The least eigenvalue of a graph with a given domination number

Bao-Xuan Zhu

School of Mathematical Sciences, Jiangsu Normal University, Xuzhou 221116, PR China

ARTICLE INFO

Article history:
Received 27 February 2012
Accepted 5 June 2012
Available online 4 July 2012
Submitted by R.A. Brualdi

AMS classification:
05C50
15A18

Keywords:
 Domination number
 Least eigenvalue
 Spectral radius

ABSTRACT

In this paper, we characterize the unique graph whose least eigenvalue achieves the minimum among all graphs with n vertices and domination number \(\gamma \). Thus we can obtain a lower bound on the least eigenvalue of a graph in terms of the domination number.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper all graphs are finite and simple. Readers are suggested to refer to [4] for graph theoretical terminologies not specified here.

Let \(G = (V(G), E(G)) \) be a simple graph with \(n \) vertices and \(V(G) = \{v_1, v_2, \ldots, v_n\} \). Denote by \(N(v) \) (or \(N_G(v) \) for short) the set of all neighbors of \(v \) in \(G \). The adjacency matrix of \(G \) is \(A(G) = (a_{ij})_{n \times n} \), where \(a_{ij} = 1 \) if two vertices \(v_i \) and \(v_j \) are adjacent in \(G \) and \(a_{ij} = 0 \) otherwise. All eigenvalues of \(A(G) \) are real and can be arranged in order as \(\lambda_1(G) \geq \lambda_2(G) \geq \cdots \geq \lambda_n(G) \) since it is a real symmetric matrix. The largest eigenvalue \(\lambda_1(G) \) of \(A(G) \) is called the spectral radius of \(G \), denoted by \(\rho(G) \). In addition, by the Perron–Frobenius Theorem, we know that the spectral radius \(\rho(G) \) is simple and has a unique (up to a multiplication by a scalar) positive eigenvector if \(G \) is connected. We shall refer to such an eigenvector as the Perron vector of \(A(G) \). If \(x \) is a unit Perron vector of \(A(G) \), then we have
\[\rho(G) = \max_{y \in \mathbb{R}^n, \|y\| = 1} y^T A(G) y = x^T A(G) x = \sum_{v_i v_j \in E(G)} 2x_{v_i}x_{v_j}. \]

The least eigenvalue \(\lambda_{\min}(G) \) is now denoted by \(\lambda_{\min}(G) \), and the corresponding eigenvectors are called the least vectors of \(G \). Assume that \(\mathbf{x} = (x_1, x_2, \ldots, x_n)^T \in \mathbb{R}^n \) and \(\mathbf{x} \) is a unit least vector of \(G \). Then by the Rayleigh–Ritz Theorem,

\[\lambda_{\min}(G) = \min_{y \in \mathbb{R}^n, \|y\| = 1} y^T A(G) y = x^T A(G) x = \sum_{v_i v_j \in E(G)} 2x_{v_i}x_{v_j} \]

and

\[\lambda_{\min}(G)x_v = \sum_{u \in N_G(v)} x_u \quad \text{for each} \quad v \in V(G). \]

Eq. (1.3) is also called an eigenvalue equation for the vertex \(v \) of \(G \). It is known that \(\lambda_{\min}(G) = -\rho(G) \) for a bipartite graph \(G \) (see [7]).

Recall that a set \(D \) of vertices of a graph \(G \) is said to be dominating if every vertex of \(V(G) \setminus D \) is adjacent to a vertex of \(D \), and the domination number \(\gamma(G) \) \((\gamma, \text{ for short}) \) is the minimum number of vertices of a dominating set in \(G \). If \(G \) has no isolated vertices, then \(\gamma \leq \frac{n}{2} \) (see [17]).

The investigation on the spectrum of graphs is an important topic in the theory of graph spectra. Brualdi and Solheid [5] proposed the following problem concerning the spectral radii: Given a set of graphs \(\mathcal{G} \), find an upper bound for the spectral radii of graphs in \(\mathcal{G} \) and characterize the graphs in which the maximal spectral radius is attained. This problem has been well studied, see [3, 10, 13, 20] for example. Recently, researchers have begun to pay attention to the least eigenvalues of graphs with a given value of some well-known integer graph invariant: for instance: order and size [1, 2, 8, 18], unicyclic graphs with a given number of pendant vertices [14], matching number and independence number [21], number of cut vertices [22], connectivity [23], chromatic number [9]. On the other hand, there are some bounds on the least eigenvalue. For example: Constantine [6] obtained that

\[\lambda_{\min}(G) \geq -\sqrt{\left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil} \]

for any graph of order \(n \), where equality holds if and only if \(G = K_{\left\lfloor \frac{n}{2} \right\rfloor , \left\lceil \frac{n}{2} \right\rceil} \). Powers [19] gave a similar result

\[\lambda_{\min}(G) \geq -\sqrt{m}, \]

where \(m \) is the size of the graph \(G \). Hoffman [12] showed that

\[\lambda_{\min}(G) \geq \frac{-\rho(G)}{\chi(G) - 1}, \]

where \(\chi(G) \) is the chromatic number of \(G \). For \(K_{r+1} \)-free graphs \(G \) of order \(n \) and size \(m \), Nikiforov [15] obtained the upper bound

\[\lambda_{\min}(G) < -\frac{2}{r} \left(\frac{2m}{n^2} \right)^r n. \]

Some other relevant bounds are also obtained by Godsil and Newman [11] and Nikiforov [16].

For convenience, a graph is called minimizing in a certain graph class if its least eigenvalue achieves the minimum among all graphs in the class. Denote by \(\mathcal{G}_{n, \gamma} \) (respectively, \(\mathcal{B}_{n, \gamma} \)) the set of all graphs (respectively, bipartite graphs) with \(n \) vertices and the domination number \(\gamma \).
In this paper, we consider the structure of a minimizing graph in $G_{n, \gamma}$ for the fixed n and γ. In [20], Stevanović et al. characterized the graphs having the maximal spectral radius in $G_{n, \gamma}$. In contrast, we will characterize the minimizing graph(s) in $G_{n, \gamma}$.

2. Graphs in $B_{n, \gamma}$ with the maximal spectral radius

In this section, we will characterize the graphs in $B_{n, \gamma}$ with the maximal spectral radius. In order to prove our results, we need the following lemma.

Lemma 1 [3, Lemma 2.1]. Let G be a connected graph on n vertices with vertex degrees d_1, d_2, \ldots, d_n and $\rho(G)$ be the spectral radius of G. Then
\[\rho(G) \leq \max_{uv \in E(G)} \sqrt{d_ud_v}. \] (2.1)

Moreover, equality holds if and only if G is regular or bipartite semi-regular.

Theorem 1. Let $G \in B_{n, \gamma}$. If G has the maximal spectral radius, then we have

(i) $G \cong K_{1, n-1}$ for $\gamma = 1$,
(ii) $G \cong K_{\lceil \frac{n-\gamma+2}{2} \rceil, \lceil \frac{n-\gamma+2}{2} \rceil} \cup (\gamma - 2)K_1$ for $\gamma \geq 2$.

Proof. Assume that $G \in B_{n, \gamma}$ and G has the maximal spectral radius and let G_1, G_2, \ldots, G_k be its connected components. Then $\rho(G) = \max_{1 \leq i \leq k} \rho(G_i)$. It is trivial for $\gamma = 1$. Thus, we assume $\gamma \geq 2$ in the following. Note that $\max_{uv \in E(G)} d_u + d_v \leq n - \gamma + 2$; otherwise there exists a dominating set in G with fewer than γ vertices, a contradiction. Consequently, we have
\[\rho(G) \leq \max_{uv \in E(G)} \sqrt{d_ud_v} \leq \sqrt{\left\lfloor \frac{n-\gamma+2}{2} \right\rfloor \left\lceil \frac{n-\gamma+2}{2} \right\rceil} \]
with the equality in the first inequality if and only if G is a bipartite semi-regular graph in view of Lemma 1, the equality in the second inequality if and only if $d_u = \left\lfloor \frac{n-\gamma+2}{2} \right\rfloor$ and $d_v = \left\lceil \frac{n-\gamma+2}{2} \right\rceil$ for some edge uv. Hence $G \cong K_{\left\lfloor \frac{n-\gamma+2}{2} \right\rfloor, \left\lceil \frac{n-\gamma+2}{2} \right\rceil} \cup (\gamma - 2)K_1$. \[\square\]

3. Minimizing graphs in $B_{n, \gamma}$

In this section, we will determine the minimizing graphs in $B_{n, \gamma}$.

Lemma 2 [14, Lemma 2.6]. Let A be an $n \times n$ real symmetric matrix and λ be the least eigenvalue of A. If $\lambda = x^T A x$, where $x \in \mathbb{R}^n$ is a unit vector, then $A x = \lambda x$.

Lemma 3. Let G^* be a connected graph with two nonadjacent vertices u, v and let G be the graph obtained from G^* by adding the edge uv. Assume that x and y are the unit least vectors of G and G^*, respectively. Then

(i) $\lambda_{\min}(G^*) \leq \lambda_{\min}(G)$ if $x_u = 0$ or $x_v = 0$, and the equality holds if and only if x is a least vector of G and $x_u = x_v = 0$.

(ii) $\lambda_{\min}(G) \leq \lambda_{\min}(G^*)$ if $y_u = 0$ or $y_v = 0$, and the equality holds if and only if y is a least vector of G and $y_u = y_v = 0$.

(iii) $\lambda_{\min}(G) < \lambda_{\min}(G^*)$ if $y_u y_v < 0$.
Proof. (i) By Eq. (1.2), we have
\[
\lambda_{\text{min}}(G^*) \leq x^T A(G^*)x = x^T A(G)x - 2x_u x_v = \lambda_{\text{min}}(G) - 2x_u x_v.
\]
If \(x_u = 0\) or \(x_v = 0\), then \(\lambda_{\text{min}}(G^*) \leq \lambda_{\text{min}}(G)\). If the equality holds, then \(\lambda_{\text{min}}(G^*) = x^T A(G^*)x\). Thus, by Lemma 2, we have \(A(G^*)y = \lambda_{\text{min}}(G^*)y\) and so \(x\) is also a least vector of \(G^*\). Comparing the eigenvalue equation (1.3) of \(G\) and \(G^*\), for the vertex \(u\) or \(v\), we get \(x_u = x_v = 0\).

Similarly, (ii) and (iii) can be proved. □

Denote by \(\lambda_{n, \gamma}\) the minimum of the least eigenvalue of the graphs in \(\mathcal{G}_{n, \gamma}\), or equivalently the least eigenvalue of a minimizing graph in \(\mathcal{G}_{n, \gamma}\).

Lemma 4. Let \(\lambda_{n, \gamma}\) denote the minimum of the least eigenvalues of the graphs in \(\mathcal{G}_{n, \gamma}\) and \(\gamma \geq 2\). Then we obtain that \(\lambda_{n, \gamma}\) is strictly decreasing with respect to \(n\), and is strictly increasing with respect to \(\gamma\).

Proof. Let \(G\) be a minimizing graph in \(\mathcal{G}_{n, \gamma}\), and let \(x\) be a unit least vector of \(G\). Note that there exists a vertex \(u\) in any dominating set \(D\) of \(G\) with \(x_u \neq 0\); otherwise we have
\[
-\sqrt{\left[\frac{n - \gamma + 2}{2}\right] \left[\frac{n - \gamma + 2}{2}\right]} \geq \lambda_{n, \gamma} = x^T A(G)x = x^T A(G - D)x \geq \lambda_{\text{min}}(G - D)
\]
and
\[
\lambda_{\text{min}}(G - D) \geq -\sqrt{\left[\frac{n - \gamma}{2}\right] \left[\frac{n - \gamma}{2}\right]},
\]
a contradiction. Let \(G^*\) be obtained from \(G\) by adding a new vertex \(v\) with the edge \(vu\). It is clear that \(G^* \in \mathcal{G}_{n+1, \gamma}\). Let \(y \in \mathbb{R}^{n+1}\) with \(y_v = 0\) and \(y_s = x_s\) for any vertex \(s\) of \(G\). Then we have \(\lambda_{\text{min}}(G^*) \leq y^T A(G^*)y = x^T A(G) = \lambda_{\text{min}}(G)\). Further, we obtain \(\lambda_{\text{min}}(G^*) < \lambda_{\text{min}}(G)\) since \(y_u \neq 0\) and \(y_v = 0\). Thus, \(\lambda_{n+1, \gamma} < \lambda_{n, \gamma}\) follows from \(\lambda_{n+1, \gamma} < \lambda_{n, \gamma}\).

In what follows, we will show that \(\lambda_{n, \gamma}\) is strictly increasing with respect to \(\gamma\). This result is obvious if \(G \cong K_{\left\lfloor \frac{n - \gamma + 2}{2} \right\rfloor, \left\lceil \frac{n - \gamma + 2}{2} \right\rceil} \cup (\gamma - 2)K_1\), since
\[
\lambda_{n, \gamma} = -\sqrt{\left[\frac{n - \gamma + 2}{2}\right] \left[\frac{n - \gamma + 2}{2}\right]} > -\sqrt{\left[\frac{n - (\gamma - 1) + 2}{2}\right] \left[\frac{n - (\gamma - 1) + 2}{2}\right]} \geq \lambda_{n, \gamma - 1}.
\]

Thus, we assume \(G \neq K_{\left\lfloor \frac{n - \gamma + 2}{2} \right\rfloor, \left\lceil \frac{n - \gamma + 2}{2} \right\rceil} \cup (\gamma - 2)K_1\) in the following. Let \(V^+ = \{v \in V(G) : x_v > 0\}\), \(V^- = \{v \in V(G) : x_v < 0\}\) and \(V^0 = \{v \in V(G) : x_v = 0\}\). We claim that there exists two nonadjacent vertices \(u\) and \(v\) with \(x_u x_v < 0\). Assume, to the contrary, that each vertex of \(V^+\) is adjacent to each vertex of \(V^-\) and if some vertex of \(V^0\) is adjacent to one vertex of \(V^+\), then it has to be adjacent to at least one vertex of \(V^-\). Thus, we have \(|V^0| \geq \gamma - 2\), where equality holds if and only if \(V_0\) is an independent set of \(G\) and no edges connect the vertices of \(V^0\) and those of \(V^+ \cup V^-\). Consequently, we have
\[
\lambda_{n, \gamma} = \lambda_{\text{min}}(G) = x^T A(G)x = x^T A(G - V^0)x \geq -\sqrt{\left[\frac{n - \gamma + 2}{2}\right] \left[\frac{n - \gamma + 2}{2}\right]},
\]
where equality holds if and only if \(V^0\) is an independent set of order \(\gamma - 2\) and \(G - V^0 \cong K_{\left\lfloor \frac{n - \gamma + 2}{2} \right\rfloor, \left\lceil \frac{n - \gamma + 2}{2} \right\rceil}\). On the other hand, we have
Let G be a minimizing graph in $\mathcal{G}_{n,\gamma}$ with $\gamma \geq 2$. Assume for the contradiction that there exists a vertex v of G such that $x_v = 0$ and $x_u \neq 0$ for some edge $e = uv$. Let $G^* = G - e$, and let x be a least vector of G. Consequently, we have $G - e \in \mathcal{G}_{n,\gamma'}$, where $\gamma' \geq \gamma$. Thus, by Lemma 3, we obtain that
\[\lambda_{n,\gamma'} = \lambda_{\min}(G^*) \geq x^T A(G)x > \lambda_{\min}(G^*) \geq \lambda_{n,\gamma'}, \]
which is a contradiction since $\lambda_{n,\gamma'} > \lambda_{n,\gamma}$ in view of Lemma 4. Hence, $x_v \neq 0$ for any $v \in V(G)$ with $d_v > 0$. □

Theorem 2. Let G be a minimizing graph in $\mathcal{G}_{n,\gamma}$. Then we have

(i) $G \cong K_1 \lor K_{\lceil \frac{n-1}{2} \rceil, \lceil \frac{n-1}{2} \rceil}$ for $\gamma = 1$ and $n \geq 6$.

(ii) $G \cong K_{\lceil \frac{n-\gamma+2}{2} \rceil, \lceil \frac{n-\gamma+2}{2} \rceil} \lor (\gamma - 2)K_1$ for $\gamma \geq 2$.

Proof. Let G be a minimizing graph in $\mathcal{G}_{n,\gamma}$, and let x be a unit least vector of G. Let $V^+ = \{ v \in V(G) : x_v > 0 \}$, $V^- = \{ v \in V(G) : x_v < 0 \}$, and $V^0 = \{ v \in V(G) : x_v = 0 \}$.

(i) If $\gamma = 1$. It is easy to see that each vertex in V^+ and each vertex in V^- are adjacent; otherwise, we have $\lambda_{n,1} < \lambda_{\min}(G + e) < \lambda_{\min}(G) = \lambda_{n,1}$ by adding a such edge e to G, a contradiction. Note that $\lambda_{n,1} \leq \lambda_{\min}(K_{1,n-1}) < -2$ for $n \geq 6$.

Case 1. If $V^0 \neq \emptyset$, then each vertex in V^0 is adjacent to all the vertices in $V^+ \cup V^-$ by Lemma 3. In addition, both V^+ and V^- are independent sets; otherwise, we have a graph $G^* \in \mathcal{G}_{n,1}$ obtained from G by deleting edges within V^+ or V^- with $\lambda_{\min}(G^*) < \lambda_{\min}(G)$, a contradiction. Let x^* be a subvector of x by deleting the entries corresponding to vertices in V^0. Thus,
\[\lambda_{\min}(G) = x^T A(G)x = x^* A(G^*)x^* \geq \lambda_{\min}(G - V^0) \geq \sqrt{\left\lfloor \frac{n-1}{2} \right\rfloor \left\lceil \frac{n-1}{2} \right\rceil}. \]

Hence $\lambda_{\min}(G) \geq -\sqrt{\left\lfloor \frac{n-1}{2} \right\rfloor \left\lceil \frac{n-1}{2} \right\rceil}$, where equality holds if and only if $|V^0| = 1$, $|V^+| = \lceil \frac{n-1}{2} \rceil$, and $|V^-| = \lfloor \frac{n-1}{2} \rfloor$. Furthermore, using the eigen-equation at the vertex of V^0, we have $G \cong K_1 \lor K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor}$ for $\gamma = 1$ only if n is odd.

Case 2. If $V^0 = \emptyset$, then we assume that $|V^+| = a + 1$ and $|V^-| = b$ for $a + b = n - 1$. Without loss of generality, let $d_u = n - 1$ for some vertex $u \in V^+$ since $\gamma = 1$. Then $V^+ \setminus \{u\}$ and V^- are independent sets, respectively; otherwise, we have a graph $G^* \in \mathcal{G}_{n,1}$ obtained from G by deleting edges within $V^+ \setminus \{u\}$ or V^- with $\lambda_{\min}(G^*) < \lambda_{\min}(G)$, a contradiction. Thus, $G \cong K_1 \lor C_{a-b}$ and $a \neq b$ since
$V^O = \emptyset$, where O_a is an empty graph of order a. It is easy to obtain that $\lambda_{\min}(G)$ is the least zeros of the polynomial $f(a, b, x) = x^3 - (n - 1 + ab)x - 2ab$. Since

$$f(a, b, x) - f(a + 1, b - 1, x) = (b - a - 1)(x + 2) \leq 0$$

for $a < b$ and $x < -2$, $\lambda_{\min}(G)$ is achieved only at $K_n \cup K_{\frac{n-1}{2}} \cup K_{\frac{n-1}{2}}$ and n is even.

Combining Case 1 and Case 2, we have shown that (i) holds.

(ii) By Theorem 1, it suffices to show that G is a bipartite graph. In view of Lemma 5, $x_v \neq 0$ for any $v \in V(G)$ with $d_v > 0$. Assume that G is not a bipartite graph. Consequently, we have $x_vx_v > 0$ for some edge $e = uv$ in some odd cycle and $G - e \in \mathcal{G}_{n,y'}$, where $y' \geq y$. However, we have

$$\lambda_{n,y'} = x^T A(G)x = x^T A(G - e)x + 2x_u x_v > x^T A(G - e)x \geq \lambda_{\min}(G - e) \geq \lambda_{n,y'},$$

which is a contradiction since $\lambda_{n,y'} < \lambda_{n,y'}$ by virtue of Lemma 4. Thus, we obtain that G is a bipartite graph. The proof is complete. □

Acknowledgements

The author would like to thank his Ph.D. Advisor Professor Yi Wang (at Dalian University of Technology) for his encouragement and is also very grateful to the referee for his/her valuable suggestions towards improving this paper.

References