym-1Ym
be a path of T. If £(x) > fy.(y) fori = 1,---,k with at least one strict inequality and

1<k<m-1 then &, ,(X1) > fv, (Vierr)-

Lemma 3.5 Let T be an optimal tree ifi, and RXm, Ym) = XmXm-1 - - - X2X1(2DY1Y2 - . - Ym-1Ym
be a path of T. If f£(x) > fy(y;) fori = 1,---,k with at least one strict inequality and
1<k<m-1 then &, (X1) = fy(Vhea) -



Proof. If k = m— 1, then by Corollary 314, the assertion holds sitfigg,(Xm) = fx,,(Xm)
and fysm(Ym) = fv,,(Ym). Hence we assume that<lk < m— 2. Suppose thaty, ,(X1) <
fv...(Yk+1). Denote byM the number of subtrees @fnot containing vertices, andyx. Let
W be the connected componentloby deleting the two edgegXx,1 andyiYk:1 containing
verticesx, andyx. Then

e(T) = {1+ fx . (X)L + Fxop (eI w(Xi) = fw (X Yid] +
{1 + fYk+1(Yk+1)[1 + szk+2(yk+2)]} [fW(Yk) - fW(Xk’ YK)] +
{1 + ka+1(Xk+1)[1 + fX2k+2(Xk+2)]} {1 + fYk+1(yk+l)[1 + fY2k+2(yk+2)]} fW(st yk) + M.

Oh the other hand, 16’ be the tree fronT by deleting four edges X1, X1 X2, YiYks1

andyi,;1Yk2 and adding four edgesyk:1, Yk:1 X2, YiXkrr and X, 1Yks2. Clearly, T’ € 75
and

(M) = {1+ (Ve[ + P ()]} [ (X)) — Fuv(Xi Wi +
{14 Fxe (K[ + P V2T W) — Fv (X Vil +
{(1 + fYk+1(yk+1)[1 + szk+2(Xk+2)]} {1 + ka+1(xk+1)[1 + szk+2(yk+2)]} fW(Xk’ yk) + M.

Hence
o(T) —(T) = (fYk+1(yk+1) - ka+1(xk+1)){[1 + szk+2(Xk+2)][ fw(X) — fw (X, V)] —
[1+ frao (VeI fwYi) — fw(xi Y1 + (X Yid(Fxei o (Xi2) = Frap o (Vie2)) -

Obviously, we havefw(yi) > fw(Xe Vi) and fw(x) > fw(X.Y). By Lemmal3.1, we
have fw(x) > fw(yk). Further by Corollary 3]4, we havi, ,(%1) > fv.,..(Yk+1). Since

fxzk+1(xk+1) = ka+1(xk+l)(l + szk+2(Xk+2)) and szk+1(yk+1) = fYk+1(yk+1)(l + szk+2(yk+2))’
we havefy, ,(%2) > fv.,.,(Yk+2) Since we assumedbk, ., (X1) < fy,.,(Yks1). Therefore,
o(T") > ¢(T) > 0, contradicting to the optimality of. So the assertion holdll

Lemma 3.6 Let P be a path of an optimal T i, whose end vertices are leaves.
(i) If the length of P is odd2m — 1), then the vertices of P can be labeled a1+ X
V1Y - - - Ym Such that

fx,(X0) = vy (Y1) = fx,(%2) = fy,(y2) = - > fx,(Xm) = fy,(Ym) = L.

(i) If the length of P is ever2(n), then the vertices of P can be labeled g8 XmXm-1 - - X1
V1Y - - - Ym SUcCh that

fx, (X1) > Ty, (Y1) > fx,(%2) = fy,(y2) = - -+ > fx,(Xm) = v, (Ym) = Fxps(Xmea) = 1.
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Proof. We provide the proof of part (i), part (ii) can be shown in ais@mmanner.
Obviously, the vertices d? may be labeled ag x._1--- X1y1Y2 - - - Ys such thatfy, the

maximum amongfy, and ij fori = 1,2 ---,randj = 1,2,---,s wherer + s = 2m.

Therefore, there is only one of the following three cases:

Case 1:If the number of the maximum components is one, then themdseail< k < m

such that

fx,(X1) > fv, (Y1), Fvu(yr) = Fxo(X2), - -+, Fya(Vier) = Fx (%), fve(Wi) > fxa(Xie2) (1)

Next we will prove (1). It is divided into three subcases.

Case 1.1:f fy,(y1) > fx,(X2), then we hav& = 1 and (1)holds.

Case 1.2:f fy,(y1) < fx,(X2), then the vertices dP may be relabeled such tlyais instead
by x.1 fori =1,---,sandX; is instead by,_; fori = 2,---,r. Hence it is the same as the
subcase 1.1.

Case 1.3:If fy,(y1) = fx,(X2). Then we must havéy,(y,) > fx,(x3) or fy,(¥2) < fx,(Xs) or
fy,(y2) = fx,(Xa).

Case 1.3.11f fy,(y2) > fx,(X3), then we havé = 2 and (1)holds.

Case 1.3.2:1f fy,(y2) < fx,(Xs), then the vertices oP may be relabeled such tlyais
instead byx;,; fori = 1,---, sandX; is instead byy,_; fori = 2,---,r. Hance, the case is
the same as the subcase 1.3.1.

Case 1.3.31f fy,(y2) = fx,(X3), we can continue to analyze likg (y1) = fx,(x2). Then we
havek > 3 and (1)holds. Next we will prove that [fl(1) holds, then weshlbave

r=s=m

Otherwise, ifr < s, then by Lemma 3]5fx (%) > fv(y;) fori = 1,---,r. Hence by
Corollary(3.4 we havdy_ (X)) > fy. (y;). On the other hand, itis clear thit,(x) = 1 and
fyv..(yr) = 2, contradiction.

If r > s, thenr > s+2 sincer +s = 2m. Now we consider the path from vertgx; toys.
By Lemmd3.5, we havé, (y;) > fx_.(X.1) fori =1,---,s. Further, by Corollary3]4, we
havefy,_(Ys) > fx...(Xs1). Similarly, sincefy_ (ys) = 1 andfx__,(Xs1) > 2, contradiction.
Thereforer = s=m.

Now by Lemmd_3.5 applied to the path froxg, to y,, we havefy (x) > fv (i) for
i = 1,---,m. On the other hand, by Lemma B.5 applied to the path fypm to x.,, we
havefy (yi) > fx,,(X.1) fori =1,2,...,m- 1. Hence the assertion holds.
Case 2:If the number of the maximum components is 2 2. Then the pathP can be



labeled as¢nXm_1- - - X1Y1Y2 - - - Ym SUcCh that

fx, (X)) = fvu(y1) = -+ = B (%) = W) > s (K1) = s V1) (2)

and the verticesq, Xo, - - -, X, Y1, Y2, - - -, Yk @re in the maximum components respectively.
That is to say all the maximum components are adjoining. @tise, there must be two
pair vertices satisfying the first inequality in (1). Hendther of them, the vertices d®
may be labeled ag;, X,-1---Xay1Y2- - - Ys, OF X, X1+ XaY1Y2 - Ys,. By the case 1, we
can have; = r, = s, = s, = m. But it is impossible.Therefore, if there are more than
one component with the most subtrees containing the vertéxeopathP, then all of them
must adjoin.

Case 3:If the number of the maximum components ks21 > 2. Then the patl? can be
labeled as¢mXm-1 - - - X1y1Y2 - - - Ym SUCh that

fx, (%) = fv, (Y1) = - = f (%) = FW) = Fxes (K1) > Ty, (Vien), 3)

We omits the details.
Then Cases {2) of3) can be handled in the same manner, wéhendi¢tails herdll

Following the conditions in Lemnia3.6, we have the following

Lemma 3.7 (i)If case (i) of LemmB&3l6 holds, then

fr(x1) > fr(ys) > fr(%2) = fr(y2) > --- > fr(Xm) = Fr(ym).

Moreover, if £(X) = fr(yk) for somel < k < m, then %(x) = fr(y;) fori =k,---, m.
(ii) If case (ii) of Lemm&_316 holds, then

fr(xa) > fr(yn) > fr(x2) > fr(y2) > - > fr(Xm) > Fr(Ym) = fr(Xmea)-
Moreover, if §(yk) = fr(X1) for somel < k < m, then f(y;) = fr(x,.) fori=k,---m.

Proof. We only prove part (i), part (ii) is similar.
For any 2< k < m, letW,_; be the connected componentiotontaining vertices,_;
andy,_; after removing the edgeg_i X andyi_1Yx. Fork = 1 andk = m, it is easy to see

fr(x1) = fr(y1) = i (X0)(1 + fxs2(X2)) = vy (Y2)(1 + fy=2(Y2))

and
fr(Xm) = fr(Ym) = Fxn(Xm) (X + fw, s (Xm-1)) = Fr, (Ym) (L + fwgy (Ym-1))-
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Moreover,

fr (%) = Fx (X (L4 Py n Kier ) (T4 Figy (K1) + e, (K1, -+ =5 Vi) T ) (1 + Fye, (Vis)))
(4)

and

fr(i) = fv (V) (L+ Frop Vi) (X + iy k-1) + Fney (Viens - 5 Xeen) B () (X + By, (K1)

5
By equations[(4) and(5), we have ©
fr(d — frvid = () + g, () (X + Fxa (X))
= WL + fy, )X+ Frpes Vier))- (6)
Now we claim that for Ix k< m-1,
Fxer (K1) = Py Vhen), (7)

If there is at least one strictinequality fg(x) > fy,(y;) fori = 1,---,k, then by Lemma3]5,
(@) holds.

If fx,(x) = fy,(y;) fori =1,---,kand there existsla< | < msuch thatfy (x) = fv.(yi)
fori = 1,---,1 =1 and fx(x) > fy(n). Then by Lemma 315, we havi,,(X:1) >
fyv....(Vi+1). Moreover,

| j |
PaaOer) = D || 00 + Frpa(ea) | | 00 (8)
j=k+1li=k+1 i=k+1
and D |
i) = D [ ] O+ fatin) | ] - (9)
j=k+1i=k+1 i=k+1

By equations[(i8) and (9), the claim holds.

If fx,(x) = fv,(y;) fori =1,---, m, then by equation$18) and (9), we halyg,.,(X1) =
fv....(Ykr1) @nd the claim holds.

Hence[(Y) is proved.

On the other hand, by Lemrha B.1, we hdyg, (%-1) = fw,_,(Yk-1). Together with[(7),
we see thal (6} 0. Thenfr(x) > fr(yi).

Now we provefr(yk) > fr(x.1) forany 1< k < m- 1. LetUy be the connected
component off containing vertex, after removing the edgeg_ 1Y« (if k = 1, letyp = Xq)

10



andXxX1. Then

fr(Yi) = fv W)@+ Frge (Ve )) (X + fu (V1) + fuWiets - -5 Xe) T e 1) (X + Ty, (Vi 2)))
(10)
and

fr(%e1) = faa (K ) (L4 Fxp, (Xe2)) (X + fu () + fu (K -5 Vied) (L + fraes (Yiern)))-

(11)
Similar to (7), we can show thaf,, ,(Yk:1) = fx...(X+2). By Lemmal3.1, we have
fu,(Yk-1) = fu,(%). Hence[(1ID) and (11) imply that

fr() = fr(Xe) Fr (i@ + fu, (Yie)) (@ + Frpes (Vi)

- ka+1(Xk+1)(1 + ka(Xk))(l + szk+2(xk+2))
= WA+ fu V1)) = Few ()@ + fu (k) 2 0. (12)

Moreover, if fr(x) = fr(yk) for some 1< k < m, then by [(6), we have

(%) = fvWi): T = FroWi)s  fwies (K1) = fwie s (Yien)- (13)
Sincefy,, = fx (%) 1+ fx.,.,(X1)) and fy,, = fv, (V) (1+ fv.,., (Vks1)), we havefy, ., (Xq1) =
fv.i..(Vkr1) DY (I3). On the other hand, since

g (%) = F ()L + fwy (1) + Fue 15+ -+ Y1) Fi (W)

and
fw (Vi) = F W)X + fys (V1) + T Vet + - 5 Xie1) T (%)),

we havefy, (X) = fw, (Yx) by (13). Hence

fr(X1) = P Ke) (@ + g () + f (K -+ -5 Vi) Frae (Vi 1))
= o W)@+ f (V) + fe (X -+ Vi) T (Xe1)) = Fr(Wien)-  (14)

Therefore we havér(x) = fr(y;) fori =k,---,m.

Finally, we prove thatfr(y;) > fr(x.1) fori = 1,---,m—1. Suppose thatr(yk) =
fr(X1) for some 1< k < m. Then by equatiori_(12), we have, (y«) = fx.,(%1) and
v Vi) = Frs(Xie1). Moreover,

fr V(L + Fro, (ki) = Froa W) = Fxer ki) = T ) (X + Ty, (Xr2))-

11



Hencefy,,.,(Vie1) = fx..(X2). Continuing this way in an inductive manner, we have
o Yme1) = fx,(Xm). But fy_ ,(Ym-1) = 2 andfy_ (Xm) = 1, contradiction.
Combining the above results, we have proved parili).

The next Lemma relates the number of subtrees to the steucfuhe tree.

Lemma 3.8 For a path R Xy, Ym) = XmXm-1 - .- X2X1(2Y1Y2 . . . Ym-1Ym iN @n optimal tree T,
if fx, (%) > fy(y)fori=1,---,k, 1 <k<m-1,then dx) > d(y).
Moreover, if §(x) = fy(y) fori =1,---,k, 1 <k <m-1, then dx) = d(y«)-

Proof. Suppose thad(xc) < d(y«), letr = d(yk) — d(x) > 1 andygu; € Yo fori=1,---,r.

Further letW be the connected component Bfcontaining vertices, andyi after
removing the edgesyuy, - - -, YkUr. Let X be the single vertex, and letY be the connected
component ofT containing vertexy, after removing all edges incident i@ except for
ther edgesykuy, - - -, YkUr. Since fx (x) > fy(y;) fori = 1,---,k, it is easy to see that
fw(x) > fw(yk) and fx(x) = 1 < 2 < fy(yk). By Lemmal3.2, there exists another tree
T’ € 7, such thatp(T) < ¢(T’), contradicting to the optimality oOF.

Therefore the assertion holds. The case of equality is sl

From Lemmas 316, 3.7 and 8.8 we have the following Lemma tbeitiés the ‘center’
of the optimal tree.

Lemma 3.9 Let T be an optimal tree i, . If fr(vo) = maxfr(v),v € V(T)}, then
d(vo) = maxXd(v),v e V(T)}.

Proof. The assertion clearly holds for small trees, so we assuniémfig)| > 4. Suppose
thatd(vp) < maxd(v),v € V(T)}. Then there exists a vertexsuch thad(vy) < d(w). By
Theorem 9.1 in [5]fr(v) is maximized at one or two adjacent verticegofThus we have
fr(vo) > fr(v) forv e V(T) \ {vo}, or fr(vo) = fr(vy) > fr(v) forv e V(T) \ {vo, 1} and
Vov; € E(T).

Case 1:fr(vg) > fr(v) forve V(T)\ {v}. Hence,fr(vp) > fr(w). Itis easy to see thag is
not a leaf (otherwise, lat be a neighbor of; and we havdt(u) > fr(vp)). Let P be a path
containing vertex, andw whose end vertices are leaves. Let the lengtR bk 2n— 1
(the even length case is similar). Then by Lemma 3.6, theécesrbfP can be labeled as
P = Xmn---XY1- - Ym Such that

fx,(X0) = vy (Y1) = fx,(%2) = fy,(y2) 2 - > fx,(Xm) = fy,(Ym) = L.
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Hence by Lemmg3l7, we have

fr(x1) > fr(y1) > fr(%2) = fr(y2) > ... > fr(Xm) = fr(ym).

Thereforex; must bevy andw must bex, for 2 < k < mory;forl < j < m. By
Lemma[3.8, we have(vp) = d(x1) > d(x) = d(w) or d(vo) = d(x1) > d(y;) = d(w),
contradiction. Hence the assertion holds.

Case 2:fr(vo) = fr(vy) > fr(v) forv e V(T) \ {vo, v1} andvgv; € E(T). If w = vy, then by
Lemmd3.8, we have(w) = d(v;1) = d(vp) < d(w), contradiction.

Hence we assume that # v;. First note thaty, andv; are not leaves. LeP be a
path containing verticeg, v; andw whose end vertices are leaves. Let the lengtR bé
2m— 1 (the even case is similar), then by Lemimd 3.6, the vertitésaan be labeled as
P = Xmn---XY1- - Ym Such that

fx, (X1) > Ty, (Y1) > fx,(%2) = fy,(y2) = - -+ > fx,(Xm) = fy, (Ym) = 1.
Hence by Lemma3l7, we have
fr(x0) > fr(yr) > fr (%) > fr(y2) > ... = fr(Xm) = fr(Ym).

Therefore{x;,y1} = {Vo,v1} andw must bex, or y, for 1 < k < m. By Lemmal3.8,
d(vo) > d(w) andd(v;) > d(w), contradiction.
Combining cases (1) and (2), the assertion is prolikd.

Lemma 3.10 Let T be an optimal tree ifi,. If there is a path P= uju_1 - - - UVoVy - - - W
with fr(vo) = max{fr(v) : veV(P)}, fr(uy) > fr(vy), and I=k (or | = k+ 1), then

fr(up) > fr(vi) > fr(Wp) > -+ > fr(we) > fr(vi) (or > fr(uke1))

and
d(up) > d(vy) > d(uz) > -+ > d(u) > d(wi) (or > d(Uk:1)).

Proof. Clearly, there exists a patDthat contains the path and its end vertices are leaves.
We assumé = k (thel = k + 1 case is similar).

Let the length ofQ be 2n-1 (the even length case is similar). By Lemrhas 3.7[and 3.8,
The vertices of) can be labeled & = XpXm_1 - X1Y1 - - - Ym SUch that

fr(x0) > fr(y1) > f1(%2) > fr(y2) > ... > fr(Xm) = fr(ym)
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and
d(x1) > d(y1) = d(x2) 2 d(y2) > - - 2 d(Xm) = d(ym) = L.

Case 1:vy = ;. We must havel, = y; andv,; = x%. Thenu; = y; andv; = x4 for
i =1,---,k Hence the assertion holds.

Case 2:vp = X fori > 1. Thenfr(v) > fr(xy) > fr(yr) = fr(x) = fr(v), which
implies fr(x;) = fr(y1) = fr(v) and contradicts to Theorem 9.1 in [5].

Case 3:vp = y;. Theni = 1 andfr(x;) = fr(y1) = fr(vo). We must havel; = x; and
Vi = Y,. Thenu; = x andv; = y;,; fori = 1,---, k. So the assertion holdll

Now for an optimal tre@ in 7, letvy € V(T) be the root off with fr(vp) = max f+(v) :
v e V(T)} andd(vg) = maxd(v) : ve V(T)}.

Corollary 3.11 If there is a path P= ug- - - upwwvy Vs - - - Vie With dist(ug, Vo) = dist(vi, Vo) =
dist(w, Vp) + k and f(u;) > fr(v4), then

fr(ug) > fr(va) > fr(u) > -+ > fr(we) > fr(w)

and
d(uy) > d(v1) > d(up) > - -+ > d(u) > d(w).

If there is a path P= U1 - - UyWwi Vs - - - Ve With dist(Uy,1, Vo) = dist(v, Vo) + 1 =
dist(w, Vo) + k+ 1 and f(u;) > fr(v1), then

fr(uy) > fr(ve) > fr(up) > -+ > fr(u) > fr(v) > fr(Ue)

and
d(ug) > d(vy) > d(uz) > -+ > d(uy) > d(vi) > d(Ui1).

Proof. If w = vp, then the assertion follows from Lemima 3.10wif vg, then there exists a
pathQ containing verticesi, - - -, U, W, Vo Whose end vertices are leaves. By Lenima]3.10,
we havefr(w) > fr(uy) > --- > fr(u). Similarly, there exists a pafR containing vertices
Vi, * -+, V1, W, Vo Whose end vertices are leaves and we higq@) > fr(vy) > --- > fr(w).
Thereforefr(w) = max fr(v) : ve V(P)}, the assertion follows from Lemnha 3] 1l.

4 Proofs of Theoremd$ 2.3 and 214

Now we are ready to prove Theorems]2.3 2.4.
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Proof. of Theoreni 2Z.B. LeT be an optimal tree iffi ;. By Lemmd 3.9, there exists a vertex
Vp such thatfr(vp) = maxX fr(v) : v e V(T)} andd(vp) = maxd(v) : v e V(T)}. Letvy
be the root ofT and putV; = {v: dist(v,Vg) = i} fori =0,---, p+ 1 with V(T) = U V..
Denote by|Vi| = s fori = 1,---,p+ 1. We now can relabel the vertices ¥{T) by
the recursion method. Fafy, relabelvy by vo; as the root of tred. The vertices ol
(consisting of all neighborg),) are relabeled ag, - - -, vy 5, Satisfying:

fr(viy) > fr(viz) > -+ > fr(veg)
and
fr(vy) = fr(vy;) implies d(vy) > d(vyj) forl<i<j<s;.

Generally, we assume that all vertices\bfare relabeled af/;,---,vig} fori = 1,---,t.
Now consider all vertices iN, 1. SinceT is tree, it is easy to see that = d(vp;) and

St = Vel = d(vg) + -+ + d(ves) — S
Hence for 1< r < s, all neighbors irv,, of v, are relabeled as
Vi+1,d(vig)+++0(Ver—1)—(—1)+1s * * * s Vi+ 1 d(veg)+--+d(ve, )1
and satisfy the conditions:
fr(Vesi) 2 fr(Veesj) (15)
and
fr(Vusi) = fr(Verj) implies d(vi1) > d(viesj) (16)

ford(viy) +---+d(Ver—1) —(r—1)+1<i < j<d(vy)+---+d(v)—r. In this way, we have
relabeled all vertices of (T) = Uipjol Vi. Therefore, we are able to define a well-ordering
of vertices inV(T) as follows:

Vik <Vj, f0<i<j<p+lori=jandl<k<l|<s. a7

We need to prove that this well-ordering is a BFS-orderind@ ofn other wordsT is
isomorphic toT ;.
We first prove, foit = 0, - - -, p + 1, the following inequalities.

fr(vin) > fr(vie) > -+ > fr(vig) = fr(Vi11) (18)
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and
d(Vi) 2 d(Vi2) = -+ - > d(vig) = d(Ves.2)- (19)

For any two vertices;; andv; with 1 <i < j < s, there exists a patR = V- - - Vi1
WiVis1r - - - Vi With | < 1, wheredist(vy, Vo1) = distvij, Vo1) = dist(w, Vo1) + t — k. Then we
have fr(Vi11) = fr(Viewr), fr(va) > fr(w;) andd(vy) > d(v;) by Corollary(3.11. On the
other hand, we consider the p&h= Vi 11Vi1 - - - V11Vo1Vas, « - - Vi Thenfr(vis) = fr(Viea)
andd(vis) > d(w.11) by Corollary[3.111. Thereforé (18) and (19) hold fot O,---, p + 1.
That is

fr(Vor) > fr(vig) > --- > fr(vag) = fr(var) 2 - 2 fr(Vas) 2 - 2 7 (Vpirs,)  (20)

and

d(Vor) = d(va1) = d(vis;) = d(Va1) > -+ 2 d(Vas,) = d(Vpi11) = A(Vpits,.,)- (21)

By (17), (20) and[(2]1), it is easy to see that this well ordgsatisfies all conditions
in Definition[2.1. Hencel has a BFS-ordering. Further, by Proposition 2.2 in [I2]s
isomorphic toT;. SoT; is the unique optimal tree iff, having the largest number of
subtreesHl

Proof. of Theoremi 2Z.4. By propositidn 2.2, without loss of gengyalive assume that
= (do, 0y, -+, di,---,dj, -+, dnq) @ndmy = (do, dy, - -+, di + 1,---,dj — 1, -+ -, dn_q) With

i < j,thenwe haver <m;. Let T be the optimal tree ifi,. By the proof of Theorerh 2.3,
the vertices ofl  can be labeled as thé= {vy, - - -, Vn_1} such that

fr:(vo) > fre(vi) > -+ > fr:(Vno1)

and
d(Vo) = d(v1) > - - - > d(Vn-1),

whered(vj) = d forl = 0,---,n— 1. Moreover), is the root ofT. There exists a vertex
Vi such thatw;v, € E(T;) with k > j. LetW be the tree achieved froifj; by removing the
subtree induced by. Moreover, letX be the single vertex andY be the subtree induced
by vi with the edgev;vi added, respectively. Clearlf;(vi) = fw(vi) + fw(vi, vj)(fv(v;) - 1)
and fr(v;) = fw(v;) + fw(v;)(fv(v;) — 1). Hence byfw(vi, V) < fw(v;) and fr(vi) > fr(v;),
we havefy(vi) > fw(v;). On the other hand, I&t; be the tree fronT by deleting the edge
vjVc and adding the edgevi. Then the degree sequenceTafis r;. By Lemma 3.2, we
have(T}) < ¢(T1). Hencep(T}) < o(T1) < ¢(T},).

The assertion is then provelll.
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5 Applications of the Main Theorems

In the end we use Theorems2.3 2.4 to achieve extremdlgvéth the largest number
of subtrees in some classes of graphs. As corollaries, weda@roofs to some results in
[5], [2], etc.

Let 7\%) be the set of all trees of ordamith the largest degres, 712 be the set of all
trees of orden with sleaves7; ,53(,) be the set of all trees of orderwith the independence
numbere and7\) be the set of all trees of ordamwith the matching numbeg.

Corollary 5.1 ([5]) Let T be any tree of order n. Then
1
( n-|2- )S¢(T)S2”_1+n—1

with left equality if and only if T is a path of order n and thghi equality if and only if T
is the star K ;.

Proof. Let T be a tree of orden with degree sequence Letm; = (2,---,2,1,1) and
m=(n-11,---,1) with nterms. Clearly the patR of ordern is the only tree with the
degree sequencg and the staK,,_; of ordern is the only tree with degree sequenge
Furthermorer, <7 <m,. Hence by Theorenis 2.3 and 2.4, the assertion hllds.

Corollary 5.2 ([2]) There is only one optimal tree [Tin Trfg with A > 3, where T, is T
with degree sequeneeas follows: Denote = [log,_;, X221 and n- 22 = (A—
r+qfor0<q<A-11fq=0,putr = (A,---,A,1,---, 1) with the numberE=L—=2 4 r
of degreeA. If q > 1, putr = (A,---,A,q, 1, - - -, 1) with the numbeiw%le‘zﬂ of degree

A.

Proof. For any treel of ordern with the largest degreag, let; = (do, - - -, dn_1) be the
nonincreasing degree sequencelof Assume thafl; hasp + 2 layers. Then there is a
vertex in layer O (i.e. the root), there akevertices in layer 1, there arg A — 1) vertices in
layer 2,- - -, there areA\(A — 1)P-1 vertices in layeip, there are at mogt(A — 1)P vertices in
layerp + 1. Hence

1+A+AA -+ +AA-1D)P T <n<1+A+AA-1)+---+ A(A - 1)P.

Thus

AA —1)P -2 A(A - 1)P*1 - 2
— < NnN< .
A-2 A-2
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Hence

nA-2)+2
p= “Og(A_l) %] -1
and there exist integersand 0< g < A — 1 such that
AA-1P-2
Ao =(A-1r+aq.

Therefore the degrees of all vertices from layer O to lgyell areA and there are vertices
in layer p with degreeA. Denote bym = A(A‘Al—_)‘,:l‘z +r — 1. Then there aren+ 1 vertices
with degreeA in T;. Hence the degree sequencelgfe 74 isx = (dj,---,d;_;) with
dg=--=d,=Ad,, =--=d_,=1forqg=0; and isr = (dj,---,d_;) with
dy=--=d,=A,d ,=qd ,=---=d , =1forq= 1. Itfollows fromd; < A that

THoth < YKod fork=0,---,m Further byd = 1 < d; fork=m+2,---,n— 1, we have

Zkldi=2(n—1)— nidisz(n—l)— nid;:zk:d;
i=0

i=0 i=k+1 i=k+1
fork=m+1,---n—1. Thusr, <7. Hence by Theorenis 2.3 andR#T) < ¢(T;) with
equality if and only ifT = T;. H

Remark If A = 3in Corollary(5.2, then the result is precisely Theorem A.7].

Corollary 5.3 There is only one optimal treeTn 7}525) where T, is obtained from t paths
of order g+ 2 and s-t paths of order g+ 1 by identifying one end of the s paths. Here
n—1=sqg+t,0<t<s.Inotherwords, for any tree of order n with s leaves,

o(T) <(@+2) +(q+1)""?
with equality if and only if T is T.

Proof. Let T be any tree ir;{% with the nonincreasing degree sequenge (do, - - -, 1)
Thusd, s ; > 1andd, s = --- = dy-; = 1. LetT} be a BFS-tree with degree sequence
r=(s2--,21---,1), where there are the numbepf 1's inx. Itis easy to see that
m1 <m. By Theoreni 214, the assertion holll.

Corollary 5.4 There is only one optimal tree*Tin 7\, where T is T with degree se-
quencer = (a,2,---,2,1,---,1) with numbers n- @ — 1 of 2s anda of 1's, i.e., T is
obtained from the star K, by adding n- @ — 1 pendent edges to-ha — 1 leaves of K,.
In other words, for any tree of order n with the independenasmbera,

QO(T) < 22a—n+13n—a—1 +2n-— a— 2

with equality if and only if T is T.
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Proof. For any treeT of ordern with the independence numbeylet| be an independent
set of T with sizea andr = (do, - - -, dn_1) be the degree sequenceTaf If there exists a
leafu with u ¢ I, then there exists a vertexe | with (u,v) € E(T). Hencel [ J{u} \ {v} is

an independent set @t with sizea. Therefore, one can always construct an independent
set of T with sizea that contains all leaves df. Hence there are at mastleaves. Then
dho_1 > 2 andr <. By Theorems§ 2]3 arid 2.4, the assertion hdlls.

Corollary 5.5 There is only one optimal treeﬁ*'ﬁn 7'&), where T is T: with degree se-
quencer = (n—-4,2,---,2,1,---,1). Here the number of’¢is n—B. Thatis, T is
obtained from the star K, ;s by addings — 1 pendent edges 6 — 1 leaves of K,_5. In

other words, for any Te 7‘,52,),

e(T)< 2" PP lin_p-2
with equality if and only if T is 1

Proof. For any treeT of ordern with matching numbeg, let v = (do, - - -, dy_1) be the
degree sequence ®f Let M be a matching o with sizeB. SinceT is connected, there
are at leasg vertices inT such that their degrees are at least two. Helce> 2 andr <.
By Theorem§ 213 arld 2.4, the assertion hdlls.
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