Abstract

The Wiener index is the sum of distances between all pairs of vertices of a connected graph. In this paper we propose q-analogs of the Wiener index, motivated by the theory of hypergeometric series. The basic properties of these q-Wiener indices are established, as well as their relations with the Hosoya polynomial. Some possible chemical interpretations and applications of the q-Wiener indices are considered.

1 Introduction

In this paper we are concerned with simple graphs, and all graphs considered are assumed to be connected. Let G be such a graph, with $V(G)$ and $E(G)$ being its vertex and edge sets, respectively. The number of vertices of G, i.e., $|V(G)|$, is denoted by $n = n(G)$.

The distance between two vertices u and v, denoted by $d(v,u)$, is the length of a shortest path between v and u. Then the Wiener index of G is

$$W = W(G) = \sum_{(v,u) \subseteq V(G)} d(v,u)$$
which also could be written as

$$W = W(G) = \sum_{k \geq 1} k d(G, k)$$

where $d(G, k)$ is the number of pairs of vertices of the graph G whose distance is k.

For details of the mathematical theory of the Wiener index and its chemical applications see [1–4]; for some recent works along these lines see [5–10].

The aim to this paper is to study the q-analog of the Wiener index. The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century [11].

A q-analog is, roughly speaking, a theorem or identity in the variable q that gives back a known result in the limit, as $q \to 1$ (from inside the complex unit circle in most situations).

q-Analogs find applications in a number of areas, including the study of fractals and multi-fractal measures, and expressions for the entropy of chaotic dynamic systems. q-Analogs also appear in the study of quantum groups and in q-deformed superalgebras [12,13].

2 Definitions and Basic Properties

2.1 q-Wiener index

Let q be a positive real number, $q \neq 1$. We define the q-analog of k, also known as the q-bracket or q-number of k, to be

$$[k]_q = \frac{1 - q^k}{1 - q} = \sum_{0 \leq i < k} q^i = 1 + q + q^2 + \cdots + q^{k-1}.$$ \hspace{1cm} (2)

Then $\lim_{q \to 1} [k]_q = k$.

Based on this formalism, one can conceive the q-analog of the Wiener index as

$$W_1(G, q) = \sum_{\{v, u\} \subseteq V(G)} [d(v, u)]_q.$$

In what follows we shall also consider the second and third q-analogs of W, defined as

$$W_2(G, q) = \sum_{\{v, u\} \subseteq V(G)} [d(v, u)]_q q^{L - d(v, u)},$$

$$W_3(G, q) = \sum_{\{v, u\} \subseteq V(G)} [d(v, u)]_q q^{d(v, u)}.$$
where \(L \) is the diameter of \(G \). Again, one recovers the usual Wiener index by taking the limit \(q \to 1 \):

\[
\lim_{q \to 1} W_1(G, q) = \lim_{q \to 1} W_2(G, q) = \lim_{q \to 1} W_3(G, q) = W(G) .
\]

(3)

It is evident that such a generalization of the Wiener–index concept can be further extended by considering

\[
\sum_{\{v,u\} \subseteq V(G)} [d(v,u)]_q \Phi(q, d(v,u))
\]

with \(\Phi(x,y) \) being any function in the variables \(x \) and \(y \), such that \(\lim_{x \to 1} \Phi(x,y) = 1 \) for all values of \(y \). Yet we stop at \(W_1, W_2, \) and \(W_3 \).

Bearing in mind Eqs. (1) and (2), it is straightforward to show that

\[
W_1(G, q) = \sum_{k \geq 1} [k]_q d(G,k) = \sum_{k \geq 1} (1 + q + q^2 + \cdots + q^{k-1}) d(G,k)
\]

(4)

\[
W_2(G, q) = \sum_{k \geq 1} [k]_q q^{L-k} d(G,k) = \sum_{k \geq 1} (1 + q + q^2 + \cdots + q^{k-1}) q^{L-k} d(G,k)
\]

(5)

\[
W_3(G, q) = \sum_{k \geq 1} [k]_q q^k d(G,k) = \sum_{k \geq 1} (1 + q + q^2 + \cdots + q^{k-1}) q^k d(G,k)
\]

(6)

In addition, we have the following relations among the three \(q \)-Wiener indices:

\[
W_1(G, q) = q^{L-1} W_2 \left(G, \frac{1}{q} \right)
\]

\[
W_2(G, q) = q^{L-1} W_1 \left(G, \frac{1}{q} \right)
\]

\[
W_3(G, q) = (1 + q) W_1(q^2) - W_1(G, q)
\]

Let \(v \) and \(u \) be two vertices of the graph \(G \) and let their distance be \(d \). The shortest path between \(v \) and \(u \) can be viewed as a sequence \(d \) mutually incident edges, \(e_1, e_2, \ldots, e_d \), such that \(v \) is an end-vertex of \(e_1 \) and \(u \) and end-vertex of \(e_d \). So, we can go from \(v \) to \(u \) in \(d \) steps, along the edges \(e_1, e_2, \ldots, e_d \). Suppose that the contribution of the first step is unity, of the second step is \(q \), of the third step \(q^2 \), of the \(i \)-th step is \(q^{i-1} \). The contribution obtained by moving along the entire shortest path would then be \(1+q+q^2+\cdots+q^{d-1} \). This observation may serve for an interpretation of the invariants \(W_1 \), and after an obvious modification, also of \(W_2 \) and \(W_3 \). If the parameter \(q \) is chosen to be positive and less than unity, then the \(q \)-analogs of the Wiener index would provide models for measuring
interactions between individual atoms in a molecule which are known to decrease with their distance.

In connection with the above deliberations, it should be mentioned that in a recent paper [14], a class of invariants of (molecular) graphs was considered, having the form

\[\tilde{Q} = \sum_{\{v,u\}\subseteq V(G)} f(d(v,u)) \]

where \(f(x) \) depends solely on the distance \(d(u,v) \) between the vertices \(u \) and \(v \). This invariant satisfies the identity

\[\tilde{Q} = \sum_{k \geq 1} f(k) d(G,k) \]

which should be compared with Eqs. (1) and (4)–(6).

Adopting the standard convention

\[\sum_{k=m}^{n} a_k = \begin{cases} a_m + a_{m+1} + \cdots + a_n & \text{if } m \leq n \\ 0 & \text{if } m = n + 1 \end{cases} \]

by straightforward calculation we arrive at:

Proposition 1. The \(q \)-Wiener indices \(W_1(G,q) \), \(W_2(G,q) \), and \(W_3(G,q) \) are polynomials in \(q \), and

\[W_1(G,q) = \sum_{k=0}^{L-1} \sum_{j=k+1}^{L} d(G,j) q^k \]

\[W_2(G,q) = \sum_{k=0}^{L-1} \sum_{j=0}^{k} d(G,L-k+j) q^k \]

\[W_3(G,q) = \sum_{k=0}^{L-1} \sum_{j=[k/2]+1}^{k} d(G,j) q^k + \sum_{k=L}^{2L-1} \sum_{j=[k/2]+1}^{L} d(G,j) q^k \]

where \(\lfloor \ell \rfloor \) is the greatest integer smaller or equal to \(\ell \).

This proposition shows us that the coefficients of \(q^k \) in \(W_1(G,q) \), \(W_2(G,q) \), and \(W_3(G,q) \) is exactly the numbers of edges of \(G \) that have been weighted with \(q^k \).

In Table 1 are given the coefficients of the polynomial \(W_1(G,q) \) for some alkanes, according to Eq. (7).
Table 1. The coefficients a_k ($0 \leq k \leq 6$), pertaining to q^k in Eq. (7).

<table>
<thead>
<tr>
<th>alkane</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>$W(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-methyloctane</td>
<td>36</td>
<td>28</td>
<td>20</td>
<td>14</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>114</td>
</tr>
<tr>
<td>3-methyloctane</td>
<td>36</td>
<td>28</td>
<td>20</td>
<td>13</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>110</td>
</tr>
<tr>
<td>4-methyloctane</td>
<td>36</td>
<td>28</td>
<td>20</td>
<td>13</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>108</td>
</tr>
<tr>
<td>2,2-dimethyloctane</td>
<td>45</td>
<td>36</td>
<td>25</td>
<td>18</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td>146</td>
</tr>
<tr>
<td>2,3-dimethyloctane</td>
<td>45</td>
<td>36</td>
<td>26</td>
<td>17</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td>143</td>
</tr>
<tr>
<td>2,4-dimethyloctane</td>
<td>45</td>
<td>36</td>
<td>26</td>
<td>18</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>142</td>
</tr>
<tr>
<td>3,3-dimethyloctane</td>
<td>45</td>
<td>36</td>
<td>25</td>
<td>16</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>138</td>
</tr>
<tr>
<td>3,4-dimethyloctane</td>
<td>45</td>
<td>36</td>
<td>26</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>137</td>
</tr>
<tr>
<td>4,4-dimethyloctane</td>
<td>45</td>
<td>36</td>
<td>25</td>
<td>16</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>134</td>
</tr>
<tr>
<td>2,2,3-trimethyloctane</td>
<td>55</td>
<td>45</td>
<td>32</td>
<td>21</td>
<td>14</td>
<td>8</td>
<td>3</td>
<td>178</td>
</tr>
<tr>
<td>2,2,4-trimethyloctane</td>
<td>55</td>
<td>45</td>
<td>32</td>
<td>23</td>
<td>13</td>
<td>7</td>
<td>3</td>
<td>178</td>
</tr>
<tr>
<td>2,3,3-trimethyloctane</td>
<td>55</td>
<td>45</td>
<td>32</td>
<td>20</td>
<td>13</td>
<td>7</td>
<td>2</td>
<td>174</td>
</tr>
<tr>
<td>2,3,4-trimethyloctane</td>
<td>55</td>
<td>45</td>
<td>33</td>
<td>21</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>174</td>
</tr>
<tr>
<td>3,3,4-trimethyloctane</td>
<td>55</td>
<td>45</td>
<td>32</td>
<td>19</td>
<td>11</td>
<td>5</td>
<td>1</td>
<td>168</td>
</tr>
<tr>
<td>3,4,4-trimethyloctane</td>
<td>55</td>
<td>45</td>
<td>32</td>
<td>19</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>166</td>
</tr>
<tr>
<td>2,2,4,4-tetramethyloctane</td>
<td>66</td>
<td>55</td>
<td>39</td>
<td>28</td>
<td>14</td>
<td>7</td>
<td>3</td>
<td>212</td>
</tr>
<tr>
<td>2,3,4,5-tetramethyloctane</td>
<td>66</td>
<td>55</td>
<td>41</td>
<td>26</td>
<td>14</td>
<td>6</td>
<td>2</td>
<td>210</td>
</tr>
</tbody>
</table>

From Table 1 we see that 2,2,3-trimethyloctane and 2,2,4-trimethyloctane have equal Wiener indices $W(G)$, but different $W_1(G, q)$. The same is true for 2,3,3-trimethyloctane and 2,3,4-trimethyloctane. This hints toward possible advantages of the q-Wiener indices over the ordinary Wiener index.

The vast majority of chemical applications of the Wiener index deal with acyclic organic molecules. Their molecular graphs are trees [15]. In view of this, it is not surprising that in the chemical literature there are numerous studies of properties of the Wiener indices of trees.

A tree is a connected acyclic graph. Each pair of vertices of a tree is connected by a unique path. A vertex of degree one is called a pendent vertex. A tree on n vertices has at least 2 and at most $n - 1$ pendent vertices. The (unique) n-vertex trees with 2 and $n - 1$ pendent vertices are the path and the star, respectively, denoted by P_n and S_n, respectively. For these trees we have:
Proposition 2. For \(n \geq 2 \),

\[
W_1(S_n, q) = \binom{n}{2} + \binom{n-1}{2} q
\]

\[
W_2(S_n, q) = \binom{n-1}{2} + \binom{n}{2} q
\]

\[
W_3(S_n, q) = (n - 1)q + \binom{n-1}{2} q^2 + \binom{n-1}{2} q^3
\]

\[
W_1(P_n, q) = \binom{n}{2} + \binom{n-1}{2} q + \binom{n-2}{2} q^2 + \cdots + q^{n-2}
\]

\[
W_2(P_n, q) = 1 + \binom{3}{2} q + \binom{4}{2} q^2 + \cdots + \binom{n}{2} q^{n-2}
\]

\[
W_3(P_n, q) = \sum_{k=1}^{n-2} \frac{1}{2} \left(2n - k - \left\lfloor \frac{k}{2} \right\rfloor - 1 \right) \left(k - \left\lfloor \frac{k}{2} \right\rfloor \right) q^k + \sum_{k=n-1}^{2n-3} \left(n - \left\lfloor \frac{k}{2} \right\rfloor \right) q^k.
\]

2.2 q-Multiplicative Wiener index

Few years ago the multiplicative version of the Wiener index, denoted by \(\pi(G) \), was put forward [16]. This molecular structure descriptor is equal to the product of the distances of all pairs of vertices of the underlying molecular graph, i.e.,

\[
\pi(G) = \prod_{\{v,u\} \subseteq V(G)} d(v, u).
\]

Since this index is, even for small molecular graphs, rather large number, e.g. 34,560 for the hexane graph \((P_6) \), in QSPR/QSAR modeling it is convenient to work with \(\log \pi(G) \) instead of \(\pi(G) \). Of course,

\[
\log \pi(G) = \sum_{\{v,u\} \subseteq V(G)} \log d(v, u) = \sum_{k \geq 1} (\log k) d(G,k).
\]

The \(q \)-anologs of the multiplicative Wiener index are defined in full analogy with \(W_i(G, q) \), \(i = 1, 2, 3 \):

\[
\pi_1(G, q) = \prod_{\{v,u\} \subseteq V(G)} [d(v, u)]_q = \prod_{k \geq 1} \{[k]_q\}^{d(G,k)}
\]

\[
\pi_2(G, q) = \prod_{\{v,u\} \subseteq V(G)} [d(v, u)]_q q^{L-d(v,u)} = \prod_{k \geq 1} \{[k]_q q^{L-k}\}^{d(G,k)}
\]

\[
\pi_3(G, q) = \prod_{\{v,u\} \subseteq V(G)} [d(v, u)]_q q^{d(v,u)} = \prod_{k \geq 1} \{[k]_q q^{k}\}^{d(G,k)}
\]
from which it immediately follows:

\[
\log \pi_1(G, q) = \sum_{k \geq 1} \left(\log \frac{1-q^k}{1-q} \right) d(G, k)
\]

\[
\log \pi_2(G, q) = \sum_{k \geq 1} \left(\log \frac{1-q^k}{1-q} \right) d(G, k) + \binom{n}{2} L \log q - W(G) \log q
\]

\[
\log \pi_3(G, q) = \sum_{k \geq 1} \left(\log \frac{1-q^k}{1-q} \right) d(G, k) + W(G) \log q .
\]

3 Relations between q-Wiener Indices and Hosoya Polynomial

The counting polynomial

\[H(G, \lambda) = \sum_{k=1}^{L} d(G, k) \lambda^k \] \hspace{1cm} (8)

was first put forward by Hosoya [17]. Hosoya himself called it “Wiener polynomial”, but eventually the more appropriate name “Hosoya polynomial” has been accepted.

Combining Eq. (8) with the definitions of the \(q \)-Wiener indices, we arrive at:

Proposition 3. Let \(G \) be a connected graph on \(n \) vertices. Then

\[
W_1(G, q) = \frac{1}{1-q} \left[\binom{n}{2} - H(G, q) \right]
\]

\[
W_2(G, q) = \frac{q^L}{1-q} \left[H \left(G, \frac{1}{q} \right) - \binom{n}{2} \right]
\]

\[
W_3(G, q) = \frac{1}{1-q} \left[H(G, q) - H(G, q^2) \right].
\]

The most famous property of the Hosoya polynomial is that its first derivative at \(\lambda = 1 \) is equal to the Wiener index [17]. The analogous relations between the derivatives of the \(q \)-Wiener indices and the Hosoya polynomial are stated in:

Proposition 4. Let \(G \) be a connected graph. Then,

\[
W'_1(G, q) = \frac{1}{1-q} \left[W_1(G, q) - H'(G, q) \right]
\]

\[
W'_2(G, q) = \frac{1}{1-q} \left\{ W_2(G, q) + L q^{L-1} \left[H \left(G, \frac{1}{q} \right) - \binom{n}{2} \right] - q^{L-2} H' \left(G, \frac{1}{q} \right) \right\}
\]

\[
W'_3(G, q) = \frac{1}{1-q} \left[W_3(G, q) + H'(G, q) - 2q H'(G, q^2) \right].
\]
By taking the limit $q \to 1$, we get:

$$
W'_1(G, 1) = \frac{1}{2} H''(G, 1)
$$

$$
W'_2(G, 1) = \frac{1}{2} \left[(2L - 2)H'(G, 1) - H''(G, 1) \right]
$$

$$
W'_3(G, 1) = \frac{1}{2} \left[2H'(G, 1) + 3H''(G, 1) \right].
$$

Before stating the next properties, we need to define the partial Hosoya polynomial $H_m(G, \lambda)$, defined as

$$
H_m(G, \lambda) \equiv 0 \quad \text{if } m = 0
$$

$$
H_m(G, \lambda) = \sum_{k=1}^{m} d(G, k) \lambda^k \quad \text{if } m = 1, 2, 3, \ldots, L.
$$

We see that $H_L(G, \lambda) = H(G, \lambda)$ and $H_L(G, 1) = \binom{n}{2}$.

Proposition 5. Let G be a connected graph. Then,

$$
W_1(G, q) = \sum_{k=0}^{L-1} \left[H_L(G, 1) - H_k(G, 1) \right] q^k
$$

$$
W_2(G, q) = \sum_{k=0}^{L-1} \left[H_L(G, 1) - H_{L-k-1}(G, 1) \right] q^k
$$

$$
W_3(G, q) = \sum_{k=0}^{2L-1} \left[H_L(G, 1) - H_{\lfloor k/2 \rfloor}(G, 1) \right] q^k - \sum_{k=0}^{L-1} \left[H_L(G, 1) - H_k(G, 1) \right] q^k.
$$

Bearing in mind the limit values (3), we arrive at the following interesting corollary of Proposition 5:

$$
W(G) = \sum_{k=0}^{L-1} \left[H_L(G, 1) - H_k(G, 1) \right].
$$

Acknowledgements. This study was supported in part by the Shandong Natural Science Foundation (ZR2010AM020) and in part by the Serbian Ministry of Science and Education (Grant No. 174033).
References

