On the algebraic connectivity of some caterpillars: A sharp upper bound and a total ordering

Oscar Rojo a,*, Luis Medina a, Nair Abreu b, Claudia Justel c

a Universidad Católica del Norte, Antofagasta, Chile
b Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
c Instituto Militar de Engenharia, Rio de Janeiro, Brazil

ABSTRACT

A caterpillar is a tree in which the removal of all pendant vertices makes it a path. Let $d \geq 3$ and $n > 2(d - 1)$ be given. Let $p = [p_1, p_2, \ldots, p_{d-1}]$ with $p_1 \geq 1, p_2 \geq 1, \ldots, p_{d-1} \geq 1$. Let $C(p)$ be the caterpillar obtained from the stars $S_{p_1}, S_{p_2}, \ldots, S_{p_{d-1}}$ and the path P_{d-1} by identifying the root of S_{p_i} with the i-vertex of P_{d-1}. Let

$$C = \{C(p) : p_1 + p_2 + \cdots + p_{d-1} = n - d + 1\}.$$

We prove that the algebraic connectivity of $C(p) \in C$ is bounded above by

$$\frac{1}{2} \left(4 + \sigma - \sqrt{\sigma^2 + 4\sigma + 8} \right), \quad \sigma = 2 \cos \left(\frac{(d - 2)\pi}{d - 1} \right).$$

Moreover, we prove that if d is even then $C(\bar{p})$,

$$\bar{p} = \left[1, \ldots, 1, \bar{p}_{\frac{d}{2}}, 1, \ldots, 1 \right], \quad \bar{p}_{\frac{d}{2}} = n - 2d + 3,$$

is the unique caterpillar in C attaining the upper bound and that if d is odd then the upper bound cannot be achieved. Finally, for $1 \leq k \leq \left\lfloor \frac{d-1}{2} \right\rfloor$, we give a total ordering by algebraic connectivity on

$$C_k = \{C(1, \ldots, 1, p_k, 1, \ldots, 1, p_{d-k}, 1, \ldots, 1) : p_k \leq p_{d-k} \}.$$
1. Introduction

Let $G = (V, E)$ be a simple undirected graph on n vertices. The Laplacian matrix of G is the matrix $L(G) = D(G) - A(G)$ where $A(G)$ is the adjacency matrix and $D(G)$ is the diagonal matrix of vertex degrees. It is well known that $L(G)$ is a positive semidefinite matrix and that $(0, e)$ is an eigenpair of $L(G)$ where e is the all ones vector. In [1], some of the many results known for Laplacian matrices are given. Fiedler [2] proved that G is a connected graph if and only if the second smallest Laplacian eigenvalue is positive. This eigenvalue is called the algebraic connectivity of G and it is denoted by $a(G)$. In [3], a survey on old and new results on the algebraic connectivity of graphs is given.

A tree is a connected acyclic graph. Let P_n be a path on n vertices and S_p be a star on $(p + 1)$ vertices. Let $S(a, b, d)$ be a tree with n vertices and diameter d obtained from the path P_{d-1} and the stars S_a and S_b by identifying the pendant vertices in P_{d-1} with the roots of the stars. We may consider $a \leq b$. Observe that $b = n - a - (d - 1)$.

The problem of ordering trees by algebraic connectivity is an active area of research. This problem has been totally solved by Grone and Merris in [4] for trees of diameter $d = 3$. They prove that the algebraic connectivity of $S(a, b, 3)$, $b = n - a - 2$, is the unique Laplacian eigenvalue less than 1 and it is a strictly decreasing function for $1 \leq a \leq \frac{1}{2}(n - 2)$. Important contributions to the problem for trees of order n and diameter $d = 4$ are due to Zhang [5]. Yuan et al. [6] introduce six classes of trees with n vertices and determine the ordering of those trees by this spectral invariant. Shao et al. [7] determine the first four trees of order $n \geq 9$ with the smallest algebraic connectivity. In this same year, Zhang and Liu [8] found the largest twelve values of algebraic connectivity of trees in a set of trees on $2k + 1$ vertices with nearly perfect matching. A total ordering by algebraic connectivity on

$$\left\{ S(a, b, d) : 1 \leq a \leq \frac{1}{2}(n - d + 1), \ b = n - a - (d - 1) \right\},$$

due to Fallat and Kirkland [9], is implicitly given in the proof of Theorem 3.2 in which they prove that among all trees of n vertices and diameter d, the minimum algebraic connectivities is attained by the tree $S(\left\lfloor \frac{n - d + 1}{2} \right\rfloor, \left\lfloor \frac{n - d + 1}{2} \right\rfloor, d)$. In fact, the total ordering in $S(a, b, d)$ can be explicitly stated as follows.

Theorem 1. The algebraic connectivity of $S(a, b, d)$, $b = n - a - (d - 1)$, is a strictly decreasing function for $1 \leq a \leq \frac{1}{2}(n - (d - 1))$.

A caterpillar is a tree in which the removal of all pendant vertices makes it a path. We observe that the caterpillars are the trees having minimal algebraic connectivity among all trees with a given degree sequence [10].

Let $d \geq 3$ and $n > 2(d - 1)$. Let $p = [p_1, p_2, \ldots, p_{d-1}]$ where $p_1 \geq 1, p_2 \geq 1, \ldots, p_{d-1} \geq 1$.

Throughout this paper $C(p)$ is the caterpillar obtained from the stars $S_{p_1}, S_{p_2}, \ldots, S_{p_{d-1}}$ and the path P_{d-1} by identifying the root of S_{p_i} with the i-vertex of P_{d-1}. Let

$$C = \{ C(p) : p_1 + p_2 + \cdots + p_{d-1} = n - d + 1 \}.$$

We prove that if $C(p) \in C$ then

$$\frac{a(C(p))}{2} \leq \frac{1}{2} \left(4 + \sigma - \sqrt{\sigma^2 + 4\sigma + 8} \right), \quad \sigma = 2 \cos \left(\frac{(d - 2)\pi}{d - 1} \right).$$

Moreover, we prove that if d is even then $C(p)$,

$$\bar{p} = [1, \ldots, 1, \bar{p}_{d-1}, 1, \ldots, 1], \quad \bar{p}_{d-1} = n - 2d + 3,$$

is the unique caterpillar in C for which the equality holds and that if d is odd then the equality cannot be achieved. Finally, we give a total ordering by algebraic connectivity on the subclasses
\[C_1 = \{ C(p_1, 1, \ldots, 1, p_{d-1}) \in C : p_1 \leq p_{d-1} \}, \]
\[C_{d-1} = \left\{ C \left(1, \ldots, 1, p_{d-1}, p_{d+1}, 1, \ldots, 1 \right) \in C : \frac{p_{d-1} + 1}{2} \leq p_{d+1} \right\}, \]

whenever \(d \) is odd, and for \(1 < k < \left\lfloor \frac{d-1}{2} \right\rfloor \) on
\[C_k = \{ C(1, \ldots, 1, p_k, 1, \ldots, 1, p_{d-k}, 1, \ldots, 1) \in C : p_k \leq p_{d-k} \} . \]

2. Preliminaries

A generalized Bethe tree is a rooted tree in which vertices at the same distance from the root have the same degree. In [11], we characterize completely the Laplacian eigenvalues of the tree \(P_m[B_i] \) obtained from the path \(P_m \) and \(m \) generalized Bethe trees \(B_1, B_2, \ldots, B_m \) by identifying the root of \(B_i \) with the \(i \)th vertex of \(P_m \). This is the case for the caterpillar \(C(p) \) in which the path is \(P_{d-1} \) and the \((d - 1) \)-generalized Bethe trees are the stars \(S_{p_i}(1 \leq i \leq d - 1) \).

Example 1. The following caterpillar is obtained from the path \(P_6 \) and the stars \(S_2, S_1, S_2, S_5, S_3 \) and \(S_1 \) by identifying the root of each star with the corresponding vertex of \(P_6 \):

Thus we may apply the results in [11] to characterize the eigenvalues of the caterpillar \(C(p) \), in particular its algebraic connectivity. Let
\[A(x) = \begin{bmatrix} 1 & \sqrt{x} \\ \sqrt{x} & x + 1 \end{bmatrix}, \]
\[B(x) = \begin{bmatrix} 1 & \sqrt{x} \\ \sqrt{x} & x + 2 \end{bmatrix} \]
and
\[E = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}. \]

Applying Theorem 4 of [11] to \(C(p) \), one can obtain the following theorem:

Theorem 2. The algebraic connectivity of \(C(p) \) is the smallest positive eigenvalue of the \(2(d - 1) \times 2(d - 1) \) positive semidefinite matrix
\[Z_{2(d-1)}(p) = \begin{bmatrix} A(p_1) & E & E & \cdots & E \\ E & B(p_2) & E & \cdots & E \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ E & \cdots & \cdots & \cdots & B(p_{d-2}) \\ E & \cdots & \cdots & \cdots & A(p_{d-1}) \end{bmatrix}. \]
Example 2. For the caterpillar in Example 1, we have \(\mathbf{p} = [2 \ 1 \ 2 \ 5 \ 3 \ 1] \) and then, from Theorem 2, its algebraic connectivity is the smallest positive eigenvalue of the \(12 \times 12 \) matrix \(Z_{12}(\mathbf{p}) \) composed by the codiagonal blocks \(E \) and by following the diagonal blocks

\[
A(2) = \begin{bmatrix}
1 & \sqrt{2} \\
\sqrt{2} & 3
\end{bmatrix}, \quad B(1) = \begin{bmatrix}
1 & 1 \\
1 & 3
\end{bmatrix}, \quad B(2) = \begin{bmatrix}
1 & \sqrt{2} \\
\sqrt{2} & 4
\end{bmatrix}, \\
B(5) = \begin{bmatrix}
1 & \sqrt{5} \\
\sqrt{5} & 7
\end{bmatrix}, \quad B(3) = \begin{bmatrix}
1 & \sqrt{3} \\
\sqrt{3} & 5
\end{bmatrix}, \quad A(1) = \begin{bmatrix}
1 & 1 \\
1 & 2
\end{bmatrix}.
\]

The following lemma will play a special role in this paper. Let \(|A| \) be the determinant of a matrix \(A \) and let \(\widetilde{A} \) be the submatrix obtained from a matrix \(A \) by deleting its last row and its last column.

Lemma 1 ([12, Lemma 2.2]). For \(i = 1, 2, \ldots, m \), let \(B_i \) be a matrix of order \(k_i \times k_i \) and \(\mu_{ij} \) be arbitrary scalars and \(E_{ij} \) be the \(k_i \times k_j \) matrix with \(E_{ij}(i, j) = 1 \) and 0 elsewhere. Then

\[
\begin{vmatrix}
B_1 \mu_{1,2} E_{1,2} & \cdots & \mu_{1,m-1} E_{1,m-1} & \mu_{1,m} E_{1,m} \\
\mu_{2,1} E_{1,2} & B_2 & \cdots & \cdots & \mu_{2,m} E_{2,m} \\
\mu_{3,1} E_{1,3} & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\mu_{m,1} E_{1,m} & \mu_{m,2} E_{2,m} & \cdots & \mu_{m,m-1} E_{m-1,m} & B_m
\end{vmatrix} = \begin{vmatrix}
|B_1| & \mu_{1,2} \widetilde{B}_2 & \cdots & \mu_{1,m-1} \widetilde{B}_{m-1} & \mu_{1,m} \widetilde{B}_m \\
\mu_{2,1} \widetilde{B}_1 & |B_2| & \cdots & \cdots & \mu_{2,m} \widetilde{B}_m \\
\mu_{3,1} \widetilde{B}_1 & \mu_{3,2} \widetilde{B}_2 & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\mu_{m,1} \widetilde{B}_1 & \mu_{m,2} \widetilde{B}_2 & \cdots & \mu_{m,m-1} \widetilde{B}_{m-1} & |B_m|
\end{vmatrix}.
\]

Next we derive explicit formulas for the eigenvalues of matrices that will appear in this paper. We define the \(2m \times 2m \) matrices

\[
Z_{2m} = \begin{bmatrix}
A(1) & E \\
E & B(1) & E \\
\vdots & \vdots & \vdots \\
E & B(1) & E \\
E & A(1) & E
\end{bmatrix} = Z_{2m}(\mathbf{e}), \\
Y_{2m} = \begin{bmatrix}
B(1) & E \\
E & B(1) & E \\
\vdots & \vdots & \vdots \\
E & B(1) & E \\
E & E & B(1)
\end{bmatrix} = Y_{2m}(\mathbf{e}).
\]
\[X_{2m} = \begin{bmatrix} \begin{array}{cccc} A(1) & E \\
E & B(1) & & \\
& & \ddots & \\
& & & B(1) \\
& & & E \\
& & & B(1) \end{array} \end{bmatrix} = X_{2m}(e) \]

and
\[W_{2m} = \begin{bmatrix} \begin{array}{cccc} B(1) & E \\
E & B(1) & & \\
& & \ddots & \\
& & & B(1) \\
& & & E \\
& & & E \end{array} \end{bmatrix} = W_{2m}(e). \]

Throughout this paper, \(I \) is the identity matrix of the appropriate order and \(f \) is the function
\[f(x) = \frac{1}{2} \left(4 + x - \sqrt{x^2 + 4x + 8} \right). \]

One can easily prove that \(f \) is a strictly increasing function. This fact will be repeatedly used in this paper.

We recall that the Kronecker product [13] of two matrices \(P = (p_{ij}) \) and \(Q = (q_{ij}) \) of sizes \(m \times m \) and \(n \times n \), respectively, is defined to be the \((mn) \times (mn) \) matrix \(P \otimes Q = (p_{ij}Q) \). For matrices \(P, Q, R \) and \(S \) of appropriate sizes, we have
\[(P \otimes Q) (R \otimes S) = (PR) \otimes QS. \] (1)

Lemma 2. The eigenvalues of \(Z_{2m} \) are
\[\frac{1}{2} \left(4 + \sigma_j \pm \sqrt{\sigma_j^2 + 4\sigma_j + 8} \right), \]
for \(j = 1, 2, \ldots, m \), where
\[\sigma_j = 2 \cos \frac{(m + 1 - j) \pi}{m}. \]

In particular, the smallest positive eigenvalue of \(Z_{2m} \) is
\[f(\sigma) = \frac{1}{2} \left(4 + \sigma - \sqrt{\sigma^2 + 4\sigma + 8} \right), \]
\[\sigma = \sigma_2 = 2 \cos \frac{(m - 1) \pi}{m}. \]

Proof. For brevity, we write \(A(1) = A \) and \(B(1) = B \). We have
\[Z_{2m} = \begin{bmatrix} \begin{array}{cccc} B - E & E & E \\
E & B & E \\
& E & \ddots & \\
& & \ddots & E \\
& & & E \\
& & & B \end{array} \end{bmatrix}. \]

Then
\[Z_{2m} = I_m \otimes B + T_m \otimes E, \]

where

\[
T_m = \begin{bmatrix}
-1 & 1 & & \\
1 & 0 & & \\
& & \ddots & \\
& & & 0 & 1 \\
& & & & 1 & -1
\end{bmatrix}.
\]

The eigenvalues of \(T_m \) in increasing order are

\[\sigma_j = 2 \cos \left(\frac{m + 1 - j}{m} \pi \right), \quad 1 \leq j \leq m. \]

Let

\[
V = [v_1 \ v_2 \ \cdots \ v_{m-1} \ v_m]
\]

be a orthogonal matrix whose columns \(v_1, v_2, \ldots, v_m \) are eigenvectors corresponding to the eigenvalues \(\sigma_1, \sigma_2, \ldots, \sigma_m \). Using (1), we obtain

\[
(V \otimes I_m) Z_{2m} (V^T \otimes I_m) = (V \otimes I_m) (I_m \otimes B + T_m \otimes E) (V^T \otimes I_m) = I_m \otimes B + (V T_m V^T) \otimes E.
\]

Moreover

\[
(V T_m V^T) \otimes E = \begin{bmatrix}
\sigma_1 & & & \\
& \sigma_2 & & \\
& & \ddots & \\
& & & \sigma_m
\end{bmatrix} \otimes E
\]

\[
= \begin{bmatrix}
\sigma_1 E & & & \\
& \sigma_2 E & & \\
& & \ddots & \\
& & & \sigma_{m-1} E + \sigma_m E
\end{bmatrix}.
\]

Therefore

\[
(V \otimes I_m) Z_{2m} (V^T \otimes I_m) = \begin{bmatrix}
B + \sigma_1 E & & & \\
& B + \sigma_2 E & & \\
& & \ddots & \\
& & & B + \sigma_{m-1} E + \sigma_m E
\end{bmatrix}.
\]

Consequently

\[
\sigma(Z_{2m}) = \bigcup_{j=1}^m \sigma \left(\begin{bmatrix} 1 & 1 \\ 1 & 3 + \sigma_j \end{bmatrix} \right).
\]
Then the eigenvalues of Z_{2m} are
\[\frac{1}{2} \left(4 + \sigma_j \pm \sqrt{\sigma_j^2 + 4\sigma_j + 8} \right) \]
for $j = 1, 2, \ldots, m$. Since $f(x) = \frac{1}{2} (4 + x - \sqrt{x^2 + 4x + 8})$ is strictly increasing and $f(\sigma_1) = f(-2) = 0$, the smallest positive eigenvalue of Z_{2m} is
\[f(\sigma_2) = \frac{1}{2} \left(4 + \sigma_2 - \sqrt{\sigma_2^2 + 4\sigma_2 + 8} \right). \]
\[\sigma_2 = 2 \cos \left(\frac{m - 1}{m} \pi \right). \]
The proof is complete. \(\square \)

Using the same technique, we now derive the eigenvalues of Y_{2m}, X_{2m} and W_{2m}.

Lemma 3. The eigenvalues of Y_{2m} are
\[\frac{1}{2} \left(4 + \rho_j \pm \sqrt{\rho_j^2 + 4\rho_j + 8} \right), \]
\[\rho_j = 2 \cos \left(\frac{m + 1 - j}{m + 1} \pi \right) \]
for $j = 1, 2, \ldots, m$. In particular, its smallest eigenvalue is
\[f(\rho) = \frac{1}{2} \left(4 + \rho - \sqrt{\rho^2 + 4\rho + 8} \right), \]
\[\rho = \rho_1 = 2 \cos \left(\frac{m\pi}{m + 1} \right). \]

Proof. Let $B(1) = B$. We have
\[Y_{2m} = I_m \otimes B + R_m \otimes E, \]
where
\[
R_m = \begin{bmatrix}
0 & 1 \\
1 & 0 & \ddots \\
& \ddots & \ddots & \ddots \\
& & \ddots & 0 & 1 \\
& & & 1 & 0
\end{bmatrix}
\]
The eigenvalues of R_m \cite{14} in increasing order are
\[\rho_j = 2 \cos \left(\frac{m + 1 - j}{m + 1} \pi \right), \quad 1 \leq j \leq m. \]
As in the proof of Lemma 2, we obtain
\[\sigma (Y_{2m}) = \bigcup_{j=1}^{m} \sigma \left(\begin{bmatrix}
1 & 1 \\
1 & 3 + \rho_j
\end{bmatrix} \right). \]
Thus the eigenvalues of Y_{2m} are those given in (2). Since $f(x) = \frac{1}{2} (4 + x - \sqrt{x^2 + 4x + 8})$ is strictly increasing, the smallest eigenvalue of Y_{2m} is obtained for $j = 1$ in (2). \(\square \)
Lemma 4. The eigenvalues of X_{2m} and W_{2m} are

$$\frac{1}{2} \left(4 + \mu_j \pm \sqrt{\mu_j^2 + 4\mu_j + 8} \right),$$

$$\mu_j = 2 \cos \frac{2(m + 1 - j) \pi}{2m + 1}$$

for $j = 1, 2, \ldots, m$. In particular, its smallest eigenvalue is

$$f(\mu) = \frac{1}{2} \left(4 + \mu - \sqrt{\mu^2 + 4\mu + 8} \right),$$

$$\mu = \mu_1 = 2 \cos \frac{2m\pi}{2m + 1}.$$

Proof. We observe that X_{2m} and W_{2m} are similar matrices. Let $A(1) = A$ and $B(1) = B$. We have

$$X_{2m} = \begin{bmatrix} B - E & E & E & \cdots & E \\ E & B & \cdots & & \cdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \cdots & & B & E & \cdots \\ E & \cdots & E & B & \cdots \end{bmatrix}.$$

Then

$$X_{2m} = I_m \otimes B + T_m \otimes E,$$

where

$$T_m = \begin{bmatrix} -1 & 1 & & & \\ 1 & 0 & \ddots & & \\ & \ddots & \ddots & \ddots & \vdots \\ \cdots & & 0 & 1 & \\ & & \cdots & 1 & 0 \end{bmatrix}.$$

The eigenvalues of T_m [14] in increasing order are

$$\mu_j = 2 \cos \frac{2(m + 1 - j) \pi}{2m + 1}, \quad 1 \leq j \leq m.$$

Again as in the proof of Lemma 2, we obtain

$$\sigma(X_{2m}) = \bigcup_{j=1}^{m} \sigma \left(\begin{bmatrix} 1 & 1 \\ 1 & 3 + \mu_j \end{bmatrix} \right).$$

Thus the eigenvalues of X_{2m} are as in (3). Since $f(x) = \frac{1}{2} (4 + x - \sqrt{x^2 + 4x + 8})$ is strictly increasing, the smallest eigenvalue of X_{2m} is obtained for $j = 1$ in (3). \hfill \Box

3. A sharp upper bound on the algebraic connectivity

In this Section, we derive an upper bound on the algebraic connectivity of the caterpillars in C. We recall the following lemma.
Lemma 5 [15, Corollary 4.2]. Let \(v\) be a pendant vertex of the graph \(\tilde{G}\). Let \(G\) be the graph obtained from \(\tilde{G}\) by removing \(v\) and its edge. Then the eigenvalues of \(L(G)\) interlace the eigenvalues of \(L(\tilde{G})\).

From Lemma 5, it follows

Corollary 1. Let \(T\) be a subtree of the tree \(\tilde{T}\). Then
\[
a(\tilde{T}) \leq a(T).
\]

Theorem 3. If \(C(p) \in C\) then
\[
a(C(p)) \leq f(\sigma),
\]
\[
f(\sigma) = \frac{1}{2} \left(4 + \sigma - \sqrt{\sigma^2 + 4\sigma + 8} \right),
\]
\[
\sigma = 2 \cos \left(\frac{(d-2)\pi}{d-1} \right).
\]

If \(d\) is even then
\[
a(C(\tilde{p})) = f(\sigma),
\]
where
\[
\tilde{p} = \left[1, \ldots, 1, \tilde{p}_{\frac{d}{2}}, 1, \ldots, 1 \right],
\]
\[
\tilde{p}_{\frac{d}{2}} = n - 2d + 3
\]
and \(C(\tilde{p})\) is the unique caterpillar in \(C\) attaining the upper bound. If \(d\) is odd then the upper bound cannot be achieved.

Proof. Let \(e = [1, 1, \ldots, 1]\) with \((d-1)\) entries. Since \(C(e)\) is a subtree of any \(C(p) \in C\), from Corollary 1
\[
a(C(p)) \leq a(C(e)).
\]
From Theorem 2, \(a(C(e))\) is the smallest positive eigenvalue of the matrix \(Z_{2(d-1)}\). Moreover, from Lemma 2
\[
a(C(e)) = f(\sigma) = \frac{1}{2} \left(4 + \sigma - \sqrt{\sigma^2 + 4\sigma + 8} \right),
\]
\[
\sigma = 2 \cos \left(\frac{(d-2)\pi}{d-1} \right).
\]
From (6) and (7), the upper bound in (4) is immediate.

Next we prove that the upper bound in (4) is attained whenever \(d\) is even by the caterpillar \(C(\tilde{p})\) with \(\tilde{p}\) as in (5). Suppose \(d = 2s + 2\). Observe that \(C(\tilde{p}) \in C\). We claim that \(a(C(\tilde{p})) = a(C(e))\). From Theorem 2, \(a(C(\tilde{p}))\) and \(a(C(e))\) are the smallest positive eigenvalues of the matrices \(Z_{2(d-1)}(\tilde{p})\) and \(Z_{2(d-1)}\), respectively. These matrices have the forms
\[
Z_{2(d-1)}(\tilde{p}) = \begin{bmatrix} X_{d-2} & \left[0 \ E \right]^T & 0 \\ 0 & E & \left[E \ 0 \right] \\ B(\tilde{p}_{s+1}) & \left[E \ 0 \right]^T & W_{d-2} \end{bmatrix}
\]
and
\[
Z_{2(d-1)} = \begin{bmatrix} X_{d-2} & \left[0 \ E \right]^T & 0 \\ 0 & E & \left[E \ 0 \right]^T \\ \left[0 \ E \right] & B(1) & \left[E \ 0 \right] \end{bmatrix},
\]
where 0 is the zero matrix of appropriate order. Let \(U \) and \(V \) be the submatrices of \(Z_{2(p-1)}(\tilde{p}) \) and \(Z_{2(p-1)} \) obtained by deleting their \(d \) th rows and columns, respectively. Then

\[
U = V = \begin{bmatrix} X_{d-2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & W_{d-2} \end{bmatrix}.
\]

Since \(X_{d-2} \) and \(W_{d-2} \) are similar, the eigenvalues of \(U \) and \(V \) are 1 and the eigenvalues of \(X_{d-2} \) with multiplicity 2. An easy computation shows that \(\det X_{d-2} = 1 \). Thus at least one eigenvalue of \(X_{d-2} \) with multiplicity 2 is strictly less than 1. Moreover, by the Cauchy interlacing property for the eigenvalues of Hermitian matrices, the eigenvalues of \(U \) and \(V \) interlace the eigenvalues of \(Z_{2(d-1)}(\tilde{p}) \) and \(Z_{2(d-1)} \), respectively. These facts all together imply that the smallest positive eigenvalues of \(\tilde{p} = \begin{bmatrix} a & -p & -d & -p \\ -p & 1 & 0 & 0 \\ 0 & 0 & 1 & -d \\ -p & 0 & 0 & 1 \end{bmatrix} \) are equal to the smallest eigenvalue of \(X_{d-2} \). That is, \(a(C(\tilde{p})) = a(C(e)) \). We have proved that if \(d \) is even then the upper bound (4) is attained by \(C(\tilde{p}) \).

Finally, we prove that if \(d \) is even then \(C(\tilde{p}) \) is the unique caterpillar in \(C \) attaining the upper bound (4) and that if \(d \) is odd then this upper bound cannot be achieved. Suppose that \(a(C(\tilde{p})) = f(\sigma) \) for some \(C(\tilde{p}) \) in \(C \). For even \(d \), we assume that \(C(\tilde{p}) \) is not isomorphic to \(C(\tilde{p}) \). Since \(n > 2d - 2 \), at least one component \(p_i \) of \(\tilde{p} \) is strictly greater than 1. We may assume \(1 \leq j \leq \frac{1}{2} \lfloor d - 1 \rfloor \). We have \(p_1 > 1 \) or \(p_1 = 1 \). We first consider \(p_1 > 1 \). In this case, let \(q = [2, 1, \ldots, 1] \) with \((d - 1) \) entries. We have

\[
a(C(\tilde{p})) \leq a(C(q)) \leq a(C(e)) = f(\sigma) \).
\]

Thus \(a(C(q)) = f(\sigma) \). Applying Lemma 1 to \(\lambda I - Z_{2(d-1)}(q) \), we have

\[
|\lambda I - Z_{2(d-1)}(q)| = \begin{vmatrix} \lambda - A(2) & -E \\ -E & \lambda I - B(1) & -E \\ & \ddots & \ddots \\ & & \lambda I - B(1) & -E \\ & & & \lambda I - A(1) \end{vmatrix}
\]

Applying linearity on the first column

\[
|\lambda I - Z_{2(d-1)}(q)| = \begin{vmatrix} -\lambda & 1 - \lambda \\ 1 - \lambda & \lambda^2 - 4\lambda + 2 & 1 - \lambda \\ & \ddots & \ddots \\ & & \lambda^2 - 4\lambda + 2 & 1 - \lambda \\ & & & \lambda^2 - 3\lambda + 1 \end{vmatrix}
\]
\[\lambda I - Z_{2(d-1)} - \lambda I - W_{2(d-2)} \]

Therefore
\[|\lambda I - Z_{2(d-1)}(q)| - |\lambda I - Z_{2(d-1)}| = -\lambda |\lambda I - W_{2(d-2)}| \] (8)

From (8) for \(\lambda = a(C(q)) = f(\sigma) \), we have
\[0 = -f(\sigma) |f(\sigma)I - W_{2(d-2)}| \] (9)

From Lemma 4, the two smallest eigenvalues of \(W_{2(d-2)} \) are \(f(\mu_1) \) and \(f(\mu_2) \) with \(\mu_1 = 2 \cos \frac{2(d-2)\pi}{2d-3} \) and \(\mu_2 = 2 \cos \frac{2(d-3)\pi}{2d-3} \). One can easily verify \(f(\mu_1) < f(\sigma) < f(\mu_2) \). Hence \(|f(\sigma)I - W_{2(d-2)}| \neq 0 \) and thus (9) is a contradiction. We consider now \(p_1 = 1 \). Then \(p_j > 1 \) for some \(2 \leq j \leq \frac{1}{2} (d-1) \). In this case, let \(q = [1, \ldots, 2, 1, \ldots, 1] \) with \((d-1) \) entries in which \(q_j = 2 \). Then \(a(C(p)) < a(C(q)) \) \(\leq f(\sigma) \). Thus \(a(C(q)) = f(\sigma) \). Again, we use Lemma 1 to obtain the determinant of \(\lambda I - Z_{2(d-1)}(q) \) and then applying linearity on the jth column, we get
\[|\lambda I - Z_{2(d-1)}(q)| - |\lambda I - Z_{2(d-1)}| = -\lambda |\lambda I - X_{2(j-1)}| \] (10)

From (10) for \(\lambda = f(\sigma) = a(C(q)) \), we have
\[0 = -f(\sigma) |f(\sigma)I - X_{2(j-1)}| |f(\sigma)I - W_{2(d-j-1)}| \]

This is a contradiction because \(|f(\sigma)I - X_{2(j-1)}| \neq 0 \) and \(|f(\sigma)I - W_{2(d-j-1)}| \neq 0 \). This completes the proof. \(\square \)

It is an open problem to find an explicit sharp upper bound for the algebraic connectivity of caterpillars in \(C \) whenever \(d \) is odd.

4. Total ordering on the subclasses \(C_k \)

In this section, we find a total ordering by algebraic connectivity on the subclasses \(C_k \). Since the \(2(d-1) \times 2(d-1) \) matrices in Theorem 2 that define the corresponding algebraic connectivities have different forms, we study separately the subclasses \(C_1, C_{\frac{d-1}{2}} \) and \(C_k \) for \(1 < k < \lceil \frac{d-1}{2} \rceil \).

4.1. Total ordering on \(C_1 \)

An immediate consequence of Theorem 2 is

Lemma 6. The algebraic connectivity of the caterpillar \(C(a, 1, \ldots, 1, b) \in C_1 \) is the smallest positive eigenvalue of \(2(d-1) \times 2(d-1) \) matrix

\[
Z_{2(d-1)}(a, 1, \ldots, 1, b) =
\begin{bmatrix}
A(a) & E \\
E & B(1) \end{bmatrix}
\]

where \(1 \leq a \leq \frac{1}{2} (n - 2d + 4) \) and \(b = n - 2d + 4 - a \).

Theorem 4. The algebraic connectivity of \(C(a, 1, \ldots, 1, b) \in C_1 \) is a strictly decreasing function for \(1 \leq a \leq \frac{1}{2} (n - 2d + 4) \).
Proof. We have $b - a + 1 > 0$. We write $Z(a, b)$ instead of $Z_{2(d-1)}(a, 1, \ldots, 1, b)$ and $B(1) = B$. We look for the difference $|\lambda I - Z(a, b)| - |\lambda I - Z(a - 1, b + 1)|$.

We apply Lemma 1 to obtain

$$|\lambda I - Z(a, b)| = \begin{vmatrix} \lambda I - A(a) & -E \\ -E & \lambda I - B \\ \vdots \\ -E & \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & -E \\ -E & \ddots & \ddots & \ddots & \ddots & \lambda I - B \\ \vdots & \ddots & -E \\ -E & \ddots & \lambda I - B \\ \vdots & \ddots & \lambda I - A(b) \end{vmatrix}$$

$$|\lambda I - A(a)|
\begin{vmatrix} 1 - \lambda \\ 1 - \lambda \\ \vdots \\ 1 - \lambda \end{vmatrix}
= |\lambda I - B|
\begin{vmatrix} 1 - \lambda \\ 1 - \lambda \\ \vdots \\ 1 - \lambda \end{vmatrix}
= |\lambda I - (a + 2)\lambda + 1|
\begin{vmatrix} 1 - \lambda \\ 1 - \lambda \\ \vdots \\ 1 - \lambda \end{vmatrix}
- \lambda
\begin{vmatrix} 1 - \lambda \\ 1 - \lambda \\ \vdots \\ 1 - \lambda \end{vmatrix}
0
\begin{vmatrix} 1 - \lambda \\ 1 - \lambda \\ \vdots \\ 1 - \lambda \end{vmatrix}
= \lambda^2 - (a + 2)\lambda + 1 - \lambda^2 - 4\lambda + 2
= \lambda^2 - 4\lambda + 2 - \lambda^2 - 4\lambda + 2
= \lambda^2 - (b + 2)\lambda + 1 - \lambda^2 - (b + 2)\lambda + 1
= d_1 + d_2.$$

Applying linearity on the first column

$$|\lambda I - Z(a, b)|
\begin{vmatrix} \lambda^2 - (a + 1)\lambda + 1 \\ \lambda^2 - 4\lambda + 2 \\ \vdots \\ 1 - \lambda \end{vmatrix}
= |\lambda I - B|
\begin{vmatrix} 1 - \lambda \\ 1 - \lambda \\ \vdots \\ 1 - \lambda \end{vmatrix}
= |\lambda I - (b + 2)\lambda + 1|
\begin{vmatrix} 1 - \lambda \\ 1 - \lambda \\ \vdots \\ 1 - \lambda \end{vmatrix}
- \lambda
\begin{vmatrix} 1 - \lambda \\ 1 - \lambda \\ \vdots \\ 1 - \lambda \end{vmatrix}
0
\begin{vmatrix} 1 - \lambda \\ 1 - \lambda \\ \vdots \\ 1 - \lambda \end{vmatrix}
= \lambda^2 - (a + 2)\lambda + 1 - \lambda^2 - 4\lambda + 2
= \lambda^2 - 4\lambda + 2 - \lambda^2 - 4\lambda + 2
= \lambda^2 - (b + 2)\lambda + 1 - \lambda^2 - (b + 2)\lambda + 1
= d_1 + d_2.$$

Applying linearity on the last column of d_1

$$|\lambda I - Z(a, b)|$$
Reversing the rows and the columns of the last determinant, we have

\[
\begin{vmatrix}
\lambda^2 - (a + 1)\lambda + 1 & 1 - \lambda \\
1 - \lambda & \lambda^2 - 4\lambda + 2 & \ddots & \\
& \ddots & \ddots & 1 - \lambda \\
& & \ddots & \lambda^2 - 4\lambda + 2 \\
& & & 1 - \lambda & \lambda^2 - (b + 3)\lambda + 1
\end{vmatrix}
\]

By linearity on the first column

\[
\begin{vmatrix}
\lambda^2 - (a + 1)\lambda + 1 & 1 - \lambda \\
1 - \lambda & \lambda^2 - 4\lambda + 2 & \ddots & \\
& \ddots & \ddots & 1 - \lambda \\
& & \ddots & \lambda^2 - 4\lambda + 2 \\
& & & 1 - \lambda & \lambda^2 - (b + 2)\lambda + 1
\end{vmatrix}
\]
Hence
\[|\lambda I - Z(a, b)| - |\lambda I - Z(a - 1, b + 1)| = \lambda^2 (b - a + 1) V(\lambda), \tag{11} \]

where
\[
V(\lambda) = \begin{vmatrix}
\lambda^2 - 4\lambda + 2 & 1 - \lambda & \\
1 - \lambda & \lambda^2 - 4\lambda + 2 & \ddots & \\
& \ddots & \ddots & 1 - \lambda \\
& & 1 - \lambda & \lambda^2 - 4\lambda + 2
\end{vmatrix}
= \det |\lambda I - Y_{2(d-3)}|.
\]

Then
\[
V(\lambda) = \prod_{j=1}^{2(d-3)} (\lambda - \gamma_j)
\]
in which \(\gamma_1 < \gamma_2 < \cdots < \gamma_{2(d-3)}\) are the eigenvalues of \(Y_{2(d-3)}\). Next we compare the smallest positive eigenvalue of \(Z_{2(d-1)}\) with the smallest eigenvalue of \(Y_{2(d-3)}\). By Lemmas 2 and 3, these eigenvalues are
\[
f(\sigma) = \frac{1}{2} \left(4 + \sigma - \sqrt{\sigma^2 + 4\sigma + 8}\right),
\sigma = 2 \cos \left(\frac{(d - 2)\pi}{d - 1}\right)
\]
and
\[
\gamma_1 = f(\rho) = \frac{1}{2} \left(4 + \rho - \sqrt{\rho^2 + 4\rho + 8}\right),
\rho = 2 \cos \left(\frac{(d - 3)\pi}{d - 2}\right).
\]

From the fact that \(f\) is a strictly increasing function, \(f(\sigma) < \gamma_1 = f(\rho)\). Therefore \(V(\lambda) > 0\) for all \(\lambda \in (0, f(\sigma))\). We apply this result in (11) to obtain
\[|\lambda I - Z(a, b)| - |\lambda I - Z(a - 1, b + 1)| > 0 \tag{12} \]
for all \(\lambda \in (0, f(\sigma))\). Let
\[
\alpha_1 = 0 < \alpha_2 < \alpha_3 < \cdots < \alpha_{2(d-1)}
\]
and
\[
\beta_1 = 0 < \beta_2 < \beta_3 < \cdots < \beta_{2(d-1)}
\]
be the eigenvalues of \(Z(a, b)\) and \(Z(a - 1, b + 1)\), respectively. From Theorem 3 and Lemma 6, \(\beta_2 \in (0, f(\sigma))\). Then, from (12) for \(\lambda = \beta_2\)
\[|\beta_2 I - Z(a, b)| > 0. \tag{13} \]
Moreover
\[|\lambda I - Z(a, b)| = \lambda \prod_{j=2}^{2(d-1)} (\lambda - \alpha_j) \]
and
\[|\lambda I - Z(a - 1, b + 1)| = \lambda \prod_{j=2}^{2(d-1)} (\lambda - \beta_j). \]
Suppose $\beta_2 \leq \alpha_2$. Then $\beta_2 \leq \alpha_j$ for $j = 2, 3, \ldots, 2(d - 1)$. Hence
\[
|\beta_2 I - Z(a, b)| - |\beta_2 I - Z(a - 1, b + 1)|
= |\beta_2 I - Z(a, b)| = \beta_2 \prod_{j=2}^{2(d-1)} (\beta_2 - \alpha_j) \leq 0.
\]
This inequality contradicts (13), and therefore $\beta_2 > \alpha_2$. □

From Theorem 4, it follows

Corollary 2. Among all trees in C_1 the maximum algebraic connectivity is attained by the caterpillar $C(1, 1, \ldots, 1, n - 2d + 3)$ and the minimum algebraic connectivity is attained by $C(\lceil \frac{n-2d+4}{2} \rceil, 1, \ldots, 1, \lceil \frac{n-2d+4}{2} \rceil)$.

4.2. Total ordering on $C_{\frac{d-1}{2}}$ for odd d

We search for a total ordering on
\[C_{\frac{d-1}{2}} = \left\{ C \left(1, \ldots, 1, p_{\frac{d-1}{2}}, p_{\frac{d+1}{2}}, 1, \ldots, 1\right) \in C : p_{\frac{d-1}{2}} \leq p_{\frac{d+1}{2}} \right\}, \]
whenever d is odd. Let $p_{\frac{d-1}{2}} = a$ and $p_{\frac{d+1}{2}} = b$. Thus a caterpillar in $C_{\frac{d-1}{2}}$ is of the form $C(1, \ldots, 1, a, b, 1, \ldots, 1)$ in which $a + b = n - 2d + 4$ and $a \leq b$. For brevity, we write $C(a, b)$ instead of $C(1, \ldots, 1, a, b, 1, \ldots, 1)$.

Lemma 7. For odd d, the algebraic connectivity of $C(a, b) \in C_{\frac{d-1}{2}}$ is the smallest positive eigenvalue of the $2(d - 1) \times 2(d - 1)$ positive semidefinite matrix
\[
R(a, b) = \begin{bmatrix}
X_{d-3} & F & 0 & 0 \\
F^T & B(a) & E & 0 \\
0 & E & B(b) & F^T \\
0 & 0 & F & X_{d-3}
\end{bmatrix},
\]
where F is a matrix of order $(d - 3) \times 2$ with $F(d - 3, 2) = 1$ and zeros elsewhere.

Proof. From Theorem 2 the algebraic connectivity of $C(a, b) \in C_{\frac{d-1}{2}}$ is the smallest positive eigenvalue of the matrix
\[
U(a, b) = \begin{bmatrix}
X_{d-3} & F & 0 & 0 \\
F^T & B(a) & E & 0 \\
0 & E & B(b) & G^T \\
0 & 0 & G & W_{d-3}
\end{bmatrix},
\]
where G is a matrix of order $(d - 3) \times 2$ with $G(2, 2) = 1$ and zeros elsewhere. Clearly, there is a permutation matrix P such that $PW_{d-3}P^T = X_{d-3}$ and $PG = F$. Then
\[
\begin{bmatrix}
I & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & P
\end{bmatrix}U(a, b)\begin{bmatrix}
I & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & P^T
\end{bmatrix} = R(a, b). \quad □
\]

Theorem 5. For odd d, the algebraic connectivity of $C(1, \ldots, 1, a, b, 1, \ldots, 1) \in C_{\frac{d-1}{2}}$ is a strictly decreasing function for $1 \leq a \leq \frac{1}{2}(n - 2d + 4)$.

\textbf{Proof.} Applying Lemma 1 to $|\lambda I - R(a, b)|$, we have

$$
|\lambda I - R(a, b)|
= \begin{vmatrix}
\lambda I - X_d & -F \\
-F^T & \lambda I - B(a) & -E \\
0 & -E & \lambda I - B(b) & -F^T \\
0 & 0 & -F & \lambda I - X_{d-3}
\end{vmatrix}
= |\lambda I - X_{d-3}|
- \lambda
\begin{vmatrix}
|\lambda I - B(a)| & 1 - \lambda \\
0 & 1 - \lambda & |\lambda I - X_{d-3}|
\end{vmatrix}
= |\lambda I - X_{d-3}|
- \lambda
\begin{vmatrix}
\lambda^2 - (a + 3)\lambda + 2 & 1 - \lambda \\
0 & 1 - \lambda & \lambda^2 - (b + 3)\lambda + 2 & 1 - \lambda & |\lambda I - X_{d-3}|
\end{vmatrix}
= |\lambda I - X_{d-3}|
+ d_1 + d_2.
$$

Applying linearity on the second column

$$
|\lambda I - R(a, b)|
= \begin{vmatrix}
|\lambda I - X_{d-3}|
& 1 - \lambda \\
|\lambda I - X_{d-3}| & \lambda^2 - (a + 2)\lambda + 2 & 1 - \lambda \\
0 & 1 - \lambda & \lambda^2 - (b + 3)\lambda + 2 & 1 - \lambda \\
0 & 0 & 1 - \lambda & |\lambda I - X_{d-3}|
\end{vmatrix}
= |\lambda I - X_{d-3}|
+ d_1 + d_2.
$$

Applying now linearity on the third column of d_1, we obtain

$$
|\lambda I - R(a, b)|
= \begin{vmatrix}
|\lambda I - X_{d-3}|
& 1 - \lambda \\
|\lambda I - X_{d-3}| & \lambda^2 - (a + 2)\lambda + 2 & 1 - \lambda \\
0 & 1 - \lambda & \lambda^2 - (b + 4)\lambda + 2 & 1 - \lambda \\
0 & 0 & 1 - \lambda & |\lambda I - X_{d-3}|
\end{vmatrix}
+ d_2.
$$

We observe that

$$
|\lambda I - R(a - 1, b + 1)|
= \begin{vmatrix}
|\lambda I - X_{d-3}|
& 1 - \lambda \\
|\lambda I - X_{d-3}| & \lambda^2 - (a + 2)\lambda + 2 & 1 - \lambda \\
0 & 1 - \lambda & \lambda^2 - (b + 4)\lambda + 2 & 1 - \lambda \\
0 & 0 & 1 - \lambda & |\lambda I - X_{d-3}|
\end{vmatrix}
= |\lambda I - R(a - 1, b + 1)|.
$$
Therefore

\[
|\lambda I - R(a, b)| - |\lambda I - R(a - 1, b + 1)| = |\lambda I - X_{d-3}| - |\lambda I - X_{d-3}|
\]

\[
= \left| \begin{array}{ccc}
|\lambda I - X_{d-3}| & 1 - \lambda & 0 \\
|\lambda I - X_{d-3}| & \lambda^2 - (a + 2)\lambda + 2 & 0 \\
0 & 1 - \lambda & |\lambda I - X_{d-3}|
\end{array} \right|
\]

\[
= \left| \begin{array}{ccc}
|\lambda I - X_{d-3}| & 0 & 0 \\
|\lambda I - X_{d-3}| & -\lambda & 1 - \lambda \\
0 & 0 & |\lambda I - X_{d-3}|
\end{array} \right|
\]

\[
= \lambda |\lambda I - X_{d-3}| \left| \begin{array}{ccc}
|\lambda I - X_{d-3}| & 1 - \lambda & 0 \\
|\lambda I - X_{d-3}| & \lambda^2 - (a + 2)\lambda + 2 & 0 \\
0 & 1 - \lambda & |\lambda I - X_{d-3}|
\end{array} \right|
\]

\[
= \lambda \lambda |\lambda I - X_{d-3}| \left| \begin{array}{ccc}
|\lambda I - X_{d-3}| & 1 - \lambda & 0 \\
|\lambda I - X_{d-3}| & \lambda^2 - (a + 2)\lambda + 2 & 0 \\
0 & 1 - \lambda & |\lambda I - X_{d-3}|
\end{array} \right|
\]

\[
= \lambda^2 (b - a + 1).
\]

We have proved that

\[
|\lambda I - R(a, b)| - |\lambda I - R(a - 1, b + 1)| = \lambda^2 |\lambda I - X_{d-3}|^2 (b - a + 1)
\]

for all \(\lambda \). From Lemma 4, the smallest eigenvalue of \(X_{d-3} \) is

\[
f(\mu) = \frac{1}{2} \left(4 + \mu - \sqrt{\mu^2 + 4\mu + 8} \right).
\]

\[
\mu = 2 \cos \left(\frac{(d - 3)\pi}{d - 2} \right).
\]

Then

\[
|\lambda I - R(a, b)| - |\lambda I - R(a - 1, b + 1)| > 0
\]

for all \(\lambda \in (0, f(\mu)) \). Let

\[
0 = \alpha_1 < \alpha_2 < \alpha_3 < \cdots < \alpha_{2(d-1)}
\]

and

\[
0 = \beta_1 < \beta_2 < \beta_3 < \cdots < \beta_{2(d-1)}
\]

be the eigenvalues of \(R(a, b) \) and \(R(a - 1, b + 1) \), respectively. We know that \(f(\sigma) = 2 \cos \left(\frac{(d - 2)\pi}{d - 1} \right) \) is an upper bound for the algebraic connectivity of the caterpillars in \(C \) and that \(f \) is a strictly increasing function. Then \(0 < \beta_2 < f(\sigma) < f(\mu) \). Thus \(\beta_2 \in (0, f(\mu)) \). From (14) for \(\lambda = \beta_2 \), we have

\[
|\beta_2 I - R(a, b)| > 0.
\]

Moreover

\[
|\lambda I - R(a, b)| - |\lambda I - R(a - 1, b + 1)| = \lambda \prod_{i=2}^{2(d-1)} (\lambda - \alpha_i) - \lambda \prod_{i=2}^{2(d-1)} (\lambda - \beta_i).
\]

If \(\beta_2 \leq \alpha_2 \) then \(\beta_2 \leq \alpha_i \) for \(i = 2, 3, \ldots, 2(d-1) \) and thus
Corollary 3. For odd \(d\), among all trees in \(C_{\frac{d+1}{2}}\) the maximum algebraic connectivity is attained by the caterpillar \(C(1, \ldots, 1, p_{\frac{d+1}{2}}, 1, \ldots, 1)\) where \(p_{\frac{d+1}{2}} = n - 2d + 3\) and the minimum algebraic connectivity is attained by \(C(1, \ldots, 1, p_{\frac{d-1}{2}}, p_{\frac{d+1}{2}}, 1, \ldots, 1)\) where \(p_{\frac{d-1}{2}} = \lceil \frac{1}{2} (n - 2d + 4) \rceil \) and \(p_{\frac{d+1}{2}} = \lfloor \frac{1}{2} (n - 2d + 4) \rfloor \).

4.3. Total ordering on \(C_k\) for \(1 < k < \lfloor \frac{d-1}{2} \rfloor \)
Here \(1 < k < \lfloor \frac{d-1}{2} \rfloor \). Since
\(C_k = \{ C(1, \ldots, 1, p_k, 1, \ldots, 1, p_{d-k}, 1, \ldots, 1) \in C : p_k \leq p_{d-k} \} \),
a caterpillar in \(C_k\) is of the form \(C(1, \ldots, 1, a, 1, \ldots, 1, b, 1, \ldots, 1)\) in which \(a + b = n - 2d + 4\) and \(a \leq b\). We write \(C(a, b)\) instead of \(C(1, \ldots, 1, a, 1, \ldots, 1, b, 1, \ldots, 1)\).

Lemma 8. Let \(1 < k < \lfloor \frac{d-1}{2} \rfloor \). The algebraic connectivity of \(C(a, b) \in C_k\) is the smallest positive eigenvalue of the \(2(d-1) \times 2(d-1)\) positive semidefinite matrix
\[
S(a, b) = \begin{bmatrix}
X_{2(k-1)} & F & G & H \\
F^T & B(a) & G & H^T \\
G^T & Y_{2(d-1-2k)} & B(b) & F \\
H & H^T & F & X_{2(k-1)}
\end{bmatrix},
\]
where \(F, G\) and \(H\) are matrices of order \(2k - 2 \times 2, 2 \times (2d - 2 - 4k)\) and \((2d - 2 - 4k) \times 2\), respectively, with zeros in all the entries except for \(F(2k - 2, 2) = 1, G(2, 2) = 1\) and \(H(2d - 2 - 4k, 2) = 1\).

Proof. We have \(1 < k < \lfloor \frac{d-1}{2} \rfloor \). Then \(d - 1 > 0\) and \(d - 1 - 2k > 0\). From Theorem 2 the algebraic connectivity of \(C(a, b) \in C_k\) is the smallest positive eigenvalue of the matrix
\[
U(a, b) = \begin{bmatrix}
X_{2(k-1)} & F & G & H \\
F^T & B(a) & G & H^T \\
G^T & Y_{2(d-1-2k)} & B(b) & K \\
H & H^T & B(b) & W_{2(k-1)}
\end{bmatrix},
\]
where \(F, G, H, K\) are matrices of order \((2k - 2) \times 2, 2 \times (2d - 2 - 4k), (2d - 2 - 4k) \times 2\) and \(2 \times (2k - 2)\), respectively, with zeros in all the entries except for \(F(2k - 2, 2) = 1, G(2, 2) = 1, H(2d - 2 - 4k, 2) = 1\) and \(K(2, 2) = 1\). There is a permutation matrix \(P\) such that \(PW_{2(k-1)}P^T = X_{2(k-1)}\) and \(PK = F\). Then
\[
\begin{bmatrix}
I & I & I & I \\
I & I & I & I \\
I & I & I & I \\
I & I & I & I
\end{bmatrix}
\begin{bmatrix}
U(a, b) \\
P
\end{bmatrix}
= S(a, b). \quad \square
Theorem 6. For $1 < k < \lfloor \frac{k-1}{2} \rfloor$, the algebraic connectivity of $C(1, \ldots, 1, a, 1, \ldots, 1, b, 1, \ldots, 1) \in C_k$ is a strictly decreasing function for $1 \leq a \leq \frac{1}{2}(n-2d+4)$.

Proof. We apply Lemma 1 to $|\lambda I - S(a, b)|$. Then, as in the proofs of Theorems 4 and 5, by repeated application of the fact that the determinant is multilinear, we get

$$|\lambda I - S(a, b)| - |\lambda I - S(a - 1, b + 1)| = \lambda^2 |\lambda I - X_{2(k-1)}|^2 |\lambda I - Y_{2(d-1-2k)}|(b - a + 1)$$

for all λ. From Lemma 4, the smallest eigenvalue of $X_{2(k-1)}$ is

$$f(\mu) = \frac{1}{2} \left(4 + \mu - \sqrt{\mu^2 + 4\mu + 8} \right).$$

$$\mu = 2 \cos \frac{2(k-1)\pi}{2k-1}$$

and, from Lemma 3, the smallest eigenvalue of $Y_{2(d-1-2k)}$ is

$$f(\rho) = \frac{1}{2} \left(4 + \rho - \sqrt{\rho^2 + 4\rho + 8} \right).$$

$$\rho = 2 \cos \frac{(d-1-2k)\pi}{d-2k}.$$

Let $m = \min\{f(\mu), f(\rho)\}$. We observe that $|\lambda I - Y_{2(d-1-2k)}|$ is a polynomial of even degree. Using this fact in (16),

$$|\lambda I - S(a, b)| - |\lambda I - S(a - 1, b + 1)| > 0$$

for all $\lambda \in (0, m)$. Let

$$0 = \alpha_1 < \alpha_2 \leq \alpha_3 < \cdots < \alpha_{2(d-1)}$$

and

$$0 = \beta_1 < \beta_2 \leq \beta_3 \leq \cdots \beta_{2(d-1)}$$

be the eigenvalues of $S(a, b)$ and $S(a - 1, b + 1)$, respectively. We know that $f(\sigma), \sigma = 2 \cos \frac{(d-2)\pi}{d-1}$, is an upper bound for the algebraic connectivity of the caterpillars in C and that f is strictly increasing. Hence

$$0 < \beta_2 < f(\sigma) < f(\mu).$$

Then $\beta_2 \in (0, m)$. From (17) for $\lambda = \beta_2$, we have

$$|\beta_2 I - S(a, b)| > 0.$$

Moreover

$$|\lambda I - S(a, b)| - |\lambda I - S(a - 1, b + 1)| = \lambda \prod_{i=2}^{2(d-1)} (\lambda - \alpha_i) - \lambda \prod_{i=2}^{2(d-1)} (\lambda - \beta_i).$$

If $\beta_2 \leq \alpha_2$ then $\beta_2 \leq \alpha_i$ for $i = 2, 3, \ldots, 2(d-1)$ and thus

$$|\beta_2 I - S(a, b)| = \beta_2 \prod_{i=2}^{2(d-1)} (\beta_2 - \alpha_i) \leq 0.$$

This is in contradiction with (15), and therefore $\alpha_2 < \beta_2$. The proof is complete. \(\square\)

From Theorem 6, it follows

Corollary 4. For $1 < k < \lfloor \frac{d-1}{2} \rfloor$, among all trees in C_k the maximum algebraic connectivity is attained by the caterpillar $C(1, \ldots, 1, 1, \ldots, p_{d-k}, 1, \ldots, 1)$ where $p_{d-k} = n - 2d + 3$ and the minimum algebraic
connectivity is attained by $C(1, \ldots, 1, p_k, \ldots, p_{d-k}, 1, \ldots, 1)$ where $p_k = \lfloor \frac{1}{2} (n - 2d + 4) \rfloor$ and $p_{d-k} = \lceil \frac{1}{2} (n - 2d + 4) \rceil$.

Acknowledgments

The authors wish to thank the referee for the valuable comments which led to an improved version of the paper.

References