On the sum of all distances in bipartite graphs

Shuchao Li *, Yibing Song

Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China

A R T I C L E I N F O

Article history:
Received 15 June 2013
Received in revised form 21 November 2013
Accepted 16 December 2013
Available online 7 January 2014

Keywords:
Bipartite graph
Transmission
Matching number
Diameter
Vertex connectivity
Edge connectivity

A B S T R A C T

The transmission of a connected graph G is the sum of all distances between all pairs of vertices in G, it is also called the Wiener index of G. In this paper, sharp bounds on the transmission are determined for several classes of connected bipartite graphs. For example, in the class of all connected n-vertex bipartite graphs with a given matching number q, the minimum transmission is realized only by the graph $K_{q,n-q}$; in the class of all connected n-vertex bipartite graphs of diameter d, the extremal graphs with the minimal transmission are characterized. Moreover, all the extremal graphs having the minimal transmission in the class of all connected n-vertex bipartite graphs with a given vertex connectivity (resp. edge-connectivity) are also identified.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider connected, simple and undirected graphs. Let $G = (V_G, E_G)$ be a graph with $u, v \in V_G$. Then $G - v, G - uv$ denote the graph obtained from G by deleting vertex $v \in V_G$, or edge $uv \in E_G$, respectively (this notation is naturally extended if more than one vertex or edge is deleted). Similarly, $G + uv$ is obtained from G by adding an edge $uv \notin E_G$. For $v \in V_G$, let $N_G(v)$ (or $N(v)$ for short) denote the set of all the adjacent vertices of v in G and $d_G(v) = |N_G(v)|$, the degree of v in G. In particular, let $\Delta(G) = \max\{d_G(x) | x \in V_G\}$ and $\delta(G) = \min\{d_G(x) | x \in V_G\}$. For convenience, let $N_G[u] = N_G(u) \cup \{u\}$. The distance $d_G(u, v)$ between vertices u and v in G is defined as the length of a shortest path between them. The diameter of G is the maximal distance between any two vertices of G. $D_G(u)$ denotes the sum of all distances from u in G.

Recall that G is called k-connected if $|G| > k$ and $G - X$ is connected for every set $X \subseteq V_G$ with $|X| < k$. The greatest integer k such that G is k-connected is the connectivity $\kappa(G)$ of G. Thus, $\kappa(G) = 0$ if and only if G is disconnected or K_1, and $\kappa(K_n) = n - 1$ for all $n \geq 1$.

Analogously, if $|G| > 1$ and $G - E'$ is connected for every set $E' \subseteq E_G$ of fewer than l edges, then G is called l-edge-connected. The greatest integer l such that G is l-connected is the edge-connectivity $\kappa'(G)$ of G. In particular, $\kappa'(G) = 0$ if G is disconnected.

A bipartite graph G is a simple graph, whose vertex set V_G can be partitioned into two disjoint subsets V_1 and V_2 such that every edge of G joins a vertex of V_1 with a vertex of V_2. A bipartite graph in which every two vertices from different partition classes are adjacent is called complete, which is denoted by $K_{m,n}$, where $m = |V_1|, n = |V_2|$.

* Financially supported by the National Natural Science Foundation of China (Grant Nos. 11271149, 11371062), the Program for New Century Excellent Talents in University (Grant No. NCET-13-0817) and the Special Fund for Basic Scientific Research of Central Colleges (Grant No. CCNU13F020).

* Corresponding author. Tel.: +86 2767867450; fax: +86 2767867452.

E-mail addresses: lscmath@mail.ccnu.edu.cn, li@mail.ccnu.edu.cn (S.C. Li), songyibing88@126.com (Y.B. Song).

0166-218X/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dam.2013.12.010
A vertex (edge) independent set of a graph G is a set of vertices (edges) such that any two distinct vertices (edges) of the set are not adjacent (incident on a common vertex). The vertex (edge) independence number of G, denoted by $\alpha(G)$ ($\alpha'(G)$), is the maximum of the cardinalities of all vertex (edge) independent sets. A vertex (edge) cover of a graph G is a set of vertices (edges) such that each edge (vertex) of G is incident with at least one vertex (edge) of the set. The vertex (edge) cover number of G, denoted by $\beta(G)$ ($\beta'(G)$), is the minimum of the cardinalities of all vertex (edge) covers. For a connected graph G of order n, its matching number $\alpha'(G)$ satisfies $1 \leq \alpha'(G) \leq \lfloor \frac{n}{2} \rfloor$. When we consider an edge cover of a graph, we always assume that the graph contains no isolated vertex. It is known that for a graph G of order n, $\alpha(G) + \beta(G) = n$; and if in addition G has no isolated vertex, then $\alpha'(G) + \beta'(G) = n$. For a bipartite graph G, one has $\alpha'(G) = \beta(G)$, and $\alpha(G) = \beta'(G)$.

Let \mathcal{A}^d_n be the class of all bipartite graphs of order n with matching number k; \mathcal{R}^d_n be the class of all bipartite graphs of order n with diameter d; \mathcal{C}^d_n (resp. \mathcal{R}^d_n) be the class of all n-vertex bipartite graphs with connectivity s (resp. edge-connectivity t).

The transmission of G is the sum of distances between all pairs of vertices of G, which is denoted by

$$W(G) = \sum_{u,v \in V_G} d_G(u,v) = \frac{1}{2} \sum_{v \in V_G} \sum_{w \in V_G} d_G(v,w).$$

This quantity was introduced by Wiener in [11] and has been extensively studied in the monograph [1] and was named ‘gross status’ [13], ‘total status’ [1], ‘graph distance’ [8] and ‘transmission’ [19, 20]. In the chemical literature $W(G)$ is nowadays known exclusively under the name ‘Wiener index’. For a mathematical work mentioning the Wiener index see [17]. It is related to several properties of chemical molecules; see [12]. For this reason Wiener index is widely studied by chemists, although it has interesting applications also in computer networks (see [7]). Recently, several special issues of journals were devoted to (mathematical properties of) Wiener index [10, 9, 5]. For surveys and some up-to-date papers related to Wiener index of trees and line graphs, see [4, 17, 15, 16, 18, 22] and [2, 3, 6, 14, 21], respectively.

In this paper we study the quantity W in the case of n-vertex bipartite graphs, which is an important class of graphs in graph theory. Based on the structure of bipartite graphs, sharp bounds on W among \mathcal{A}^d_n (resp. \mathcal{R}^d_n, \mathcal{C}^d_n, \mathcal{R}^d_n) are determined. The corresponding extremal graphs are identified, respectively.

Further on we need the following lemma, which is the direct consequence of the definition of W.

Lemma 1. Let G be a connected graph of order n and not isomorphic to K_n. Then for each edge $e \in \overline{G}$, $W(G) > W(G + e)$.

2. The graph with minimum transmission among \mathcal{A}^d_n

In this section, we determine the sharp lower bound on the transmission of all n-vertex bipartite graphs with matching number q. The unique corresponding extremal graph is identified.

Theorem 2.1. Let G be in \mathcal{A}^d_n. Then $W(G) \geq n^2 + q^2 - qn - n$ with equality if and only if $G \cong K_{q,n-q}$.

Proof. It is routine to check that

$$W(K_{q,n-q}) = n^2 + q^2 - qn - n.$$

So in what follows, we show that $K_{q,n-q}$ is the unique graph in \mathcal{A}^d_n with the minimum transmission.

Choose G in \mathcal{A}^d_n such that its transmission is as small as possible. If $q = \lfloor \frac{n}{2} \rfloor$, by **Lemma 1.1** the extremal graph is just $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$, as desired. So in what follows, we consider $q < \lfloor \frac{n}{2} \rfloor$.

Let (U, W) be the bipartition of the vertex set of G such that $|W| \geq |U| \geq q$, and let M be a maximal matching of G. By **Lemma 1.1**, the sum of all distances of a graph decreases with addition of edges, so if $|U| = q$, then the extremal graph is $G = K_{q,n-q}$. So we assume that $|U| > q$ in what follows.

Let U_M, W_M be the sets of vertices of U, W which are incident to the edges of M, respectively. Therefore, $|U_M| = |W_M| = q$. Note that G contains no edges between the vertices of $U \setminus U_M$ and the vertices of $W \setminus W_M$, otherwise any such edge may be united with M to produce a matching of cardinality greater than that of M, violating the maximality of M.

Adding all possible edges between the vertices of U_M and W_M, U_M and $W \setminus W_M$, $U \setminus U_M$ and W_M, we get a graph G' with $W(G') < W(G)$. Note that the matching number of G' is at least $k + 1$. Hence, $G' \notin \mathcal{A}^d_n$ and $G \cong G'$. Based on G', we construct a new graph, say G'', which is obtained from G' by deleting all the edges between $U \setminus U_M$ and W_M, and adding all the edges between $U \setminus U_M$ and U_M, G'' is depicted in **Fig. 1**. It is routine to check that $G'' \cong K_{n-k}$.

Let $|U \setminus U_M| = n_1$, $|W \setminus W_M| = n_2$. Suppose $n_2 \geq n_1$. We partition $V_G = V_G'$ into $U_M \cup W_M \cup (U \setminus U_M) \cup (W \setminus W_M)$ as shown in **Fig. 1**. By direct calculation, for all $x \in W \setminus W_M$ (resp. $y \in U_M$, $z \in W_M$, $w \in U \setminus U_M$), one has

$$D_G(x) = 3q + 3n_1 + 2n_2 - 2, \quad D_G'(x) = 3q + 2n_1 + 2n_2 - 2, \quad D_G(y) = 3q + 2n_1 + n_2 - 2, \quad D_G'(y) = 3q + 2n_1 + n_2 - 2,$$

$$D_G(z) = 3q + 2n_2 + 2n_2 - 2, \quad D_G'(z) = 3q + 2n_2 + n_1 - 2, \quad D_G'(w) = 3q + 2n_2 + n_1 - 2.$$
This gives
\[
W(G') - W(G'') = \frac{1}{2} \left(\sum_{x \in V'} D_G(x) - \sum_{x \in V''} D_G(x) \right)
= \frac{1}{2} \left(\sum_{x \in W, w_m} D_G(x) - \sum_{x \in W, w_m} D_G(x) + \sum_{y \in U} D_G(y) - \sum_{y \in U} D_G(y) \right)
+ \frac{1}{2} \left(\sum_{z \in W, w_m} D_G(z) - \sum_{z \in W, w_m} D_G(z) \right)
\]
\[
\frac{1}{2} \left[n_z (3q + 3n_1 + 2n_2 - 2) - n_z (3q + 2n_1 + 2n_2 - 2) + qn_1 - qn_1
+ n_l (3q + 3n_2 + 2n_1 - 2) - n_l (3q + 2n_2 + 2n_1 - 2) \right]
\]
\[
= n_1 n_2 > 0.
\]
This completes the proof. \(\square\)

According to the relationship among the parameters such as \(\alpha(G), \alpha'(G), \beta(G), \beta'(G)\) of a connected bipartite graph \(G\), the following is a direct consequence of Theorem 2.1.

Corollary 2.2. The graph \(K_{n,n-\sigma}\) is the unique graph that minimizes the transmission among all connected bipartite graphs of order \(n\) with vertex cover number or vertex independence number or edge cover number \(\sigma\).

3. The graph with minimum transmission among \(\mathcal{B}_n^d\)

Let \(G\) be a graph in \(\mathcal{B}_n^d\). Clearly there exists a partition \(V_0, V_1, \ldots, V_d\) of \(V_G\) such that \(|V_0| = 1\) and \(d(u, v) = i\) for each vertex \(v \in V_i\) and \(u \in V_0\) \((i = 0, 1, \ldots, d)\). We call \(V_i\) a block of \(V_G\). Two blocks \(V_i, V_j\) of \(V_G\) are adjacent if \(|i - j| = 1\). For convenience, let \(|V_i| = i\) throughout this section.

Lemma 3.1 ([18]). For any graph \(G \in \mathcal{B}_n^d\) with the above partition of \(V_G\), \(G[V_i]\) induces an empty graph (i.e. containing no edge) for each \(i \in \{0, 1, \ldots, d\}\).

Given a complete bipartite graph \(K_{\frac{n-d+2}{2}, \frac{n-d+2}{2}}\) with bipartition \((X, Y)\) satisfying \(|Y| = \lceil \frac{n-d+2}{2} \rceil\) and \(|X| = \lfloor \frac{n-d+2}{2} \rfloor \geq 2\), choose a vertex \(x\) (resp. \(y\)) in \(X\) (resp. \(Y\)) and let
\[
G' = K_{\frac{n-d+2}{2}, \frac{n-d+2}{2}} - xy,
\]
where \(G'\) is depicted in Fig. 2. Let \(G^*\) be the graph obtained from \(G'\) by attaching paths \(P_{\frac{n-d+2}{2}}\) and \(P_{\frac{n-d+2}{2}}\) at \(x\) and \(y\), respectively. It is routine to check that \(G^* \in \mathcal{B}_n^d\) for odd \(d\).

Given a complete bipartite graph \(K_{p,q}\) with bipartition \((X, Y)\) satisfying \(|X| = p \geq 3\), \(|Y| = q \geq 2\), and \(p + q = n - d + 4\), choose two different vertices, say \(x, y\) in \(X\) and let
\[
G'' = K_{p,q} - \{xw : w \in V' \subseteq Y\} - \{yw' : w' \in Y \setminus V'\},
\]
where \(G''\) is depicted in Fig. 2. Let \(\hat{G}[p, q]\) be the graph obtained from \(G''\) by attaching paths \(P_{\frac{p+q}{2}}\) and \(P_{\frac{p+q}{2}}\) at \(x\) and \(y\), respectively. It is routine to check that \(\hat{G}[p, q] \in \mathcal{B}_n^d\) for even \(d\). Set:
\[
\mathcal{B} = \{\hat{G}[p, q] : p + q = n - d + 4, |(p-2) - q| \leq 1\}.
\]
Theorem 3.2. Let G be in \mathcal{G}_d with the minimum transmission.

(i) If $d = 2$, then $G \cong K_{n, \frac{n}{2}}$.

(ii) If $d \geq 3$, then $G \cong G^*$ for odd d and $G \in \mathcal{B}$ for even d, where G^* and \mathcal{B} are defined as above.

Proof. Choose $G \in \mathcal{G}_d$ with bipartition (X, Y) such that its transmission is as small as possible.

(i) If $d = 2$, then by Lemma 1.1, $G \cong K_{n-1, d}$, where $t = n - t \geq 2$. Let $|X| = n - t$, $|Y| = t$. Then it is routine to check that, for all x (resp. y) in X (resp. Y), one has

$$D_G(x) = 2n - t - 2, \quad D_G(y) = n + t - 2.$$

This gives

$$W(K_{n-1, t}) = \frac{1}{2} \left(\sum_{x \in X} D_G(x) + \sum_{y \in Y} D_G(y) \right) = \frac{1}{2} (n - t)(2n - t - 2) + \frac{1}{2} t(n + t - 2) = t^2 - nt + n^2 - n.$$

If n is odd, then $W(K_{n-1, t}) \geq \frac{3}{2} n^2 - \frac{3}{2} n + \frac{1}{2}$ with equality if and only if $t = \frac{n-1}{2}$, or $t = \frac{n+1}{2}$, i.e., $G \cong K_{\frac{n+1}{2}, \frac{n-1}{2}}$; and if n is even, then $W(K_{n-1, t}) \geq \frac{3}{2} n^2 - \frac{1}{2} n$ with equality if and only if $t = \frac{n}{2}$, i.e., $G \cong K_{\frac{n}{2}, \frac{n}{2}}$, as desired.

(ii) First we show the following facts.

Fact 1. $G[V_{t-1} \cup V_t]$ induces a complete bipartite subgraph for each $i \in \{1, 2, \ldots, d\}$, and $|V_d| = 1$ for $d \geq 3$.

Proof of Fact 1. The first part follows directly from Lemmas 1.1 and 3.1. So in what follows, we prove the second part.

Let $d \geq 3$, $x \in V_t$ and $w \in V_{d-3}$. If $|V_d| \geq 2$, then $G + zw \in \mathcal{G}_d$ and $V_0 \cup V_1 \cup \cdots \cup V_{d-3} \cup (V_{d-2} \cup \{w\}) \cup V_{d-1} \cup (V_d \setminus \{w\})$ is a partition of V_{d+2w}. By Lemma 1.1 $W(G + zw) < W(G)$, a contradiction.

This completes the proof of Fact 1. \Box

Fact 2. Consider the vertex partition $V_G = V_0 \cup V_1 \cup \cdots \cup V_d$ of G.

(i) If d is odd, then

$$|V_0| = |V_1| = \cdots = |V_{\frac{d+1}{2}-1}| = |V_{\frac{d+1}{2}+2}| = \cdots = |V_{d-1}| = |V_d| = 1, \quad |V_{\frac{d+1}{2}}| - |V_{\frac{d+1}{2}+1}| \leq 1. \quad (3.1)$$

(ii) If d is even, then

$$|V_0| = |V_1| = \cdots = |V_{\frac{d}{2}-2}| = |V_{\frac{d}{2}+2}| = \cdots = |V_{d-1}| = |V_d| = 1, \quad |V_{\frac{d}{2}}| - \left(|V_{\frac{d}{2}-1}| + |V_{\frac{d}{2}+1}| \right) \leq 1. \quad (3.2)$$

Proof of Fact 2. (i) Note that $|V_0| = |V_d| = 1$, here we only show that $|V_t| = 1$ holds. Similarly, we can also show $|V_2| = \cdots = |V_{\frac{d+1}{2}-1}| = |V_{\frac{d+1}{2}+2}| = \cdots = |V_{d-1}| = 1$, we omit the procedure here.

In fact, if $d = 3$, our result is trivial. So we consider that $d \geq 5$. If $|V_t| \geq 2$, then choose $u \in V_t$ and let $G' = G - u_0 v + \{ux : x \in V_4\}$. In fact, the vertex partition of G' is $V_0 \cup (V_1 \setminus \{u\}) \cup V_2 \cup (V_3 \cup \{u\}) \cup V_4 \cup \cdots \cup V_d$; in view of Fact 1 and the choice of G, any two of adjacent blocks of V_{d} induce a complete bipartite subgraph and $|V_d| = 1$ for $d \geq 5$.

Note that $\sum_{i=4}^d l_i \geq d - 3 \geq d - \left\lceil \frac{d}{2} \right\rceil = \left\lceil \frac{d}{2} \right\rceil > l_0 = 1$. $D_G(u) = D_G(u) + 2 \sum_{i=4}^d l_i$ and $D_G(v) = D_G(v) - 2$ for all $v \in V_0$; $D_G(v) = D_G(v)$ for all $v \in (V_1 \setminus \{u\}) \cup V_2 \cup V_3$; $D_G(v) = D_G(v) + 2$ for all $v \in V_4 \cup V_5 \cup \cdots \cup V_d$. This gives

$$W(G) - W(G') = \frac{1}{2} \left(\sum_{v \in G} D_G(v) - \sum_{v \in G'} D_G(v) \right)$$

$$= \frac{1}{2} \left(\sum_{v \in V_0} (D_G(v) - D_G(v)) + \sum_{j=4}^d \sum_{v \in V_j} (D_G(v) - D_G(v)) + D_G(u) - D_G(u) \right)$$

$$= 2 \left(\sum_{j=4}^d l_j - 1 \right) > 0,$$

i.e. $W(G') < W(G)$, a contradiction to the choice of G. Hence, $|V_t| = 1$.

Fig. 2. Graphs G' and G''.

Next we show that if \(d \) is odd, then \(|V\frac{d}{2}+1| - |V\frac{d}{2}| \leq 1\). Without loss of generality, we assume that \(|V\frac{d}{2}+1| \geq |V\frac{d}{2}|\). Then it suffices to show that \(|V\frac{d}{2}+1| - |V\frac{d}{2}| \leq 1\). If this is not true, then \(|V\frac{d}{2}+1| - |V\frac{d}{2}| \geq 2\). Choose \(w \in V\frac{d}{2}+1 \), let

\[G' = G - \{ wx : x \in V\frac{d}{2} \cup V\frac{d}{2}+1 \} + \{ wy : y \in V\frac{d}{2} \cup V\frac{d}{2}+1 \} . \]

Then the vertex partition of \(G' \) is \(V_0 \cup V_1 \cup \cdots \cup V_{\frac{d}{2}} \cup (V_{\frac{d}{2}+1} \setminus \{ w \}) \cup (V_{\frac{d}{2}+1} \cup \{ w \}) \cup V_{\frac{d}{2}+2} \cup \cdots \cup V_d \) and each of the two adjacent blocks of \(V' \) induces a complete bipartite graph. By direct calculation, we have

\[W(G') - W(G) = \left[\left| V\frac{d}{2} \right| - 1 \right] + 2 \left| V\frac{d}{2}+1 \right| - \left[\left| V\frac{d}{2} \right| - 1 \right] + \left| V\frac{d}{2}+1 \right| \]

\[= - \left| V\frac{d}{2} \right| - \left(\left| V\frac{d}{2}+1 \right| + 1 \right) \leq -1 < 0 , \]

a contradiction to the choice of \(G \).

(ii) By the same discussion as the proof of the first part of (i) as above, we can show that \(|V_0| = |V_1| = \cdots = |V_{\frac{d}{2}-1}| = |V_{\frac{d}{2}+1}| = \cdots = |V_{d-1}| = |V_d| = 1\), we omit the procedure here.

Now we show that if \(d \) is even, then \(|V\frac{d}{2}| - (|V\frac{d}{2}-1| + |V\frac{d}{2}+1|) \leq 1\). Without loss of generality, we assume that \(|V\frac{d}{2}| < |V\frac{d}{2}-1| + |V\frac{d}{2}+1|\). Then it suffices to show that \(|V\frac{d}{2}-1| + |V\frac{d}{2}+1| - |V\frac{d}{2}| \leq 1\). If this is not true, then \(|V\frac{d}{2}-1| + |V\frac{d}{2}+1| - |V\frac{d}{2}| \geq 2\).

It is routine to check that at least one of \(V\frac{d}{2}-1 \) and \(V\frac{d}{2}+1 \) contains at least two vertices. Hence, we assume without loss of generality that \(|V\frac{d}{2}-1| \geq 2\). Choose \(w \in V\frac{d}{2}-1 \) and let

\[G' = G - \{ wx : x \in V\frac{d}{2}-2 \cup V\frac{d}{2} \} + \{ wy : y \in V\frac{d}{2}-1 \cup V\frac{d}{2}+1 \} . \]

Then the vertex partition of \(G' \) is \(V_0 \cup V_1 \cup \cdots \cup (V\frac{d}{2}-1 \setminus \{ w \}) \cup (V\frac{d}{2}-1 \cup \{ w \}) \cup V\frac{d}{2}+1 \cup \cdots \cup V_d \) and each of the two adjacent blocks of \(V' \) induces a complete bipartite graph. By direct calculation, we have

\[W(G') - W(G) = \left[\left| V\frac{d}{2}+1 \right| + |V\frac{d}{2}-1| - 1 \right] + 2 \left| V\frac{d}{2} \right| - \left[\left| V\frac{d}{2}+1 \right| + |V\frac{d}{2}-1| - 1 \right] + \left| V\frac{d}{2} \right| \]

\[= - \left| V\frac{d}{2}+1 \right| + |V\frac{d}{2}-1| - \left(\left| V\frac{d}{2} \right| + 1 \right) \leq -1 < 0 , \]

a contradiction to the choice of \(G \).

This completes the proof of Fact 2. \(\Box \)

Now we come back to show the second part of Theorem 3.2. In view of Fact 2(i), if \(d \) is odd, note that \(|V\frac{d}{2}+1| + |V\frac{d}{2}+1| = n - d + 1\), together with \(|V\frac{d}{2}+1| - |V\frac{d}{2}+1| \leq 1\), we obtain that \(G \cong G' \), as desired.

In view of Fact 2(ii), if \(d \) is even, note that \(|V\frac{d}{2}| + |V\frac{d}{2}-1| + |V\frac{d}{2}+1| = n - d + 2\), together with \(|V\frac{d}{2}| - (|V\frac{d}{2}-1| + |V\frac{d}{2}+1|) \leq 1\), we obtain that \(G \in \mathcal{B} \). Furthermore, \(\mathcal{B} = \{ \hat{G}[p, q] : p + q = n - d + 4, p = \frac{n-d-6}{2} \} \) for even \(n \) and \(\mathcal{B} = \{ \hat{G}[p, q] : p + q = n - d + 4, p = \frac{n-d-2}{2} \} \) for odd \(n \).

This completes the proof. \(\Box \)

4. The graph with minimal transmission among \(\varphi_n^a \) (resp. \(\varphi_n^b \))

In this section, we determine sharp lower bounds on the sum of all distances of graphs among \(\varphi_n^a \) and \(\varphi_n^b \), respectively.

In \(K\alpha\beta \), we assume that \(p \geq q \) and by \(K_{0,0}, p \geq 1 \), we mean \(pK_1 \). We define two graphs \(O_n \cup_1 (K_{n_1,n_2} \cup K_{m_1,m_2}) \) and \(O_n \cup_2 (K_{n_1,n_2} \cup K_{m_1,m_2}) \), where \(\cup \) is the union of two graphs, \(O_n (s \geq 1) \) is an empty graph of order \(s \) and \(\cup_1 \) is a graph operation that joins all the vertices in \(O_n \) to the vertices belonging to the partitions of cardinality \(n_1 \) in \(K_{n_1,n_2} \) and \(m_1 \) in \(K_{m_1,m_2} \) respectively; whereas \(\cup_2 \) is a graph operation that joins all the vertices in \(O_n \) to the vertices belonging to the partitions of cardinality \(n_2 \) in \(K_{n_1,n_2} \) and \(m_2 \) in \(K_{m_1,m_2} \) respectively. Note that \(\cup_2 \) is defined only when \(n_2 \geq 1 \) and \(m_2 \geq 1 \).

Lemma 4.1. If \(s + q > p \) and \(p + s \geq 1 \), then \(W(O_n \cup_1 (K_1 \cup K_{p,q})) > W(O_n \cup_1 (K_1 \cup K_{p+1,q-1})) \).

Proof. Let us denote \(O_n \cup_1 (K_1 \cup K_{p,q}) \) by \(G \) and \(O_n \cup_1 (K_1 \cup K_{p+1,q-1}) \) by \(G' \). Here \(G \) and \(G' \) are depicted in Fig. 3. We partition \(V_G = V_C \cup C \cup A \cup B \cup [b_q] \), where \(C = \{ c_1, c_2, \ldots, c_s \} \), \(A = \{ a_1, a_2, \ldots, a_p \} \) and \(B = \{ b_1, b_2, \ldots, b_{q-1} \} \).

Note that:

\[D_C(a) = D_{C'}(a) - 1 \quad \text{for any } a \in A; \quad D_C(b) = D_{C'}(b) + 1 \quad \text{for any } b \in B; \]

\[D_C(c) = D_{C'}(c) + 1 \quad \text{for any } c \in C; \quad D_C(v) = D_{C'}(v) + 1; \quad D_C(b_q) = D_{C'}(b_q) + s + q - p. \]
Hence, this gives

\[
W(G) - W(G') = \frac{1}{2} \left(\sum_{v \in V_G} D_G(v) - \sum_{v \in V_{G'}} D_{G'}(v) \right)
\]

\[
= \frac{1}{2} \left(\sum_{a \in A} (D_G(a) - D_{G'}(a)) + \sum_{b \in B} (D_G(b) - D_{G'}(b)) + \sum_{c \in C} (D_G(c) - D_{G'}(c)) \right)
\]

\[
+ \frac{1}{2} (D_G(v) - D_{G'}(v) + D_G(u) - D_{G'}(u))
\]

\[
= \frac{1}{2} \left(-p + (q - 1) + s + 1 + s + q - p \right)
\]

\[
= s + q - p > 0.
\]

This completes the proof. \(\square\)

The following result is the direct consequence of the above lemma.

Corollary 4.2. If \(q \geq 1\), then \(W(O_q \cup (K_1 \cup K_{p,q})) \geq W(O_q \cup (K_1 \cup K_{p,q})).\) The equality holds only when \(p = q.\)

Lemma 4.3. If \(s + q + 2 < p\), then \(W(O_q \cup (K_1 \cup K_{p,q})) > W(O_q \cup (K_1 \cup K_{p-1,q+1})).\)

Proof. Let us denote \(O_q \cup (K_1 \cup K_{p,q})\) by \(G\) and \(O_q \cup (K_1 \cup K_{p-1,q+1})\) by \(G'.\) We partition \(V_G = V_{G'}\) into \(\{v\} \cup A \cup B \cup C \cup \{u\},\) where \(A = \{a_1, a_2, \ldots, a_{p-1}\},\) \(B = \{b_1, b_2, \ldots, b_q\}\) and \(C = \{c_1, c_2, \ldots, c_l\}\) (see Fig. 4).

Note that

\[
D_G(a) = D_{G'}(a) + 1 \quad \text{for any } a \in A; \quad D_G(b) = D_{G'}(b) - 1 \quad \text{for any } b \in B;
\]

\[
D_G(c) = D_{G'}(c) - 1 \quad \text{for any } c \in C; \quad D_G(v) = D_{G'}(v) - 1, \quad D_G(u) = D_{G'}(u) + p - s - q - 2.
\]

Hence, this gives

\[
W(G) - W(G') = \frac{1}{2} \left(\sum_{v \in V_G} D_G(v) - \sum_{v \in V_{G'}} D_{G'}(v) \right)
\]

\[
= \frac{1}{2} \left(\sum_{a \in A} (D_G(a) - D_{G'}(a)) + \sum_{b \in B} (D_G(b) - D_{G'}(b)) + \sum_{c \in C} (D_G(c) - D_{G'}(c)) \right)
\]

\[
+ \frac{1}{2} (D_G(v) - D_{G'}(v) + D_G(u) - D_{G'}(u))
\]
lemma 4.5. If G is a graph with the minimal transmission in \mathcal{C}_n^s, then we may assume that $\Delta(G) = s$.\newline\indent This completes the proof. □

Similar to the above lemma we have the following lemma.

Corollary 4.4. If $1 \leq s \leq \lfloor \frac{n-2}{3} \rfloor$, then $W(K_{s,n-s}) \geq W(O_v \cup (K_1 \cup K_{n-s-2,1}))$. The equality holds if and only if $n = 2s + 3$.

Lemma 4.5. If $G \in \mathcal{C}_n^s$ and U is a vertex-cut set of order s in G such that $G - U$ has two nontrivial components, then G cannot be the graph with the minimal transmission in \mathcal{C}_n^s.

Proof. Assume that G_1 and G_2 are two nontrivial components of $G - U$ with bipartitions (A, B) and (C, D), respectively. Let $U_1 \cup U_2$ be the bipartition of U induced by the bipartition of G. Now joining all possible edges between the vertices of A and B, and C and D, we get a graph G in \mathcal{C}_n^s such that $W(G) \geq W(C_n^s)$. Therefore we suppose that $G = G_2$; see Fig. 5.

If there exists some vertex u in $G - U$ such that $d_G(u) = s$, then forming a complete bipartite graph within the vertices of $G \setminus \{u\}$ we would get a graph in \mathcal{C}_n^s with smaller transmission. Thus we may assume that each vertex in $G - U$ has degree greater than s. Let $|A| = m_1$, $|B| = m_2$, $|C| = n_1$, $|D| = n_2$, $|U_1| = t$, $|U_2| = k$. We choose a vertex u_0 from C and observe that $d_G(u_0) = t + |D| > s$, where $t(0 \leq t \leq s)$ is the total number of edges joining u_0 and the vertices of U_1. Note that $U_1 \cup U_2$ is the vertex-cut set of order s, hence $m_1, n_1 > t$, $m_2, n_2 > k$. Without loss of generality we may assume that $m_1 = \max\{m_1, m_2, n_1, n_2\}$ and note that $s \geq 1$, hence $m_1 \geq 2$. We now choose a subset D_2 of D such that $|D_2| = |D| - k > 0$. Let

$$G^* = G - \{u_0X : x \in D_2\} + \{bc : b \in B, c \in C \setminus \{u_0\} \} + \{pq : p \in D, c \in A\}.$$

It is routine to check that $G^* \in \mathcal{C}_n^s$ with bipartition (X, Y), where $X = B \cup D_2 \cup U_1 \cup D_1$, $Y = A \cup B \cup C' \cup \{u_0\}$ with $|U_1| = t$, $|U_2| = k$, $|A| = m_1$, $|B| = m_2$, $|C'| = n_1 - 1$, $|D_1| = k$, and $|D_2| = n_2 - k$. Here, G^* is depicted in Fig. 5.

It is routine to check that $D_{G^*}(u_0) = D_{G^*}(u_0) + 2k - 2n_2$. Note that, for any $a \in A$ (resp. $b \in B, c \in C$, $d \in D_1, d' \in D_2$).

Then one has

$$D_{G^*}(a) = D_{G^*}(a) + 2m_2 - 2; \quad D_{G^*}(b) = D_{G^*}(b) + 2n_1 - 2; \quad D_{G^*}(c) = D_{G^*}(c) + 2m_2; \quad D_{G^*}(d) = D_{G^*}(d) + 2m_1 - 2; \quad D_{G^*}(d') = D_{G^*}(d') + 2m_1 - 2.$$

This gives

$$W(G) - W(G^*) = \frac{1}{2} \left(\sum_{v \in V_C} D_{G^*}(v) - \sum_{v \in V_{C'}} D_{G^*}(v) \right)$$

$$= \frac{1}{2} \left(\sum_{a \in A} (D_{G^*}(a) - D_{G^*}(a)) + \sum_{b \in B} (D_{G^*}(b) - D_{G^*}(b)) + \sum_{c \in C} (D_{G^*}(c) - D_{G^*}(c)) \right)$$

$$= \frac{1}{2} \left(D_{G^*}(u_0) - D_{G^*}(u_0) + \sum_{d \in D_1} (D_{G^*}(d) - D_{G^*}(d)) + \sum_{d' \in D_2} (D_{G^*}(d') - D_{G^*}(d')) \right)$$

$$= \frac{1}{2} \left[m_1(2m_2 - 2) + m_2(2n_1 - 2) + 2(n_1 - 1)m_2 + 2k - 2m_2 + 2km_1 + (n_2 - k)(2m_1 - 2) \right]$$

$$= (m_2 - 1)m_1 + 2(n_1 - 1)m_2 + m_1k + (n_2 - k)(m_2 - 2)$$

$$> (n_2 - k)(m_2 - 2) \geq 0.$$

This completes the proof. □
Let X and Y be sets of vertices (not necessarily disjoint) of a graph G. We denote by $E_G[X, Y]$ the set of edges of G with one end in X and the other end in Y.

Lemma 4.6. If $G \in \mathcal{P}_1^n$ and E_t is an edge cut-set of order t in G such that $G - E_t$ has two nontrivial components, then G cannot be the graph with the minimal transmission in \mathcal{P}_1^n.

Proof. Let G_1 and G_2 be the nontrivial components of $G - E_t$ with bipartitions (A, B) and (C, D), respectively. Now joining all possible edges between the vertices of A and B, C and D yields a graph, say G, in \mathcal{P}_1^n such that $W(G) \geq W(G_t)$. Therefore we suppose that $G = G_t$; see Fig. 6.

Note that for any vertex $v \in G$ we have $d_G(v) \geq t$. If there exists some vertex w in G such that $d_G(w) = t$. Without loss of generality, adding all possible edges within the subgraph of G induced by the vertices of $V_G \setminus \{w\}$, we will arrive at a bipartite graph G'. If $G \neq G'$, then $W(G) > W(G')$ by Lemma 3.1. Thus we may assume that each vertex in G has degree greater than t.

Let $|A| = m_1$, $|B| = m_2$, $|C| = n_1$, $|D| = n_2$ and the number of edges between A and C (resp. B and D), in G, is a (resp. b). It is routine to check that $m_1 + m_2 + n_1 + n_2 = n$ and $a + b = t$.

Without loss of generality, we choose a vertex c_0 from C and observe that $d_G(c_0) = h + |D| > t$, where $h(0 \leq h \leq t)$ is the total number of edges joining c_0 and the vertices of A. Note that $E_3[A, C] \cup E_3[B, D]$ is an edge-cut set of size $a + b = t$ (see Fig. 6), hence $m_1, n_1 > a$, $m_2, n_2 > b$. We now pick a subset D_2 of D satisfying $|D_2| = |D| - (d_G(c_0) - h) > 0$. Let

$$G^* = G - \{u_0 : x \in D_2\} + \{ac : a \in A, c \in C \setminus \{u_0\}\} + \{pq : p \in B, q \in D\}.$$

It is routine to check that $G^* \in \mathcal{P}_1^n$; see Fig. 6.

Denote the sets of the end-vertices of the edges of E_t in $A, B, C,$ and D by $S_1, S_2, S_3,$ and S_4, respectively. Let $|A - S_1| = a_1$, $|B - S_2| = a_2$, $|C - S_3| = a_3$, and $|D - S_4| = a_4$.

By direct calculation, G contains

$$m_1m_2 + n_1n_2 + t = |E_G|$$

pairs of vertices at distance 1, $m_1n_1 + m_2n_2 - t$ pairs of vertices at distance 3, and $a_1a_4 + a_2a_3$ pairs of vertices at distance 4. All other vertex pairs, namely

$$\binom{n}{2} - |E_G| - (m_1n_1 + m_2n_2 - t) - (a_1a_4 + a_2a_3)$$

are at distance 2. Consequently,

$$W(G) = |E_G| + 3[m_1n_1 + m_2n_2 - t] + 4[a_1a_4 + a_2a_3]$$

$$+ 2\left[\binom{n}{2} - |E_G| - (m_1n_1 + m_2n_2 - t) - (a_1a_4 + a_2a_3)\right].$$ \hspace{1cm} (4.1)

Similarly, G^* contains

$$m_1m_2 + (n_1 - 1)n_2 + m_2n_2 + (n_1 - 1)m_1 + t = |E_{G^*}|$$

pairs of vertices at distance 1, $m_1 + n_2 - t$ pairs of vertices at distance 3. All other vertex pairs, namely

$$\binom{n}{2} - |E_{G^*}| - (m_1 + n_2 - t)$$

are at distance 2. Consequently,

$$W(G^*) = |E_{G^*}| + 2\left[\binom{n}{2} - |E_{G^*}| - (m_1 + n_2 - t)\right] + 3(m_1 + n_2 - t).$$ \hspace{1cm} (4.2)
In view of (4.1) and (4.2), we have that
\[
W(G) - W(G^s) = 2(a_1a_4 + a_2a_3) + 2(m_2n_2 - n_2 + n_1m_1 - m_1) \\
= 2(a_1a_4 + a_2a_3) + 2n_2(m_2 - 1) + 2m_1(n_1 - 1) \\
> 2(a_1a_4 + a_2a_3) \geq 0.
\]
This completes the proof. \(\square\)

Theorem 4.7. Let \(G\) be the graph in \(\mathcal{G}_n^s\) with the minimal transmission with \(1 \leq s \leq \lfloor \frac{n-1}{2} \rfloor \). Then \(G \in \{G_1^s, G_2^s\}\) if \(n\) is odd and \(G \cong G_2^s\) otherwise. Graphs \(G_1^s\), \(G_2^s\) and \(G_3^s\) are depicted in Fig. 7.

Proof. Let \(G\) be a graph with the minimal transmission in \(\mathcal{G}_n^s\). Let \(U\) be a vertex cut of \(G\) containing \(s\) vertices, whose deletion yields the components \(G_1, G_2, \ldots, G_i\) of \(G - U\), where \(t \geq 2\). If some component \(G_i\) of \(G - U\) has at least two vertices, then it must be complete bipartite. Again if some component \(G_i\) of \(G - U\) is a singleton, say \(G_i = \{u\}\), then \(u\) is adjacent to all the vertices of \(U\); otherwise \(\varepsilon(G) < s\); hence the subgraph \(G[U]\) induced by \(U\) contains no edges, and belongs to the same partition of \(G\). We now have the following cases.

Case 1. All the components of \(G - U\) are singletons. In this case, we have \(G = K_{s,n-s}\), for \(s = \lfloor \frac{n-1}{2} \rfloor \) or \(\lfloor \frac{n-3}{2} \rfloor \). It is routine to check that \(K_{s,n-s} \cong G_1^s\), if \(n\) is odd and \(K_{s,n-s} \cong G_2^s\), if \(n\) is even, as desired.

Let us assume that \(1 \leq s \leq \lfloor \frac{n-3}{2} \rfloor \). Then by Corollary 4.4, \(W(K_{s,n-s}) \geq W(O_s \cup (K_1 \cup K_{n-s-2,1}))\), which contradicts the minimality of \(G\). Therefore not all the components of \(G - U\) can be singletons.

Case 2. One component of \(G - U\), say \(G_1\), contains at least two vertices. In this case, \(G - U\) contains exactly two components; otherwise, forming a complete bipartite graph within the vertices of \(G_1 \cup G_2 \cup \cdots \cup G_{i-1}\) we obtain a new graph \(G^*\) from \(G\) with smaller transmission such that \(G^* \in \mathcal{G}_n^s\), a contradiction. Let \(G_1, G_2\) be the components of \(G - U\). By Lemma 4.5, either \(G_1 = K_1\) or \(G_2 = K_1\). Without loss of generality assume that \(G_2 = K_1 = \{u\}\). Then \(u\) joins all vertices of \(U\), and each vertex of \(U\) joins every vertex of \(G_1\) which are in the same partition as \(u\). Note that \(G\) is a graph with the minimal transmission, hence by Corollary 4.2, \(G = O_s \cup (K_1 \cup K_{p,q})\) for some \(p\) and \(q\). We note that \(p \geq s\), otherwise \(s\) cannot be the vertex connectivity of \(G\). If \(q + s \leq p \leq q + s + 2\), then the result follows. Again if \(q + s > p\), then by repeated application of Lemma 4.1, \(G = G_1^s\), if \(n\) is odd and \(G = G_2^s\), if \(n\) is even. Finally if \(p \geq q + s + 3\), then by using Lemma 4.3 repeatedly, we have \(G\) is either \(G_2^s\) or \(G_3^s\) according to \(n\) is odd or even.

This completes the proof. \(\square\)

By a similar argument as in the proof of Theorem 4.7, we can show the following result, we omit its procedure here.

Theorem 4.8. Let \(G\) be a graph in \(\mathcal{G}_n^s\) with minimal transmission with \(1 \leq s \leq \lfloor \frac{n-1}{2} \rfloor \). Then \(G \in \{G_1^s, G_2^s\}\) if \(n\) is odd and \(G \cong G_2^s\) otherwise. Graphs \(G_1^s\), \(G_2^s\) and \(G_3^s\) are depicted in Fig. 7.

References