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A new entanglement measure: D-concurrence
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A new entanglement measure, which is called D-concurrence, is proposed. Then the upper and
lower bounds for D-concurrence are obtained and the relationship between D-concurrence and the
usual concurrence of Wootters was established. In addition, comparing with the usual concurrence,
D-concurrence has some special merits.
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I. INTRODUCTION

Quantum entanglement is the key resource in quantum
information processing and quantum computation[1, 2,
3].

A mix state ρ is called separable if it can be written as
a convex combination of tensor product states [4]

ρ =
∑

j

pjρ
(A)
j ⊗ ρ

(B)
j , (1)

otherwise it is entangled or inseparable.
Then a question arises: How to detect whether a state

is entangled or not? If ρ is entangled, how to quantify
the degree of its entanglement? To answer these two
questions, we need to introduce some measures of en-
tanglement to quantify the degree of entanglement. The
entanglement measure for a state is zero iff the state is
separable, and the bigger is the entanglement measure,
then more entanglement is the state. One of the most fa-
mous measures of entanglement is the concurrence [5] of
two-qubit system. The concurrence of a pure two-qubit
state ψ is given by

C(|ψ〉) =
√

2[1 − TrρA
2] =

√

2[1 − TrρB
2], (2)

where ρA = TrB |ψ〉〈ψ| is the partial trace of |ψ〉〈ψ| over
subsystem B, and ρB has a similar meaning. For a
mixed state, the concurrence is defined by the convex
roof method, that is, as the average concurrence of the
pure states of the decomposition, minimized over all de-
compositions of ρ =

∑

j pj |ψj〉〈ψj |,

C(ρ) = min
∑

j

pjC(|ψj〉). (3)

It is first discovered in [5] a simple way to quantify the
concurrence of two-qubit mixed state ρAB

C = max{λ1 − λ2 − λ3 − λ4, 0}, (4)
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where λi is the square root of eigenvalues of ρAB · (σy ⊗
σy) ·(ρAB)∗ ·(σy ⊗σy) in decreasing order. The definition
is also work for pure-state case of two qubits, in this case
it possesses a simpler form

C = 2
√

det(ρA) = 2
√

det(ρB), (5)

where ρA and ρB are reduced density matrices obtained
from the pure state ρAB by tracing out the other particle,
and det is the determinant function of the matrix.

For a general high dimension pure bipartite state |Ψ〉,
|Ψ〉 ∈ HA ⊗HB , concurrence is defined as [7]:

C (Ψ) =
√

2[〈Ψ|Ψ〉2 − Trρ2
i ] , (6)

where ρi is the reduced density operator obtained by
tracing over either subsystems A or B. It is clear that
C(Ψ) = 0 if and only if |Ψ〉 is a product state, i.e.
|Ψ〉 = |ΨA〉 ⊗ |ΨB〉.

Interestingly, C(Ψ) can be observed through a small
number of projective measurement on a twofold copy

|Ψ〉 ⊗ |Ψ〉 of |Ψ〉 [6, 7, 8, 9, 10, 11, 12]:

C (Ψ) =
√

〈Ψ| ⊗ 〈Ψ| A |Ψ〉 ⊗ |Ψ〉 ,A = 4PA
−⊗PB

− ,
(7)

where PA
− (PB

− ) is the projector onto the antisymmetric
subspace of HA ⊗HA (HB ⊗HB ).

For mixed states the concurrence is defined by the con-
vex roof method [11]:

C(ρ) = min
∑

i

piC(Ψi) ,

ρ =
∑

i

pi|Ψi〉〈Ψi| , pi ≥ 0 ,
∑

i

pi = 1 , (8)

where the minimum is taken over all decompositions of
ρ into pure states |Ψi〉 .

Since the concurrence for high dimension mix state is
difficult to calculate, it is a urgent task to find bound for
concurrence. Until now, only a few bounds for concur-
rence have been obtained [13, 14, 15, 16, 17, 18, 19, 20,
20, 21, 22, 23, 24].

In 2007, Mintert and Buchleitner gave a lower bound
for concurrence as[11]:

C2(ρ) ≥ 2
[

Trρ2 − TrρA
2
]

, (9)
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where C(ρ) is the concurrence for arbitrary states, taking
the definitions in Eq. (7) and Eq. (8).

Recently, a lower bound for concurrence was discovered
([19, 21]):

C2(ρ) ≤ 2
[

1 − TrρA2]
, (10)

In this paper, we will introduce a new entanglement
measure, which is called D-concurrence. The upper and
lower bounds for D-concurrence are also discussed.

II. MAIN RESULTS

It is known that a pure state |ψ〉 is separable if and only
if its two reduced density matrices ρA, ρB are all pure
state. So for pure states ρ, the D-concurrence is defined
as D(ρ) :=

√

det(I − ρA), where det is the determinant
function of a matrix.

For a mixed state, D-concurrence is defined by the con-
vex roof, that is, defined as the average D-concurrence of
the pure states of the decomposition, minimized over all
decompositions of ρ =

∑

j pj |ψj〉〈ψj |,

D(ρ) := min
∑

j

pjD(|ψj〉). (11)

A decomposition whose convex combination reaches the
minimum is called an optimal one.

Comparing with usual concurrence, D-concurrence has
some advantages:

First, it is defined by determinant det(I−ρA), which is
a first order function of ρA, while concurrence is defined
by TrρA

2, which is a two-order function of ρA, and it is
known that first order is easy to handle in some sense.

Interestingly, there is a deep connection between con-
currence and D-concurrence:

Proposition 1. For the case of two-qubits state,
D(ρ) = 1

2C(ρ).
Proof. Easily.
We can get an upper bound of D-concurrence, that is:
Theorem 1. For any bi-particle states ρ, we have

D2(ρ) ≤
[

det(I − ρA)
]

, (12)

Proof. Suppose ρ has a decomposition as ρ =
∑

i pi|ψi〉〈ψi|. Then

[D(ρ)]2 = [inf
∑

i

piD(|ψi〉〈ψi|)]2

≤ inf
∑

i

[
√
piD(|ψi〉〈ψi|)]2 ·

∑

i

(
√
pi)

2

= inf
∑

i

pi det(I − (ψi)A)

≤ det(I − ρA)

where ρA := TrBρ is the reduced density matrices of ρ,
and (ψi)A := TrB|ψi〉〈ψi| be the reduced density matrix

of |ψi〉〈ψi|. The first inequality holds by applying the
Cauchy-Schwarz inequality, while the second inequality
holds due to the following result: Assume A,B are two
Hermitian matrices, A ≥ 0, B ≥ 0, i.e., semi-positive
definite. Then

det(A+B) ≥ det(A) + det(B) (13)

The proof of inequality (13) is referred to [25]. This fin-
ishes our proof.

Note. From numerical experiment, one can see that
(12) is better than inequality (10), that is, the new bound
is more closer to the real value of concurrence.

How about lower bound? We first prove the following:
Theorem 2. If ρAB is a separable state, then the

following holds:

det(I − ρA) − det(I − ρ) ≤ 0, (14)

Proof. From [26], we get that if ρAB is separable, then

λ(ρAB) ≺ λ(ρA), (15)

and

λ(ρAB) ≺ λ(ρB), (16)

where λ(ρAB) is a vector of eigenvalues of ρAB; λ(ρA) and
λ(ρB) are defined similarly. The relation x ≺ y between
n-dimension vectors x and y, which reads “x is majorized
by y”, means that

k
∑

i=1

x
↓
i ≤

k
∑

i=1

y
↓
i (1 ≤ k ≤ n− 1), (17)

and

n
∑

i=1

x
↓
i =

n
∑

i=1

y
↓
i , (18)

where x↓i (1 ≤ i ≤ n) are components of vector x re-

arranged in decreasing order (x↓1 ≥ x
↓
2 ≥ · · · ≥ x↓n); y↓i

(1 ≤ i ≤ n) are defined similarly. If the dimensions of
x and y are different, the smaller vector is enlarged by
appending extra zeros to equalize their dimensions.

We know that for vectors x, y, x ≺ y if and only if
∑

i f(xi) ≤
∑

i f(yi) for all continuous convex function
f : R 7→ R. Note that x ≺ y then I − y ≺ I − x, here
I := (1, 1, ...1) is the unit vector.

Denote x := (x1, x2, ...xn) as vector of eigenvalues of
ρAB, y := (y1, y2, ...yn) as vector of eigenvalues of ρA

(appending extra zeros to equalize the dimension of x),
then we get that det(I−ρA) =

∏

i

(1−yi), det(I−ρAB) =
∏

i

(1 − xi).

Now we will discuss the following four possible cases:
(1). If x := (1, 0, ...0), y 6= (1, 0, ...0), then x ≺ y can

not happen.
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(2). If x := (1, 0, ...0), y = (1, 0, ...0), then det(I −
ρA) = det(I − ρAB), det(I − ρA) − det(I − ρ) ≤ 0.

(3). If x 6= (1, 0, ...0), y = (1, 0, ...0), then det(I−ρA)−
det(I − ρ) < 0.

(4). If x 6= (1, 0, ...0), y 6= (1, 0, ...0), then all xi, yi

satisfying that 0 ≤ xi < 1, 0 ≤ yi < 1, then we get that
∑

i f(1 − yi) ≤ ∑

i f(1 − xi) for all continuous convex
function f : R 7→ R, we choose the function f(t) :=
− log t, then we get

∑

i − log(1− yi) ≤
∑

i − log(1− xi).
All the above show that det(I − ρA) − det(I − ρ) ≤ 0.

Theorem is proved.
Numerical experiments show the following is true:
Proposition 2. For a general state ρ, D-concurrence

has a lower bound as:

D2(ρ) ≥
[

det(I − ρA) − det(I − ρ)
]

. (19)

Comparing the inequality (19) with the inequality (9),
from numerical experiments, we can find that our result
is better than (9).

Example 1. Consider the werner state,

ρf :=
1

N3 −N
[(N − f)I + (Nf − 1)P ], (20)

where P :=
∑ |ij〉〈ji| is the swap operator, f is a con-

stant number, −1 ≤ f ≤ 1. We know that C2(ρf ) = f2.
Take f = − 1

2 , then C2(ρf ) = 0.25, while 4
[

det(I−ρA)−
det(I − ρ)

]

= 0.2297, 2
[

Trρ2 − TrρA
2
]

= 0.1667. Our
bound is closer to the real concurrence!

III. CONCLUSIONS

In this paper, we define a new entanglement measure,
called D-concurrence. It is seen that D-concurrence has
deep connection with the usual concurrence, and also has
its own advantages. We then obtain the lower and upper
bounds for D-concurrence. Comparing with the bounds
for usual concurrence, our bound is closer to the real
values of concurrence.

Also, we leave some open questions, and will study in
future. One of them is the following: What is the physi-
cal interpretation of D−concurrence? We know that the
result of [11] is very interesting, because we can experi-
ment detect it. How about D−concurrence?
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