Complete solution of equation $W(L^3(T)) = W(T)$ for the Wiener index of iterated line graphs of trees

M. Knora, M. Mačajb, P. Potočnikc,d, R. Škrekovskie,c,f

a Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Mathematics, Radlinského 11, 813 68, Bratislava, Slovakia
b Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 15 Bratislava, Slovakia
c Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
d IAM, University of Primorska, Koper, Slovenia
e Faculty of Information Studies, 8000 Novo Mesto, Slovenia
f FAMNIT, University of Primorska, 6000 Koper, Slovenia

Abstract

Let G be a graph. Denote by $L^i(G)$ its i-iterated line graph and denote by $W(G)$ its Wiener index. In Knor et al. (in press) we show that there is an infinite class T of trees T satisfying $W(L^3(T)) = W(T)$, which disproves a conjecture of Dobrynin and Entringer. In this paper we prove that except the trees of T, there is no non-trivial tree T satisfying $W(L^i(T)) = W(T)$. Consequently, for a tree T and $i \geq 3$, the equation $W(L^i(T)) = W(T)$ holds if and only if $T \in T$ and $i = 3$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph. We denote its vertex set and edge set by $V(G)$ and $E(G)$, respectively. For any two vertices u, v let $d(u, v)$ be the distance from u to v. The Wiener index of G, $W(G)$, is defined as

$$W(G) = \sum_{u \neq v} d(u, v),$$

where the sum is taken over unordered pairs of vertices of G. The Wiener index was introduced by Wiener in [22]. Since it is related to several properties of chemical molecules (see [12]), it is widely studied by chemists. The interest of mathematicians was attracted in the 1970s, when it was reintroduced as the transmission and the distance of a graph; see [21] and [9], respectively. Recently, several special issues of journals were devoted to mathematical properties of the Wiener index (see [11,10]). For surveys and some up-to-date papers related to the Wiener index of trees and line graphs see [5,6], [8,19,20,24] and [2,3,7,13,23], respectively.

By the definition, if G has a unique vertex, then $W(G) = 0$. In this case, we say that the graph G is trivial. We set $W(G) = 0$ also when the set of vertices of G is empty.

* Corresponding author. Tel.: +421 59274415.
E-mail addresses: knor@math.sk (M. Knor), martin.macaj@fmph.uniba.sk (M. Mačaj), primoz.potocnik@fmf.uni-lj.si (P. Potočnik), skrekovski@gmail.com (R. Škrekovski).

http://dx.doi.org/10.1016/j.dam.2014.02.007

0166-218X/© 2014 Elsevier B.V. All rights reserved.
Theorem 1.5. The following:

\[
W(G, L(G)) = W(T) - \binom{n}{2}.
\]

Theorem 1.6. Let \(T \) be a tree whcih is not homeomorphic to a path, claw \(K_{1,3} \) or \(H_0 \), and let \(i \geq 3 \). Then \(W(L(T)) = W(T) \). However, there are trees \(T \) satisfying \(W(L(T)) = W(T) \), see e.g. [4]. In [5], the following problem was posed:

Problem 1.2. Is there any tree \(T \) satisfying equality \(W(L(T)) = W(T) \) for some \(i \geq 3 \)?

As observed above, if \(T \) is a trivial tree, then \(W(L(T)) = W(T) \) for every \(i \geq 1 \), although here the graph \(L(T) \) is empty.

The real question is, if there is a nontrivial tree \(T \) and \(i \geq 3 \) such that \(W(L(T)) = W(T) \).

In papers [16,15,18,17] (see [17, Corollary 1.4]) we solved Problem 1.2 for \(i \geq 4 \):

Theorem 1.3. Let \(T \) be a tree and \(i \geq 4 \). Then we have

\[
\begin{align*}
W(L(T)) &= W(T) \quad \text{if } T \text{ is trivial,} \\
W(L(T)) &< W(T) \quad \text{if } T \text{ is a nontrivial path or the claw } K_{1,3}, \\
W(L(T)) &> W(T) \quad \text{otherwise.}
\end{align*}
\]

In this paper we consider Problem 1.2 for the remaining case \(i = 3 \). Let \(H_0 \) be the tree on six vertices, out of which two have degree 3 and four have degree 1. In [15, Corollary 1.6], we proved:

Theorem 1.4. Let \(T \) be a tree which is not homeomorphic to a path, claw \(K_{1,3} \) or \(H_0 \), and let \(i \geq 3 \). Then \(W(L(T)) > W(T) \).

(Recall that two graphs \(G_1 \) and \(G_2 \) are homeomorphic if and only if there is a third graph \(H \), such that both \(G_1 \) and \(G_2 \) can be obtained from \(H \) by means of edge subdivision.)

By Theorem 1.4, to solve Problem 1.2 for \(i = 3 \), it suffices to consider paths and trees homeomorphic to the claw \(K_{1,3} \) and \(H_0 \).

First, let us concentrate to paths. Denote by \(P_n \) a path on \(n \) vertices. If \(n \geq 2 \), then \(W(P_n) = W(P_{n-1}) \), since \(P_{n-1} \) is a subgraph embedded isometrically in \(P_n \). Since \(L(P_n) = P_{n-1} \) if \(n \geq 2 \), while \(L(P_1) \) is an empty graph, we have \(W(L(P_n)) = W(P_n) \) for every \(i \geq 1 \) if \(P_n \) is a nontrivial path.

Similarly, there is no solution of Problem 1.2 among trees homeomorphic to the claw \(K_{1,3} \), namely, in Section 3 we prove the following:

Theorem 1.5. Let \(T \) be a tree homeomorphic to \(K_{1,3} \). Then \(W(L(T)) \neq W(T) \).

However, there is a non-trivial solution of Problem 1.2 among trees homeomorphic to \(H_0 \). Denote by \(H_{a,b,c,d,e} \) a specific tree homeomorphic to \(H_0 \), defined as follows: In \(H_{a,b,c,d,e} \), the two vertices of degree 3 are joined by a path of length \(e+1 \), \(e \geq 0 \). Hence, this path has \(e \) vertices of degree 2. Further, at one vertex of degree 3 there start two pendant paths of lengths \(a \) and \(b \), where \(a, b \geq 1 \), and at the other vertex of degree 3 there start another two pendant paths of lengths \(c \) and \(d \), where \(c, d \geq 1 \). Thus \(H_{a,b,c,d,e} \) has \(a + b + c + d + e + 2 \) vertices (see Fig. 1 for \(H_{3,3,4,2,2} \)). By symmetry, we may assume that \(a \geq b \), \(c \geq d \) and \(b \geq d \). That is, we assume that the shortest pendant path in \(H_{a,b,c,d,e} \) has length \(d \).

In Section 4, we prove the following:

Theorem 1.6. The equation \(W(L(H_{a,b,c,d,e})) = W(H_{a,b,c,d,e}) \) holds if and only if \(d = e = 1 \) and there are \(i, j \in \mathbb{Z}, i \geq j \), such that

\[
\begin{align*}
 a &= 128 + 3i^2 + 3j^2 - 3ij + i \\
b &= 128 + 3i^2 + 3j^2 - 3ij + j \\
c &= 128 + 3i^2 + 3j^2 - 3ij + i + j.
\end{align*}
\]
We remark that the "if" part of Theorem 1.6 was already proved in [14]. The smallest tree satisfying (1) is \(H_{128,128,1,1} \) on 388 vertices obtained when \(i = j = 0 \).

We can summarize our results regarding Problem 1.2 in the following theorem:

Theorem 1.7. Let \(T \) be a tree and \(i \geq 3 \). Then we have

(i) \(W(L^1(T)) = W(T) \) if \(T \) is trivial or \(i = 3 \) and \(T \) is \(H_{a,b,c,1,1} \), where \(a, b, c \) satisfy (1);

(ii) \(W(L^1(T)) \neq W(T) \) if \(i = 3 \) and \(T \) is homeomorphic to \(K_{1,3} \) or \(H_0 \) with the exception of trees mentioned in (i);

(iii) \(W(L^2(T)) < W(T) \) if \(T \) is a nontrivial path or the claw \(K_{1,3} \);

(iv) \(W(L^3(T)) > W(T) \) otherwise.

It is obvious that trees mentioned in (ii) either satisfy \(W(L^3(T)) < W(T) \) or \(W(L^3(T)) > W(T) \). If \(T \neq K_{1,3} \), in some cases we prove \(W(L^3(T)) > W(T) \), but in the others using congruences we can only show \(W(L^3(T)) \neq W(T) \), see below.

In the next section we present a lemma, with the help of which we prove Theorems 1.5 and 1.6 in Sections 3 and 4, respectively.

2. Preliminaries

A degree of a vertex, say \(v \), is denoted by \(\deg(v) \), or when convenient, by \(d_v \). Analogously as a vertex of \(L(G) \) corresponds to an edge of \(G \), a vertex of \(L^2(G) \) corresponds to a path of length two in \(G \). For \(x \in V(L^2(G)) \) we denote the corresponding path by \(B_2(x) \). For two subgraphs \(S_1 \) and \(S_2 \) of \(G \), the shortest distance in \(G \) between a vertex of \(S_1 \) and a vertex of \(S_2 \) is denoted by \(d(S_1,S_2) \). If \(S_1 \) and \(S_2 \) share an edge, then we set \(d(S_1,S_2) = -1 \).

Let \(x \) and \(y \) be two vertices of \(L^2(G) \), such that \(u \) is the center of \(B_2(x) \), the vertex \(v \) is the center of \(B_2(y) \) and \(u \neq v \). Then

\[
d_{L^2(G)}(x,y) = d(B_2(x),B_2(y)) + 2.
\]

Let \(u, v \in V(G) \), \(u \neq v \). Let \(\beta_i(u,v) \) denote the number of pairs \(x, y \in V(L^2(G)) \), with \(u \) being the center of \(B_2(x) \) and \(v \) being the center of \(B_2(y) \), such that \(d(B_2(x),B_2(y)) = d(u,v) - 2 + i \). Since \(d(u,v) - 2 \leq d(B_2(x),B_2(y)) \leq d(u,v) \), we have \(\beta_i(u,v) = 0 \) for all \(i \in \{0,1,2\} \). Moreover, \(\sum_{i=0}^{2} \beta_i(u,v) = \left(\begin{array}{c} d_u \\ 2 \end{array} \right) \left(\begin{array}{c} d_v \\ 2 \end{array} \right) \).

Let

\[
h(u,v) = \left(\begin{array}{c} d_u \\ 2 \end{array} \right) \left(\begin{array}{c} d_v \\ 2 \end{array} \right) - 1 \right) d(u,v) + \beta_1(u,v) + 2\beta_2(u,v).
\]

In [14, Lemma 2.2] we have the following statement:

Lemma 2.1. Let \(G \) be a connected graph. Then

\[
W(L^2(G)) - W(G) = \sum_{u \neq v} h(u,v) + \sum_u \left[3 \left(\begin{array}{c} d_u \\ 3 \end{array} \right) + 6 \left(\begin{array}{c} d_u \\ 4 \end{array} \right) \right],
\]

where the first sum is taken over unordered pairs of vertices \(u, v \in V(G) \), such that either \(d_u \neq 2 \) or \(d_v \neq 2 \), and the second one is taken over \(u \in V(G) \).

Observe that \(W(P_n) = \left(\begin{array}{c} n - 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} n - 2 \\ 1 \end{array} \right) + \cdots + 1 = \left(\begin{array}{c} n+1 \\ 3 \end{array} \right) \), where this fact, one can show that \(W(H_{a,b,c,d,e}) \) is a polynomial of third degree in \(a, b, c, d \) and \(e \) and so is also \(W(L^2(H_{a,b,c,d,e})) \) (the situation with the claw being similar). However, if we calculate \(W(L^2(H_{a,b,c,d,e})) - W(H_{a,b,c,d,e}) \) with the help of Lemma 2.1, we obtain a polynomial the degree of which is at most 2, since the pairs of vertices \(u, v \) with \(d_u = d_v = 2 \) do not contribute to \(W(L^2(H_{a,b,c,d,e})) - W(H_{a,b,c,d,e}) \) (for detailed calculation see the proofs below).

3. Proof of Theorem 1.5

Proof of Theorem 1.5. Let \(C_{a,b,c} \) be a tree homeomorphic to the claw \(K_{1,3} \) in which the paths connecting the vertices of degree 1 with the vertex of degree 3 have lengths \(a, b \) and \(c \), where \(a \geq b \geq c \geq 1 \). The tree \(C_{a,b,c} \) has exactly \(a + b + c + 1 \) vertices, see Fig. 2 for \(C_{4,3,2} \).

We prove Theorem 1.5 by counting the distances in \(L(C_{a,b,c}) \) instead of in \(C_{a,b,c} \) and \(L^2(C_{a,b,c}) \). In \(L(C_{a,b,c}) \) we distinguish 6 vertices \(x_1, x_2, x_3, y_1, y_2 \) and \(y_3 \). The vertices \(x_1, x_2 \) and \(x_3 \) correspond to the pendant edges of \(C_{a,b,c} \), while the vertices \(y_1, y_2 \) and \(y_3 \) correspond to the edges incident with the vertex of degree 3 in \(C_{a,b,c} \), see Fig. 2 for \(L(C_{4,3,2}) \). Observe that if \(c = 1 \) (\(b = 1 \) or \(a = 1 \)), then \(x_3 = y_3 \) (\(x_2 = y_2 \) or \(x_1 = y_1 \)), and in such a case, \(\deg(x_3) = 2 \) (\(\deg(x_2) = 2 \) or \(\deg(x_1) = 2 \), respectively).
In what follows, the graph $L(C_{a,b,c})$ is denoted by LC. Further, for $i \in \{1, 2, 3\}$, let V_i be the set of vertices of $V(LC)$ of degree i. For $x \in V_1$ and $y \in V_3$, define

$$S^1(x) = \sum_u h(u, x) \quad \text{where} \ u \in V(LC) \setminus V_1,$$

$$M^1 = \sum_{u \neq v} h(u, v) \quad \text{where} \ u, v \in V_1,$$

$$S^3(y) = \sum_u h(u, y) \quad \text{where} \ u \in V_2,$$

$$M^3 = \sum_{u \neq v} h(u, v) \quad \text{where} \ u, v \in V_3,$$

$$D = \sum_u \left[3 \left(\frac{u}{3} \right) + 6 \left(\frac{u}{4} \right) \right] \quad \text{where} \ u \in V_3.$$

Observe that $\sum_{x \in V_1} S^1(x) + M^1 + \sum_{y \in V_3} S^3(y) + M^3$ sums $h(u, v)$ for all pairs $\{u, v\}$ of vertices such that either $\deg(u) \neq 2$ or $\deg(v) \neq 2$.

Denote $P = W(L^2(C_{a,b,c})) - W(C_{a,b,c})$. Since $C_{a,b,c}$ has $a + b + c + 1$ vertices, we have $W(C_{a,b,c}) = W(LC) + \binom{a+b+c+1}{2}$, by Theorem 1.1. Thus, by Lemma 2.1, we have

$$P = W(L^2(LC)) - W(LC) - \binom{a+b+c+1}{2}$$

$$= \sum_{x \in V_1} S^1(x) + M^1 + \sum_{y \in V_3} S^3(y) + M^3 + D - \binom{a+b+c+1}{2}. \quad (3)$$

This naturally splits the problem into four cases according to the size of V_1. In each of these cases we evaluate S^1's, M^1, S^3's, M^3 and D, and we solve the equation $P = 0$. To avoid fractions, in some cases we solve the equation $2P = 0$ instead of $P = 0$.

Case $1. a, b, c \geq 2$, that is, $|V_1| = 3$.

We start with evaluating $S^1(x)$, where $x \in V_1$. Since $\deg(x) = 1$, we have $\beta_i(u, x) = 0, 0 \leq i \leq 2$. Hence, $h(u, x) = -d(u, x)$, see (2). The sum of distances from x_1 to all interior vertices of $x_1 - x_3$ path is $1 + 2 + \cdots + (a + b - 2) = \binom{a+b-1}{2}$ (see Fig. 2). The sum of distances from x_1 to all interior vertices of $x_1 - x_3$ path, not included in the previous calculation, is $a + (a+1) + \cdots + (a+c-2) = \binom{a+c-1}{2} - \binom{a}{2}$. In this way we get $S^1(x_1)$ and analogously we calculate $S^1(x_2)$ and $S^1(x_3)$:

$$S^1(x_1) = -\binom{a+b-1}{2} - \binom{a+c-1}{2} + \binom{a}{2},$$

$$S^1(x_2) = -\binom{a+b-1}{2} - \binom{b+c-1}{2} + \binom{b}{2},$$

$$S^1(x_3) = -\binom{a+c-1}{2} - \binom{b+c-1}{2} + \binom{c}{2}. $$

Now $h(x_1, x_2) = -(a+b-1)$. Using the symmetry we obtain

$$M^1 = -(a+b-1) - (a+c-1) - (b+c-1).$$

In $S^3(y)$ we sum $h(u, y)$, where $\deg(u) = 2$ and $\deg(y) = 3$. Hence, $\binom{d_y}{2} \binom{d_y}{3} - 1 = 2$. Since $\beta_0(u, y) = 2, \beta_1(u, y) = 1$ and $\beta_2(u, y) = 0$, we have $h(u, y) = 2d(u, y) + 1$. Thus, the sum of $h(u, y)$'s for interior vertices u of $y_1 - x_1$ path is $2(1 + 2 + \cdots + (a-2)) + (a-2) = 2 \binom{a-1}{2} + (a-2)$ (see Fig. 2). Analogously, the sum of $h(u, y)$'s for interior vertices

Fig. 2. The graphs $C_{a,b,c}$ and $L(C_{a,b,c}) = LC$.
of $y_2 - x_2$ path is $2(2 + 3 + \cdots + (b - 1)) + (b - 2) = 2 \left(\frac{b}{2} \right) - 2 + (b - 2) = 2 \left(\frac{b}{2} \right) + (b - 4)$. In this way we get

$$S^3(y_1) = 2 \left(\frac{a-1}{2} \right) + (a-2) + 2 \left(\frac{b}{2} \right) + (b-4) + 2 \left(\frac{c}{2} \right) + (c-4),$$

$$S^3(y_2) = 2 \left(\frac{a}{2} \right) + (a-4) + 2 \left(\frac{b-1}{2} \right) + (b-2) + 2 \left(\frac{c}{2} \right) + (c-4),$$

$$S^3(y_3) = 2 \left(\frac{a}{2} \right) + (a-4) + 2 \left(\frac{b}{2} \right) + (b-4) + 2 \left(\frac{c-1}{2} \right) + (c-2).$$

Consider $h(y_1, y_2)$. Here $\left(\frac{dy_1}{2} \right) \left(\frac{dy_2}{2} \right) - 1 = 8$, $\beta_0(y_1, y_2) = 4$, $\beta_1(y_1, y_2) = 5$ and $\beta_2(y_1, y_2) = 0$ (see Fig. 2). This means that $h(y_1, y_2) = 8 + 5 = 13$, and analogously also $h(y_1, y_3) = 13$ and $h(y_2, y_3) = 13$. Hence

$$M^3 = 13 + 13 + 13.$$

Finally, since LC has exactly three vertices of degree 3 and no vertex of higher degree, we have

$$D = \sum_u \left[3 \left(\frac{d_u}{3} \right) + 6 \left(\frac{d_u}{4} \right) \right] = 3 \left[3 \left(\frac{3}{3} \right) \right] = 9.$$

By (3), expanding the terms (using a computer package, for instance), we get

$$P = (a^2 + b^2 + c^2) - 3(ab + ac + bc) + (a + b + c) + 21 = (a + b + c)^2 - 5(ab + ac + bc) + (a + b + c) + 21.$$

Now substitute $x = (a + b + c)$ and consider the equation $P = 0$ over \mathbb{Z}_5. We get

$$x^2 + x + 1 = 0,$$

which has no solution in \mathbb{Z}_5. Consequently, $P = 0$ has no integer solution and $W(L^3(C_{a,b,c})) - W(C_{a,b,c}) \neq 0$ in this case.

Case 2. $a, b \geq 2, c = 1$, that is, $|V_1| = 2$. In this case the vertex $x_3 = y_3$ has degree 2, so we do not need to find $S^1(x_3)$ and $S^1(y_3)$, see (3), but we must include the distances to x_3 in $S^1(x_1)$, $S^1(x_2)$, $S^3(y_1)$ and $S^3(y_2)$. Analogously as in the previous case we have

$$S^3(y_1) = 2 \left(\frac{a-1}{2} \right) + (a-2) + 2 \left(\frac{b}{2} \right) + (b-4) + 2 + 1,$n\n
$$S^3(y_2) = 2 \left(\frac{a}{2} \right) + (a-4) + 2 \left(\frac{b-1}{2} \right) + (b-2) + 2 + 1,$n$$

$$M^3 = 13,$n\n
$$D = 2 \cdot 3 \left(\frac{3}{3} \right) = 6.$$

By (3), expanding the terms we get

$$2P = (a^2 + b^2) - 6ab - 5(a + b) + 30 = (a + b)^2 - 8ab - 5(a + b) + 30. \quad (4)$$

Now consider the equation $2P = 0$ over \mathbb{Z}_5. We get $(a' + b')^2 + 2a'b' = 0$. It is a matter of routine to check that the only solution in \mathbb{Z}_5 is $a' = b' = 0$. Hence, in (4) we have $25 \mid (a + b)^2, 25 \mid 8ab$ and $25 \mid 5(a + b)$. Since $25 \mid 30$, (4) has no integer solution. Thus, $P = 0$ has no solution also in this case.

Case 3. $a \geq 2, b = c = 1$, that is, $|V_1| = 1$. The vertices $x_2 = y_2$ and $x_3 = y_3$ have degree 2, so we do not need to find $S^1(x_2), S^1(x_3), S^3(y_2)$ and $S^3(y_3)$. We have

$$S^1(x_1) = - \left(\frac{a}{2} \right) - a - a,$n$$

$$M^1 = 0,$n$$

$$S^1(x_2) = - \left(\frac{a}{2} \right) - b,$n$$

$$S^1(x_3) = - \left(\frac{a}{2} \right) - c,$n$$

$$S^1(x_4) = - \left(\frac{a}{2} \right) - (b + c).$$
$S^3(y_1) = 2 \left(\frac{a - 1}{2} \right) + (a - 2) + 2 + 1 + 2 + 1,$

$M^3 = 0,$

$D = 3 \left(\frac{3}{3} \right) = 3.$

By (3), expanding the terms we get

$$P = -6a + 6 < 0$$

as $a \geq 2.$ Thus, $P = 0$ has no solution in this case.

Case 4. $a = b = c = 1,$ that is, $|V_1| = 0.$

In this case $C_{a,b,c} = K_{1,3}$ and $L'(K_{1,3})$ is a cycle of length 3 for every $i \geq 1.$ Since $W(G) = 3$ if G is a cycle of length 3, while $W(K_{1,3}) = 9,$ we have $W(L'(C_{1,1,1})) - W(C_{1,1,1}) \neq 0$ also in this case. \(\square\)

4. Proof of Theorem 1.6

Proof of Theorem 1.6. We proceed analogously as in the proof of Theorem 1.5. That is, we prove Theorem 1.6 by counting the distances in $L(H_{a,b,c,d,e})$ instead of those in $H_{a,b,c,d,e}$ and $L^3(H_{a,b,c,d,e}).$ In $L(H_{a,b,c,d,e})$ we distinguish 10 vertices x_1, x_2, \ldots, x_4 and $y_1, y_2, \ldots, y_6.$ The vertices x_1, \ldots, x_4 correspond to pendant edges of $H_{a,b,c,d,e},$ while the vertices y_1, \ldots, y_6 correspond to edges incident with vertices of degree 3 in $H_{a,b,c,d,e}$ (see Fig. 3). Observe that if $e = 0,$ then $y_5 = y_6$ and $\text{deg}(y_5) = 4.$ If $d = 1$ ($e = 1, b = 1$ or $a = 1$), then $x_4 = y_4$ ($x_3 = y_3, x_2 = y_2$ or $x_1 = y_1$), and in such a case $\text{deg}(x_4) = 2$ ($\text{deg}(x_3) = 2, \text{deg}(x_2) = 2$ or $\text{deg}(x_1) = 2,$ respectively).

In what follows, the graph $L(H_{a,b,c,d,e})$ is denoted by $LH.$ Further, for $i \in \{1, 2, 3, 4\},$ let V_i be the set of vertices of $V(LH)$ of degree $i.$ For $x \in V_1$ and $y \in V_3 \cup V_4,$ define

$$S^1(x) = \sum_{u \in V(LH) \setminus V_1} h(u, x) \quad \text{where} \quad u \in V_1,$$

$$M^1 = \sum_{u \neq v} h(u, v) \quad \text{where} \quad u, v \in V_1,$$

$$S^3(y) = \sum_{u} h(u, y) \quad \text{where} \quad u \in V_2,$$

$$M^3 = \sum_{u \neq v} h(u, v) \quad \text{where} \quad u, v \in V_3 \cup V_4,$$

$$D = \sum_{u} \left[3 \left(\frac{u}{3} \right) + 6 \left(\frac{u}{4} \right) \right] \quad \text{where} \quad u \in V_3 \cup V_4.$$

Observe that once again, $\sum_{x \in V_1} S^1(x) + M^1 + \sum_{y \in V_3 \cup V_4} S^3(y) + M^3$ sums $h(u, v)$ for all pairs (u, v) of vertices such that either $\text{deg}(u) \neq 2$ or $\text{deg}(v) \neq 2.$

Denote $P = W(L^2(H_{a,b,c,d,e})) - W(H_{a,b,c,d,e}).$ Since $H_{a,b,c,d,e}$ has $a + b + c + d + e + 2$ vertices, we have $W(H_{a,b,c,d,e}) = W(LH) + \binom{a + b + c + d + e + 2}{2},$ by Theorem 1.1. Thus, by Lemma 2.1, we have

$$P = W(L^2(LH)) - W(LH) - \left(\frac{a + b + c + d + e + 2}{2} \right) = \sum_{x \in V_1} S^1(x) + M^1 + \sum_{y \in V_3 \cup V_4} S^3(y) + M^3 + D - \left(\frac{a + b + c + d + e + 2}{2} \right).$$

If $e = 0,$ then we have one vertex of degree 4 in $LH,$ while if $e \geq 1,$ then the greatest degree of a vertex in LH is 3. By symmetry, we distinguish eleven cases. In the first five cases we have $e \geq 1$ and in the next five we have $e = 0.$ In each of these first ten cases (the last case will be solved in a different way) we evaluate $S^1's, M^1, S^3's, M^3$ and D and we solve the equation $P = 0.$ To avoid fractions, in some cases we solve the equation $2P = 0.$

Case 1. $a, b, c, d \geq 2, e \geq 1.$

We start with evaluating $S^1(x),$ where $x \in V_1.$ Since $\text{deg}(x) = 1,$ we have $h_j(u, x) = 0, 0 \leq j \leq 2.$ Hence, $h(u, x) = -d(u, x).$ The sum of distances from x_1 to all interior vertices of $x_1 - x_2$ path is $1 + 2 + \cdots + (a + b - 2) = \left(\frac{a+b-1}{2} \right)$ (see Fig. 3). The sum of distances from x_1 to all interior vertices of $x_1 - x_3$ path, not included in the previous calculation,
is \(\binom{a+c+d}{2} - \binom{a+c}{2} \). Finally, the sum of distances from \(x_1 \) to all interior vertices of \(x_1 - x_4 \) path, not included previously, is \(\binom{a+b+d}{2} - \binom{a+b+e}{2} \). In this way we get \(S_1(x_1) \) and analogously we calculate \(S_1(x_2), S_1(x_3) \) and \(S_1(x_4) \):

\[
S_1(x_1) = -\left(\frac{a+b-1}{2} \right) - \left(\frac{a+e+c}{2} \right) + \left(\frac{a}{2} \right) - \left(\frac{a+e+d}{2} \right) + \left(\frac{a+e+1}{2} \right),
\]

\[
S_1(x_2) = -\left(\frac{a+b-1}{2} \right) - \left(\frac{b+e+c}{2} \right) + \left(\frac{b}{2} \right) - \left(\frac{b+e+d}{2} \right) + \left(\frac{b+e+1}{2} \right),
\]

\[
S_1(x_3) = -\left(\frac{a+e+c}{2} \right) - \left(\frac{b+e+c}{2} \right) + \left(\frac{e+c+1}{2} \right) - \left(\frac{c+d-1}{2} \right) + \left(\frac{c}{2} \right),
\]

\[
S_1(x_4) = -\left(\frac{a+e+d}{2} \right) - \left(\frac{b+e+d}{2} \right) + \left(\frac{e+d+1}{2} \right) - \left(\frac{c+d-1}{2} \right) + \left(\frac{d}{2} \right).
\]

Now \(h(x_1, x_2) = -(a+b-1) \) and \(h(x_1, x_3) = -(a+e+c) \). Using the symmetry we obtain

\[
M_1 = -(a+b-1) - (a+e+c) - (a+e+d) - (b+e+d) - (c+d-1).
\]

In \(S_3(y) \) we sum \(h(u, y) \), where \(\deg(u) = 2 \) and \(\deg(y) = 3 \). Hence, \(\left(\frac{d_y}{2} \right) \left(\frac{d_y}{2} \right) - 1 = 2 \). Since \(\beta_5(u, y) = 2, \beta_1(u, y) = 1 \) and \(\beta_2(u, y) = 0 \), we have \(h(u, y) = 2d(u, y) + 1 \). Thus, the sum of \(h(u, y) \) for interior vertices \(u \) of \(y_1 - x_1 \) path is \(2(1 + 2 + \cdots + (a-2)) + (a-2) = 2 \left(\binom{a-1}{2} \right) + (a-2) \) (see Fig. 3). Analogously, the sum of \(h(u, y) \) for interior vertices of \(y_2 - x_2 \) path is \(2(2 + 3 + \cdots + (b-1)) + (b-2) = 2 \left(\binom{b}{2} \right) + (b-4) \); the sum of \(h(u, y) \) for interior vertices of \(y_3 - x_3 \) path is \(2((e+3) + (e+4) + \cdots + (e+c)) + (c-2) = 2 \left(\binom{e+c+1}{2} \right) - 2 \left(\binom{e+3}{2} \right) + (c-2) \). In this way we get

\[
S_3(y_1) = 2 \left(\binom{a-1}{2} \right) + (a-2) + 2 \left(\binom{b}{2} \right) + (b-4) + 2 \left(\binom{e+1}{2} \right) + (e-3)
\]

\[
+ 2 \left(\binom{e+c+1}{2} \right) - 2 \left(\binom{e+3}{2} \right) + (c-2) + 2 \left(\binom{e+d+1}{2} \right) - 2 \left(\binom{e+3}{2} \right) + (d-2),
\]

\[
S_3(y_2) = 2 \left(\binom{a}{2} \right) + (a-4) + 2 \left(\binom{b-1}{2} \right) + (b-2) + 2 \left(\binom{e+1}{2} \right) + (e-3)
\]

\[
+ 2 \left(\binom{e+c+1}{2} \right) - 2 \left(\binom{e+3}{2} \right) + (c-2) + 2 \left(\binom{e+d+1}{2} \right) - 2 \left(\binom{e+3}{2} \right) + (d-2),
\]

\[
S_3(y_3) = 2 \left(\binom{a+e+1}{2} \right) - 2 \left(\binom{e+3}{2} \right) + (a-2) + 2 \left(\binom{b+e+1}{2} \right) - 2 \left(\binom{e+3}{2} \right) + (b-2)
\]

\[
+ 2 \left(\binom{e+1}{2} \right) + (e-3) + 2 \left(\binom{c-1}{2} \right) + (c-2) + 2 \left(\binom{d}{2} \right) + (d-4),
\]

\[
S_3(y_4) = 2 \left(\binom{a+e+1}{2} \right) - 2 \left(\binom{e+3}{2} \right) + (a-2) + 2 \left(\binom{b+e+1}{2} \right) - 2 \left(\binom{e+3}{2} \right) + (b-2)
\]

\[
+ 2 \left(\binom{e+1}{2} \right) + (e-3) + 2 \left(\binom{c}{2} \right) + (c-4) + 2 \left(\binom{d-1}{2} \right) + (d-2),
\]

\[
S_3(y_5) = 2 \left(\binom{a}{2} \right) + (a-4) + 2 \left(\binom{b}{2} \right) + (b-4) + 2 \left(\binom{e}{2} \right) + (e-1)
\]

\[
+ 2 \left(\binom{e+c}{2} \right) - 2 \left(\binom{e+2}{2} \right) + (c-2) + 2 \left(\binom{e+d}{2} \right) - 2 \left(\binom{e+2}{2} \right) + (d-2),
\]

Fig. 3. The graph \(L(H_{b,c,d,e}) \) for \(e \geq 1 \) and \(e = 0 \).
\[S^3(y_6) = 2 \left(\frac{a + e}{2} \right) - 2 \left(\frac{e + 2}{2} \right) + (a - 2) + 2 \left(\frac{b + e}{2} \right) - 2 \left(\frac{e + 2}{2} \right) + (b - 2) \\
+ 2 \left(\frac{e}{2} \right) + (e - 1) + 2 \left(\frac{c}{2} \right) + (c - 4) + 2 \left(\frac{d}{2} \right) + (d - 4). \]

Consider \(h(y_i, y_j) \), where \(1 \leq i < j \leq 6 \). Here \(\left(\frac{d_{y_i}}{2} \right) \left(\frac{d_{y_j}}{2} \right) - 1 = 8 \) and \(\beta_0(y_i, y_j) = 4 \). If \(y_i \) and \(y_j \) lie in a common triangle, then \(\beta_1(y_i, y_j) = 5 \) and \(\beta_2(y_i, y_j) = 0 \), while if \(y_i \) and \(y_j \) do not lie in a common triangle, then \(\beta_1(y_i, y_j) = 4 \) and \(\beta_2(y_i, y_j) = 1 \). This means that \(h(y_1, y_2) = 13, h(y_1, y_3) = 8(e + 2) + 6 = 8e + 22, h(y_1, y_6) = 8(e + 1) + 6 = 8e + 14 \) and \(h(y_5, y_6) = 8e + 6. \) Hence

\[
M^3 = \left(13 + (8e + 22) + (8e + 22) + 13 + (8e + 14) \right) + \left((8e + 22) + (8e + 22) \right) + \left(8e + 14 \right) + \left((8e + 14) + 13 \right) + \left((8e + 6) \right).
\]

Finally,

\[
D = \sum_u \left[3 \left(\frac{d_{u}}{3} \right) + 6 \left(\frac{d_{u}}{4} \right) \right] = 6 \left(\frac{3}{3} \right) = 18.
\]

By (5), expanding the terms (using a computer package, for instance), we get

\[
2P = 7(a^2 + b^2 + c^2 + d^2 + e^2) - 6(ab + ac + ad + bc + bd + cd) + 4(\bar{a}e + be + ce + de) \\
+ 5(a + b + c + d) + 65e + 234 \\
= 7(a + b + c + d + e)^2 - 20(ab + ac + ad + bc + bd + cd) - 10(\bar{a}e + be + ce + de) \\
+ 5(a + b + c + d) + 65e + 234.
\]

Now substitute \(x = (a + b + c + d + e) \) and consider the equation \(2P = 0 \) over \(\mathbb{Z}_5 \). We get

\[
2x^2 + 4 = 0.
\]

which has no solution in \(\mathbb{Z}_5 \). Consequently, \(P = 0 \) has no integer solution and \(W(L^3(H_{a,b,c,d,e})) - W(H_{a,b,c,d,e}) \neq 0 \) in this case.

Case 2. \(a, b, c \geq 2, d = 1, e \geq 1. \)

In this case the vertex \(x_4 = y_4 \) has degree 2, so we do not need to find \(S^1(x_4) \) and \(S^3(y_4) \), but we must include the distances to \(x_4 \) in \(S^1(x_1), S^1(x_2), S^1(x_3), S^3(y_1), S^3(y_2), S^3(y_3), S^3(y_5) \) and \(S^3(y_6) \). Analogously as in the previous case we have

\[
S^1(x_1) = -\left(\frac{a + b - 1}{2} \right) - \left(\frac{a + e + c}{2} \right) + \left(\frac{a}{2} \right) - (a + e + 1),
\]

\[
S^1(x_2) = -\left(\frac{a + b - 1}{2} \right) - \left(\frac{b + e + c}{2} \right) + \left(\frac{b}{2} \right) - (b + e + 1),
\]

\[
S^1(x_3) = -\left(\frac{a + e + c}{2} \right) - \left(\frac{b + e + c}{2} \right) + \left(\frac{e + c + 1}{2} \right) - c,
\]

\[
M^1 = -(a + b - 1) - (a + e + c) - (b + e + c).
\]

\[
S^3(y_1) = 2 \left(\frac{a - 1}{2} \right) + (a - 2) + 2 \left(\frac{b}{2} \right) + (b - 4) + 2 \left(\frac{e + 1}{2} \right) + (e - 3) + 2 \left(\frac{e + c + 1}{2} \right) \\
- 2 \left(\frac{e + 3}{2} \right) + (c - 2) + 2(e + 2) + 1,
\]

\[
S^3(y_2) = 2 \left(\frac{a}{2} \right) + (a - 4) + 2 \left(\frac{b - 1}{2} \right) + (b - 2) + 2 \left(\frac{e + 1}{2} \right) + (e - 3) + 2 \left(\frac{e + c + 1}{2} \right) \\
- 2 \left(\frac{e + 3}{2} \right) + (c - 2) + 2(e + 2) + 1,
\]

\[
S^3(y_3) = 2 \left(\frac{a + e + 1}{2} \right) - 2 \left(\frac{e + 3}{2} \right) + (a - 2) + 2 \left(\frac{b + e + 1}{2} \right) - 2 \left(\frac{e + 3}{2} \right) + (b - 2) \\
+ 2 \left(\frac{e + 1}{2} \right) + (e - 3) + 2 \left(\frac{c - 1}{2} \right) + (c - 2) + 2 + 1,
\]

\[
S^3(y_5) = \text{and } S^3(y_6).
\]
\[S^3(y_5) = 2 \left(\frac{a}{2} \right) + (a - 4) + 2 \left(\frac{b}{2} \right) + (b - 4) + 2 \left(\frac{e}{2} \right) + (e - 1) + 2 \left(\frac{e + c}{2} \right) - 2 \left(\frac{e + 2}{2} \right) + (c - 2) + 2(e + 1) + 1, \]
\[S^3(y_6) = 2 \left(\frac{a + e}{2} \right) - 2 \left(\frac{e + 2}{2} \right) + (a - 2) + 2 \left(\frac{b + e}{2} \right) - 2 \left(\frac{e + 2}{2} \right) + (b - 2) + 2 \left(\frac{e + c}{2} \right) + (e - 1) + 2 \left(\frac{c}{2} \right) + (c - 4) + 2 + 1, \]
\[M^3 = \left(13 + (8e + 22) + 13 + (8e + 14) \right) + ((8e + 22) + 13 + (8e + 14)) + ((8e + 14) + 13) + ((8e + 6)), \]
\[D = 5 \cdot 3 \left(\frac{3}{3} \right) = 15. \]
By (5), expanding the terms we get
\[P = 3(a^2 + b^2 + c^2 + e^2) - 3(ab + ac + bc) + (ae + be) + 2ce - 2(a + b) - c + 28e + 97. \]
Since \((a - b)^2 + (b - c)^2 + (c - a)^2 = 2(a^2 + b^2 + c^2) - 2(ab + ac + bc) \geq 0\), we have \(3(a^2 + b^2 + c^2) - 3(ab + ac + bc) \geq 0\). Hence, if \(e \geq 2\), then
\[P \geq 3e^2 + (e - 2)(a + b) + c(2e - 1) + 28e + 97 > 0. \]
This means that if \(P = 0\) then \(e = 1\). For \(e = 1\) we obtain
\[P = 3(a^2 + b^2 + c^2) - 3(ab + ac + bc) - a - b + c + 128. \]
Substituting \(a = 128 + x, b = 128 + y\) and \(c = 128 + z\) we get
\[P = 3(x^2 + y^2 + z^2) - 3(xy + xz + yz) - x - y - z. \]
Now we solve the equation \(P = 0\). This gives
\[3(x^2 + y^2 + z^2) - 3(xy + xz + yz) = x + y - z = 3t \]
or equivalently
\[\frac{3}{2} (x - y)^2 + (y - z)^2 + (z - x)^2 = x + y - z = 3t. \]
where \(t\) is a nonnegative integer. Since \(x, y\) and \(z\) were defined using \(a, b\) and \(c\), the differences \((z - y)\) and \((z - x)\) are integer numbers. Set \(l = (z - y)\) and \(j = (z - x)\). Then \((x - y) = (z - y) - (z - x) = l - j\), so that
\[2t = (x - y)^2 + (y - z)^2 + (z - x)^2 = (i - j)^2 + (j - i)^2 = 2i^2 + 2j^2 - 2ij \]
and consequently \(3t = 3i^2 + 3j^2 - 3ij = x + y - z\). This gives
\[x = 3t + (z - y) = 3i^2 + 3j^2 - 3ij + i, \]
\[y = 3t + (z - x) = 3i^2 + 3j^2 - 3ij + j, \]
\[z = x + y - 3t = 3i^2 + 3j^2 - 3ij + i + j, \]
which is equivalent to (1).
In [14] we proved that for every triple \(a, b, c\) satisfying (1) and \(e = 1\) it holds \(P = 0\) (that is, \(W(L^3(H_{a,b,c,1,1})) = W(H_{a,b,c,1,1})\)). Thus, \(P = 0\) in this case if and only if \(e = 1\) and \(a, b, c\) satisfy (1).
Case 3. \(a, c \geq 2, b = d = 1, e \geq 1.\)
The vertices \(x_2 = y_2\) and \(x_4 = y_4\) have degree 2, so we do not need to find \(S^1(x_2), S^1(x_4), S^3(y_2)\) and \(S^3(y_4)\). We have
\[S^1(x_1) = -a - \left(\frac{a + e + c}{2} \right) - (a + e + 1), \]
\[S^1(x_3) = - \left(\frac{a + e + c}{2} \right) - (e + c + 1) - c, \]
\[M^1 = -(a + e + c), \]
\[S^1(y_1) = 2 \left(\frac{a - 1}{2} \right) + (a - 2) + 2 + 2 \left(\frac{e + 1}{2} \right) + (e - 3) + 2 \left(\frac{e + c + 1}{2} \right) - 2 \left(\frac{e + 3}{2} \right) + (c - 2) + 2(e + 2) + 1, \]
The vertices \(D \geq 2\) and \(2 \geq a \geq c = d = 1, e \geq 1\). The vertices \(x_3 = y_3\) and \(x_4 = y_4\) have degree 2, so we do not need to find \(S^1(x_3), S^1(x_4), S^3(y_3)\) and \(S^3(y_4)\). We have

\[
S^1(x_1) = -\left(\frac{a + b - 1}{2}\right) - \left(\frac{a + e + 2}{2}\right) + \left(\frac{a}{2}\right) - (a + e + 1),
\]

\[
S^1(x_2) = -\left(\frac{a + b - 1}{2}\right) - \left(\frac{b + e + 2}{2}\right) + \left(\frac{b}{2}\right) - (b + e + 1),
\]

\[
M^1 = -(a + b - 1),
\]

\[
S^3(y_1) = 2\left(\frac{a - 1}{2}\right) + (a - 2) + 2\left(\frac{b}{2}\right) + (b - 4) + 2\left(\frac{e + 1}{2}\right) + (e - 3) + 2(e + 2) + 1 + 2(e + 2) + 1,
\]

\[
S^3(y_2) = 2\left(\frac{a}{2}\right) + (a - 4) + 2\left(\frac{b - 1}{2}\right) + (b - 2) + 2\left(\frac{e + 1}{2}\right) + (e - 3) + 2(e + 2) + 1 + 2(e + 2) + 1,
\]

\[
S^3(y_3) = 2\left(\frac{a}{2}\right) + (a - 4) + 2\left(\frac{b}{2}\right) + (b - 4) + 2\left(\frac{e}{2}\right) + (e - 1) + 2(e + 1) + 1 + 2(e + 1) + 1,
\]

\[
S^3(y_6) = 2\left(\frac{a + e}{2}\right) - 2\left(\frac{e + 2}{2}\right) + (a - 2) + 2\left(\frac{b + e}{2}\right) - 2\left(\frac{e + 2}{2}\right) + (b - 2) + 2\left(\frac{e}{2}\right) + (e - 1) + 2 + 1 + 2 + 1,
\]

\[
M^3 = \left(13 + 13 + (8e + 14)\right) + \left(13 + (8e + 14)\right) + (8e + 6),
\]

\[
D = 4 \cdot 3 \left(\frac{3}{3}\right) = 12.
\]

By (5), expanding the terms we get

\[
2P = 5(a^2 + b^2 + e^2) - 6ab - 13(a + b) + 47e + 148.
\]

Since \(4(a - b)^2 = 4a^2 + 4b^2 - 8ab \geq 0\) and \((a + b - 7)^2 = a^2 + b^2 + 2ab - 14(a + b) + 49 \geq 0\), we get

\[
2P \geq a^2 + b^2 + 5e^2 + 2ab - 13(a + b) + 47e + 148
\]

\[
\geq 5e^2 + (a + b) + 47e + 99 > 0.
\]

Thus, the equation \(P = 0\) has no solution in this case.
Case 5. $a \geq 2, b = c = d = 1, e \geq 1$.

The vertices $x_2 = y_2, x_3 = y_3$ and $x_4 = y_4$ have degree 2, so we have

$$S^1(x_i) = -a - \left(\frac{a + e + 2}{2}\right) - (a + e + 1),$$

$$M^1 = 0,$$

$$S^3(y_1) = 2\left(\frac{a - 1}{2}\right) + (a - 2) + 2 + 2\left(\frac{e + 1}{2}\right) + (e - 3) + 2(e + 2) + 1 + 2(e + 2) + 1,$$

$$S^3(y_5) = 2\left(\frac{a - 4}{2}\right) + (a - 4) + 2 + 2\left(\frac{e}{2}\right) + (e - 1) + 2(e + 1) + 1 + 2(e + 1) + 1,$$

$$S^3(y_6) = 2\left(\frac{a + e}{2}\right) - 2\left(\frac{e + 2}{2}\right) + (a - 2) + 2(e + 1) + 1 + 2\left(\frac{e}{2}\right) + (e - 1) + 2 + 1 + 2 + 1,$$

$$M^3 = \left(13 + (8e + 14)\right) + (8e + 6),$$

$$D = 3 \cdot 3 \cdot 3 = 9.$$

By (5), expanding the terms we get

$$P = 2a^2 + 2e^2 - 10a + 17e + 48.$$

Since $(a - 5)^2 = a^2 - 10a + 25 \geq 0$, we get

$$P \geq a^2 + 2e^2 + 17e + 23 > 0.$$

Thus, the equation $P = 0$ has no solution in this case.

Case 6. $a, b, c, d \geq 2, e = 0$.

In this case, and also in the next four, we have $y_5 = y_6$ and the degree of y_5 is 4 (see Fig. 3). This does not affect $S^1(x_i),\ M^1$ and $S^3(y_j)$, where $1 \leq i, j \leq 4$. Hence, analogously as above we get

$$S^1(x_1) = -\left(\frac{a + b - 1}{2}\right) - \left(\frac{a + c}{2}\right) + \left(\frac{a}{2}\right) - \left(\frac{a + d}{2}\right) + \left(\frac{a + 1}{2}\right),$$

$$S^1(x_2) = -\left(\frac{a + b - 1}{2}\right) - \left(\frac{b + c}{2}\right) + \left(\frac{b}{2}\right) - \left(\frac{b + d}{2}\right) + \left(\frac{b + 1}{2}\right),$$

$$S^1(x_3) = -\left(\frac{a + c}{2}\right) - \left(\frac{b + c}{2}\right) + \left(\frac{c + 1}{2}\right) - \left(\frac{c + d - 1}{2}\right) + \left(\frac{c}{2}\right),$$

$$S^1(x_4) = -\left(\frac{a + d}{2}\right) - \left(\frac{b + d}{2}\right) + \left(\frac{d + 1}{2}\right) - \left(\frac{c + d - 1}{2}\right) + \left(\frac{d}{2}\right).$$

$$M^1 = -(a + b - 1) - (a + c) - (a + d) - (b + c) - (b + d) - (c + d - 1),$$

$$S^3(y_1) = 2\left(\frac{a - 1}{2}\right) + (a - 2) + 2\left(\frac{b}{2}\right) + (b - 4) + 2\left(\frac{c + 1}{2}\right) + (c - 8) + 2\left(\frac{d + 1}{2}\right) + (d - 8),$$

$$S^3(y_2) = 2\left(\frac{a}{2}\right) + (a - 4) + 2\left(\frac{b - 1}{2}\right) + (b - 2) + 2\left(\frac{c + 1}{2}\right) + (c - 8) + 2\left(\frac{d + 1}{2}\right) + (d - 8),$$

$$S^3(y_3) = 2\left(\frac{a + 1}{2}\right) + (a - 8) + 2\left(\frac{b + 1}{2}\right) + (b - 8) + 2\left(\frac{c - 1}{2}\right) + (c - 2) + 2\left(\frac{d}{2}\right) + (d - 4),$$

$$S^3(y_4) = 2\left(\frac{a + 1}{2}\right) + (a - 8) + 2\left(\frac{b + 1}{2}\right) + (b - 8) + 2\left(\frac{c}{2}\right) + (c - 4) + 2\left(\frac{d - 1}{2}\right) + (d - 2),$$

where we simplified expressions as $2\left(\frac{a + 0 + 1}{2}\right) - 2\left(\frac{a + 0}{2}\right) - (a - 2)$ to $2\left(\frac{a + 1}{2}\right) + (a - 8)$.

Now we discuss the terms containing $h(u, y_5)$. In $S^3(y_5)$ we sum $h(u, y_5)$, where deg$(u) = 2$ and deg$(y_5) = 4$. Hence $\frac{d}{2} \left(\frac{\beta_3(u, y_5)}{2}\right) - 1 = 5$. Since $\beta_3(u, y_5) = 3, \beta_1(u, y_5) = 3$ and $\beta_2(u, y_5) = 0$, we have $h(u, y_5) = 5d(u, y_1) + 3$. Thus, the sum of $h(u, y_5)$ for interior vertices u of $y_1 - x_1$ path is $5(2 + 3 + \cdots + (a - 1)) + 3(a - 2) = 5\left(\frac{a}{2}\right) - 5 + 3(a - 2)$ (see Fig. 3).

In this way we get

$$S^3(y_5) = 5\left(\frac{a}{2}\right) - 5 + 3(a - 2) + 5\left(\frac{b}{2}\right) - 5 + 3(b - 2) + 5\left(\frac{c}{2}\right) - 5 + 3(c - 2) + 5\left(\frac{d}{2}\right) - 5 + 3(d - 2).$$
Now consider \(h(y_1, y_3), \ 1 \leq i \leq 4 \). Here \(\left(\frac{d_i}{2} \right) \left(\frac{d_{n-i}}{2} \right) - 1 = 17 \) and \(\beta_0(y_1, y_3) = 2 \cdot 3 = 6 \). Since \(y_1 \) and \(y_3 \) always lie in a common triangle, we have \(\beta_1(y_1, y_3) = 11 \) and \(\beta_2(y_1, y_3) = 1 \) (see Fig. 3). Thus, \(h(y_1, y_3) = 17 \cdot 1 + 11 + 2 \cdot 1 = 30 \). As regards \(h(y_i, y_j) \), where \(1 \leq i < j \leq 4 \), analogously as above we get \(h(y_1, y_2) = 13 \) and \(h(y_1, y_3) = 8e + 22 = 22 \). Hence

\[
M^3 = (13 + 22 + 22 + 30) + (22 + 22 + 30) + (13 + 30) + 30.
\]

Finally,

\[
D = \sum_{u} \left[3 \left(\frac{d_u}{3} \right) + 6 \left(\frac{d_u}{4} \right) \right] = 4 \left[3 \left(\frac{3}{3} \right) + 3 \left(\frac{4}{3} \right) + 6 \left(\frac{4}{4} \right) \right] = 12 + 18.
\]

By (5), expanding the terms we get

\[
P = 4(a^2 + b^2 + c^2 + d^2) - 3(ab + ac + ad + bc + bd + cd) + 3(a + b + c + d) + 137
\]

\[
= 4(a + b + c + d)^2 - 11(ab + ac + ad + bc + bd + cd) + 3(a + b + c + d) + 137.
\]

Substitute \(x = (a + b + c + d) \) and consider the equation \(P = 0 \) over \(\mathbb{Z}_{11} \). We get

\[
4x^2 + 3x + 5 = 0,
\]

which has no solution in \(\mathbb{Z}_{11} \). Consequently, \(P = 0 \) has no integer solution and \(W(L^3(H_{a,b,c,d,0})) - W(H_{a,b,c,d,0}) \neq 0 \) in this case.

Case 7. \(a, b, c \geq 2, d = 1, e = 0 \).

In this case the vertex \(x_4 = y_4 \) has degree 2, so we do not need to find \(S^1(x_4) \) and \(S^3(x_4) \). Analogously as in the previous case we have

\[
S^1(x_1) = -\left(\frac{a + b - 1}{2} \right) - \left(\frac{a + c}{2} \right) + \left(\frac{a}{2} \right) - (a + 1),
\]

\[
S^1(x_2) = -\left(\frac{a + b - 1}{2} \right) - \left(\frac{b + c}{2} \right) + \left(\frac{b}{2} \right) - (b + 1),
\]

\[
S^1(x_3) = -\left(\frac{a + c}{2} \right) - \left(\frac{b + c}{2} \right) + \left(\frac{c + 1}{2} \right) - c,
\]

\[
M^1 = -(a + b - 1) - (a + c) - (b + c),
\]

\[
S^3(y_1) = 2 \left(\frac{a - 1}{2} \right) + (a - 2) + 2 \left(\frac{b}{2} \right) + (b - 4) + 2 \left(\frac{c + 1}{2} \right) + (c - 8) + 4 + 1,
\]

\[
S^3(y_2) = 2 \left(\frac{a}{2} \right) + (a - 4) + 2 \left(\frac{b - 1}{2} \right) + (b - 2) + 2 \left(\frac{c + 1}{2} \right) + (c - 8) + 4 + 1,
\]

\[
S^3(y_3) = 2 \left(\frac{a + 1}{2} \right) + (a - 8) + 2 \left(\frac{b + 1}{2} \right) + (b - 8) + 2 \left(\frac{c - 1}{2} \right) + (c - 2) + 2 + 1,
\]

\[
S^3(y_3) = 5 \left(\frac{a}{2} \right) - 5 + 3(a - 2) + 5 \left(\frac{b}{2} \right) - 5 + 3(b - 2) + 5 \left(\frac{c}{2} \right) - 5 + 3(c - 2) + 5 + 3.
\]

\[
M^3 = (13 + 22 + 30) + (22 + 30) + 30,
\]

\[
D = 3 \left(\frac{3}{3} \right) + 3 \left(\frac{4}{3} \right) + 6 \left(\frac{4}{4} \right) = 9 + 18.
\]

By (5), expanding the terms we get

\[
2P = 7(a^2 + b^2 + c^2) - 6(ab + ac + bc) - 3(a + b) - c + 232.
\]

Since \(3(a - b)^2 + 3(b - c)^2 + 3(c - a)^2 = 6(a^2 + b^2 + c^2) - 6(ab + ac + bc) \geq 0 \) and also \((a - 2)^2 + (b - 2)^2 + (c - 1)^2 = (a^2 + b^2 + c^2) - 4(a + b) - 2c + 9 \geq 0 \), we get

\[
2P \geq (a^2 + b^2 + c^2) - 3(a + b) - c + 232
\]

\[
\geq a + b + c + 223 > 0.
\]

Thus, the equation \(P = 0 \) has no solution in this case.
Case 8. \(a, c \geq 2, b = d = 1, e = 0\).
The vertices \(x_2 = y_2\) and \(x_4 = y_4\) have degree 2, so we have

\[
S^1(x_1) = -a - \left(\frac{a + c}{2}\right) - (a + 1),
\]
\[
S^1(x_3) = -\left(\frac{a + c}{2}\right) - (c + 1) - c,
\]
\[
M^1 = -(a + c),
\]
\[
S^3(y_1) = 2 \left(\frac{a - 1}{2}\right) + (a - 2) + 2 + 1 + 2 \left(\frac{c + 1}{2}\right) + (c - 8) + 4 + 1,
\]
\[
S^3(y_3) = 2 \left(\frac{a + 1}{2}\right) + (a - 8) + 4 + 1 + 2 \left(\frac{c - 1}{2}\right) + (c - 2) + 2 + 1,
\]
\[
S^3(y_5) = 5 \left(\frac{a}{2}\right) - 5 + 3(a - 2) + 5 + 3 + 5 \left(\frac{c}{2}\right) - 5 + 3(c - 2) + 5 + 3,
\]
\[
M^3 = (22 + 30) + 30.
\]
\[
D = 2 \left(3 \left(\frac{3}{3}\right)\right) + \left(3 \left(\frac{4}{3}\right) + 6 \left(\frac{4}{4}\right)\right) = 6 + 18.
\]

By (5), expanding the terms we get

\[
P = 3(a^2 + c^2) - 3ac - 5(a + c) + 92.
\]

Since \(2(a - c)^2 = 2(a^2 + c^2) - 4ac \geq 0\) and \((a - 3)^2 + (c - 3)^2 = (a^2 + c^2) - 6(a + c) + 18 \geq 0\), we get

\[
P \geq (a^2 + c^2) + ac - 5(a + c) + 92
\]
\[
\geq ac + (a + c) + 74 > 0.
\]

Thus, the equation \(P = 0\) has no solution in this case.

Case 9. \(a, b \geq 2, c = d = 1, e = 0\).
The vertices \(x_3 = y_3\) and \(x_4 = y_4\) have degree 2, so we have

\[
S^1(x_1) = -\left(\frac{a + b - 1}{2}\right) - (a + 1) - (a + 1) - a,
\]
\[
S^1(x_2) = -\left(\frac{a + b - 1}{2}\right) - (b + 1) - (b + 1) - b,
\]
\[
M^1 = -(a + b - 1),
\]
\[
S^3(y_1) = 2 \left(\frac{a - 1}{2}\right) + (a - 2) + 2 \left(\frac{b}{2}\right) + (b - 4) + 4 + 1 + 4 + 1,
\]
\[
S^3(y_2) = 2 \left(\frac{a}{2}\right) + (a - 4) + 2 \left(\frac{b - 1}{2}\right) + (b - 2) + 4 + 1 + 4 + 1,
\]
\[
S^3(y_5) = 5 \left(\frac{a}{2}\right) - 5 + 3(a - 2) + 5 \left(\frac{b}{2}\right) - 5 + 3(b - 2) + 5 + 3 + 5 + 3,
\]
\[
M^3 = (13 + 30) + 30.
\]
\[
D = 2 \left(3 \left(\frac{3}{3}\right)\right) + \left(3 \left(\frac{4}{3}\right) + 6 \left(\frac{4}{4}\right)\right) = 6 + 18.
\]

By (5), expanding the terms we get

\[
P = 3(a^2 + b^2) - 3ab - 6(a + b) + 92.
\]

Since \(2(a - b)^2 = 2(a^2 + b^2) - 4ab \geq 0\) and \((a - 3)^2 + (b - 3)^2 = (a^2 + b^2) - 6(a + b) + 18 \geq 0\), we get

\[
P \geq (a^2 + b^2) + ab - 6(a + b) + 92
\]
\[
\geq ab + 74 > 0.
\]

Thus, the equation \(P = 0\) has no solution in this case.
Case 10. \(a \geq 2, \ b = c = d = 1, \ e = 0 \).
The vertices \(x_2 = y_2, x_3 = y_3 \) and \(x_4 = y_4 \) have degree 2, so we have

\[
S^1(x_1) = -\binom{a+1}{2} - (a + 1) - (a + 1) - a,
\]

\[
M^1 = 0,
\]

\[
S^3(y_1) = 2\binom{a-1}{2} + (a - 2) + 2 + 4 + 1 + 4 + 1,
\]

\[
S^4(y_2) = 5\binom{a}{2} - 5 + 3(a - 2) + 5 + 3 + 5 + 3 + 5 + 3,
\]

\[
M^3 = 30,
\]

\[
D = 3\binom{3}{3} + 3\binom{4}{3} + 6\binom{4}{4} = 3 + 18.
\]

By (5), expanding the terms we get

\[
2P = 5a^2 - 19a + 130.
\]

Since \(5(a - 2)^2 = 5a^2 - 20a + 20 \), we get

\[
2P \geq a + 110.
\]

Thus, the equation \(P = 0 \) has no solution in this case.

Case 11. \(a = b = c = d = 1, \ e \geq 0 \).

In [16, Theorem 1.5] we proved that \(W(L^i(T)) > W(T) \) for every \(i \geq 3 \) and for every tree \(T \) which is different from a path and the claw \(K_{1,3} \) and in which no leaf is adjacent to a vertex of degree 2. By this statement, for \(H = H_{1,1,1,1,\ldots} \) we have \(W(L^3(H)) > W(H) \), which completes the proof. \(\square \)

Acknowledgments

The first author acknowledges partial support by Slovak research grant VEGA 1/0065/13. The first two authors acknowledge partial support by Slovak-Slovenian grant. The first and fourth authors acknowledge partial support by Slovenian research agency ARRS, program no. P1-00383, project no. L1-4292, and Creative Core FISNM 3330-13-500033.

References