The new upper bounds on the spectral radius of weighted graphs

Sezer Sorguna,*, Şerife Büyükköseb

a Nevşehir University, Department of Mathematics, Nevşehir, Turkey
b Ahi Evran University, Faculty of Sciences and Arts, Department of Mathematics, 40100 Kirşehir, Turkey

\textit{Abstract}

Let us consider weighted graphs, where the weights of the edges are positive definite matrices. The eigenvalues of a weighted graph are the eigenvalues of its adjacency matrix and the spectral radius of a weighted graph is also the spectral radius of its adjacency matrix. In this paper, we obtain two upper bounds for the spectral radius of weighted graphs and compare with a known upper bound. We also characterize graphs for which the upper bounds are attained.

\textcopyright 2011 Elsevier Inc. All rights reserved.

\textbf{Keywords:} Weighted graph, Adjacency matrix, Spectral radius, Upper bound

\textbf{1. Introduction}

We consider simple graphs, that is, graph which have no loops or parallel edges. Hence a graph \(G = (V, E) \) consists of a finite set of vertices, \(V \), and a set of edges, \(E \), each of whose elements is an unordered pair of distinct vertices. Generally \(V \) is taken as \(V = \{1, 2, \ldots, n\} \).

A weighted graph is a graph, each edge of which has been assigned a number. Such weights might represent, for example, costs, lengths or capacities, etc. The weight of the edge can also be a square matrix. In this paper, unless otherwise stated, the weights of the edges will be taken positive definite matrices of the same order.

Now we introduce some notations. Let \(G \) be a weighted graph on \(n \) vertices, denote by \(w_{ij} \) the positive definite matrix of order \(p \) of the edge \(ij \), and assume that \(w_{ij} = w_{ji} \). We write \(i \sim j \) if vertices \(i \) and \(j \) are adjacent. Let \(w_i = \sum_{j:\, i \sim j} w_{ij} \) be the weight matrix of the vertex \(i \).

The adjacency matrix of a graph \(G \) is a block matrix, denoted and defined as \(A(G) = (a_{ij}) \) where

\[
a_{ij} = \begin{cases}
w_{ij} & \text{if } i \sim j, \\
0 & \text{otherwise}.
\end{cases}
\]

Note that in the definition above, the zero denotes the \(p \times p \) zero matrix. Thus \(A(G) \) is a square matrix of order \(np \). For any symmetric matrix \(K \), let \(\rho_1(K) \) denote the largest eigenvalue, in modulus (i.e., the spectral radius) of \(K \).

Let \(G = (V, E) \) be, if \(V \) is the disjoint union of two nonempty sets \(V_1 \) and \(V_2 \) such that every vertex \(i \) in \(V_1 \) has the same \(\rho_1(w_i) \) and every vertex \(j \) in \(V_2 \) has the same \(\rho_1(w_j) \), then \(G \) will be called a weight-semiregular graph. If \(\rho_1(w_i) = \rho_1(w_j) \) in weight-semiregular graph, then \(G \) will be called a weight-regular graph.

Upper and lower bounds for the spectral radius of unweighted graphs have been investigated to a great extent in literature [1–5,7,8]. Especially, some of the authors [4,5] have discussed whether the bounds, which they have obtained, are sharper bounds for the spectral radius of graphs. In addition to the studies about unweighted graphs, some studies on weighted graphs have also been done. Das and Bapat [6] have studied weighted graphs, where the weights of the edges are positive definite matrices, and found an upper bound for the spectral radius of weighted graphs. They have also characterized graphs for which...
the upper bound is attained. The main result of this paper, contained in Section 2, gives two upper bounds on the spectral radius for weighted graphs, where the edge weights are positive definite matrices. We also compare our upper bounds with Das and Bapat’s upper bound. We call our upper bounds as new, because they are sharper than Das and Bapat’s upper bound.

2. The new upper bounds on the spectral radius of weighted graphs

Lemma 1 [9]. Let B be a Hermitian $n \times n$ matrix with ρ_1 as its largest eigenvalue, in modulus. then for any $\bar{x} \in \mathbb{R}^n(\bar{x} \neq 0)$, $\bar{y} \in \mathbb{R}^n(\bar{y} \neq 0)$, the spectral radius $|\rho_1|$ satisfies

$$|\bar{x}^T B \bar{y}| \leq |\rho_1| \sqrt{\bar{x}^T \bar{y} \bar{y}^T} \bar{x}$$

Equality holds if and only if \bar{x} is an eigenvector of B corresponding to ρ_1 and $\bar{y} = \alpha \bar{x}$ for some $\alpha \in \mathbb{R}$.

Lemma 2 [9]). Let $A, B \in M_n$ be Hermitian and let the eigenvalues $\rho_i(A)$, $\rho_i(B)$, and $\rho_i(A + B)$ be arranged in increasing order ($\rho_n \leq \rho_{n-1} \leq \cdots \leq \rho_2 \leq \rho_1$). For each $k = 1, 2, \ldots, n$ we have

$$\rho(k)(A) + \rho(k)(B) \leq \rho(k)(A + B) \leq \rho(k)(A) + \rho(k)(B)$$

Lemma 3 ([6]). Let B_1, B_2, \ldots, B_q be positive definite matrices of order n and let $B = \sum_{i=1}^q B_i$. If \bar{x} is an eigenvector of each B_i corresponding to the largest eigenvalue $\rho_i(B_i)$ for all i, then \bar{x} is also an eigenvector of B corresponding to the largest eigenvalue $\rho_i(B)$.

Theorem 1 ([6]). Let G be a weighted graph which is simple, connected and let ρ_1 be the largest eigenvalue (in modulus) of G, so that $|\rho_1|$ is the spectral radius of G. Then

$$|\rho_1| \leq \max_{i \neq j} \left\{ \sqrt{n} \sum_{k=1}^q \rho(k)(w_{ik}) \sum_{k=1}^q \rho(k)(w_{kj}) \right\},$$

where w_{ij} is the positive definite matrix of order p of the edge ij. Moreover, equality holds in (2.3) if and only if

(i) G is a weighted-regular graph or G is a weight-semiregular bipartite graph;
(ii) w_{ij} have a common eigenvector corresponding to the largest eigenvalue $\rho_i(w_{ij})$ for all i, j.

Theorem 2. Let G be a weighted graph which is simple, connected and let ρ_1 be the largest eigenvalue (in modulus) of G, so that $|\rho_1|$ is the spectral radius of G. Then

$$|\rho_1| \leq \max_{i \neq j} \left\{ \sqrt{n} \sum_{k=1}^q \rho(k)(w_{ik}) \rho(k)(w_{ik}) \right\},$$

where w_{ij} is the positive definite matrix of order p of the edge ij. Moreover, equality holds in (2.4) if and only if

(i) G is a weighted-regular graph or G is a weight-semiregular bipartite graph;
(ii) w_{ij} have a common eigenvector corresponding to the largest eigenvalue $\rho_i(w_{ij})$ for all i, j.

Proof. Let $M(G)$ be the block diagonal matrix $\text{diag}(\gamma_1 I_{p, \bar{v}_2}, \gamma_2 I_{p, \bar{v}_2}, \ldots, \gamma_n I_{p, \bar{v}_n})$ where $\gamma_i = \rho_i(w_i), i = 1, 2, \ldots, n$.

Let $\bar{X} = (\bar{x}_1^T, \bar{x}_2^T, \ldots, \bar{x}_n^T)^T$ be an eigenvector corresponding to the largest eigenvalue ρ_1 of $M(G)^{-1}A(G)M(G)$. We assume that \bar{x}_i is the vector component of \overline{X} such that $\bar{x}_i^T \bar{x}_i = \max_{k \in V} \{\bar{x}_k^T \bar{x}_k\}$. Since \bar{X} is nonzero, so is \bar{x}_i.

Let $\bar{x}_i^T \bar{x}_j = \max_{k \in V} \{\bar{x}_k^T \bar{x}_k\}$ be, then, for all k, $i \sim k$, we get $\bar{x}_i^T \bar{x}_j = \bar{x}_i^T \bar{x}_k$.

The (i, j)th block of $M(G)^{-1}A(G)M(G)$ is

$$\begin{cases} \frac{\bar{v}_i}{\bar{v}_j} w_{ij} & \text{if } i \sim j, \\ 0 & \text{otherwise.} \end{cases}$$

We have

$$\{M(G)^{-1}A(G)M(G)\} \bar{X} = \rho_1 \bar{X}.$$ **(2.6)**

From the ith equation of (2.6), we have

$$\rho_i \bar{x}_i = \sum_{k=1}^n \frac{\bar{v}_k}{\bar{v}_i} w_{ik} \bar{x}_k.$$ **(2.7)**

i.e., $\rho_i \bar{x}_i^T \bar{x}_i = \sum_{k=1}^n \frac{\bar{v}_k}{\bar{v}_i} w_{ik} \bar{x}_k$
Taking modulus on both sides and using inequalities of (2.1) and (2.5), we get
\[
|\rho_1 \, \bar{x}_j^T \bar{x}_i| \leq \sum_{k \in I} |\bar{x}_j^T \frac{\gamma_k}{\gamma_i} w_{jk} \bar{x}_k| \leq \sqrt{\bar{x}_j^T \bar{x}_j} \sqrt{\sum_{k \in I} \frac{\gamma_k}{\gamma_i} \rho_1(w_{ik})} \leq \sqrt{\bar{x}_j^T \bar{x}_j} \sqrt{\sum_{k \in I} \frac{\gamma_k}{\gamma_i} \rho_1(w_{ik})}. \tag{2.8}
\]

From the \(j\)th equation of (2.6), we have
\[
\rho_1 \bar{x}_j = \sum_{k \in I} \frac{\gamma_k}{\gamma_j} w_{jk} \bar{x}_k, \tag{2.11}
\]
i.e., \(\rho_1 \bar{x}_j^T \bar{x}_j = \sum_{k \in I} \frac{\gamma_k}{\gamma_j} w_{jk} \bar{x}_k \bar{x}_k^T \bar{x}_j\)

Taking modulus on both sides and using inequalities of (2.1) and since \(\bar{x}_j^T \bar{x}_j = \max_{k \in I} \{\bar{x}_j^T \bar{x}_k\}\), we get
\[
|\rho_1 | \bar{x}_j^T \bar{x}_j| \leq \sum_{k \in I} \frac{\gamma_k}{\gamma_j} \rho_1(w_{jk}) \sqrt{\bar{x}_j^T \bar{x}_j} \sqrt{\sum_{k \in I} \frac{\gamma_j}{\gamma_k} \rho_1(w_{jk})} \leq \sqrt{\bar{x}_j^T \bar{x}_j} \sqrt{\sum_{k \in I} \frac{\gamma_j}{\gamma_k} \rho_1(w_{jk})}. \tag{2.12}
\]

We assume that \(\bar{x}_i = 0\). Then \(\bar{x}_k = 0\), for all \(k, k \sim i\). From \(i\)th equation of (2.6), we get \(\rho_1 \bar{x}_i = 0\). Since \(\bar{x}_i \neq 0\), \(\rho_1 = 0\), which is not possible as \(|\rho_1|\) is spectral radius of a nonzero matrix. Hence \(\bar{x}_j^T \bar{x}_j \neq 0\). From (2.10) and (2.14), we get
\[
|\rho_1| \leq \sqrt{\sum_{k \in I} \frac{\gamma_k}{\gamma_j} \rho_1(w_{jk})} \leq \sqrt{\frac{\rho_1(w_k)}{\rho_1(w_i)}} \rho_1(w_{ik}) \leq \frac{\rho_1(w_k)}{\rho_1(w_i)} \rho_1(w_{ik}) \tag{2.13}
\]

Hence, we get
\[
|\rho_1| \leq \max_{i,j} \left\{ \sqrt{\frac{\rho_1(w_k)}{\rho_1(w_i)}} \frac{\rho_1(w_k)}{\rho_1(w_i)} \frac{\rho_1(w_k)}{\rho_1(w_i)} \right\} \tag{2.14}
\]

This completes the proof (2.4). \(\square\)

Now suppose that equality holds in (2.4). Then all equalities in the above argument must be equalities. From equality in (2.10), we get \(\bar{x}_j^T \bar{x}_k = \bar{x}_j^T \bar{x}_k\) for all \(k, k \sim i\). From this, we get \(\bar{x}_i = 0\), for all \(k, k \sim i\) as \(\bar{x}_j \neq 0\).

From equality in (2.9), we get that both \(\bar{x}_i\) and \(\bar{x}_k\) are eigenvectors of \(w_{ik}\) for the largest eigenvalue \(\rho_1(w_{ik})\), for all \(k, k \sim i\). Therefore for any \(k, k \sim i\)
\[
\bar{x}_j = b_{ik} \bar{x}_i \tag{2.15}
\]
for some \(b_{ik}\). Let \(b_{ik} = \frac{x_j}{x_i}\) be for all \(k, k \sim i\).

Similarly, from equalities in (2.12)-(2.14), we get that both \(\bar{x}_i\) and \(\bar{x}_k\) are eigenvectors of \(w_{jk}\) for the largest eigenvalue \(\rho_1(w_{jk})\), for all \(k, k \sim j, j \sim i\) and for any \(k, k \sim j, j \sim i\), we have
\[
\bar{x}_k = c_{jk} \bar{x}_j \tag{2.16}
\]
for some \(c_{jk}\). Let \(c_{jk} = \frac{x_k}{x_j}\) be for all \(k, k \sim j, j \sim i\).

If we write (2.15) in equalities between (2.8) and (2.10), we have
\[
\rho_1 = \sum_{k \in I} \rho_1(w_{ik}) \tag{2.17}
\]
By a similar argument, if we use (2.16) in equalities between (2.12) and (2.14), we can have
\[
\rho_1 = \sum_{k \in I} \rho_1(w_{jk}) \tag{2.18}
\]
Let G be a weighted graph which is simple, connected and let

ρ_1 be the largest eigenvalue of G.

Theorem 3. Let G be a weighted graph which is simple, connected and let ρ_1 be the largest eigenvalue (in modulus) of G, so that $|\rho_1|$ is the spectral radius of G. Then

$$|\rho_1| \leq \max_{i \sim j} \left\{ \sum_{k \sim i} \frac{\rho_1(w_{ik})}{\rho_1(w_{ij})} \sum_{k \sim j} \frac{\rho_1(w_{jk})}{\rho_1(w_{ij})} \right\}. \quad (2.21)$$

where w_{ij} is the positive definite matrix of order p of the edge ij and $\alpha_i = \sum_{k \sim i} \rho_1(w_{ik})$ for $1 \leq i \leq n$. Moreover, equality holds in (2.21) if and only if

(i) G is a weighted-regular graph or G is a weight-semiregular bipartite graph;
(ii) w_{ij} have a common eigenvector corresponding to the largest eigenvalue $\rho_1(w_{ij})$ for all i,j.

From (2.17) and (2.18), we get

$$|\rho_1| = \max_{i \sim j} \left\{ \sum_{k \sim i} \frac{\rho_1(w_{ik})}{\rho_1(w_{ij})} \sum_{k \sim j} \frac{\rho_1(w_{jk})}{\rho_1(w_{ij})} \right\}$$

for $i \sim j$.

From Theorem 1, conditions (i) and (ii) hold.

Conversely, suppose that conditions (i) and (ii) of the theorem hold for the graph G. We must prove that

$$|\rho_1| = \max_{i \sim j} \left\{ \sum_{k \sim i} \frac{\rho_1(w_{ik})}{\rho_1(w_{ij})} \sum_{k \sim j} \frac{\rho_1(w_{jk})}{\rho_1(w_{ij})} \right\}.$$

Let x be a common eigenvector of w_{ij} corresponding to the largest eigenvalue $\rho_1(w_{ij})$ for all i,j. Using Lemma 3, we get that each w_i has also eigenvector x corresponding to the largest eigenvalue $\rho_1(w_i)$.

We suppose that G is a weight-semiregular bipartite graph. Let V_1, V_2 be the vertex classes of G. Let $\rho_1(w_i) = \alpha$ be for $i \in V_1$ and $\rho_1(w_i) = \beta$ be for $i \in V_2$.

The following equation can be easily verified:

$$\begin{pmatrix} \sqrt{\beta}x \\ \sqrt{\beta}x \\ \sqrt{\beta}x \\ \sqrt{\beta}x \\ \sqrt{\beta}x \\ \sqrt{\beta}x \end{pmatrix} = \begin{pmatrix} 0 & 0 & \frac{\alpha}{\sqrt{\beta}}w_{1,k+1} & \frac{\alpha}{\sqrt{\beta}}w_{1,n} \\ 0 & 0 & \frac{\alpha}{\sqrt{\beta}}w_{2,k+1} & \frac{\alpha}{\sqrt{\beta}}w_{2,n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\alpha}{\sqrt{\beta}}w_{k,k+1} & \frac{\alpha}{\sqrt{\beta}}w_{k,n} & 0 & 0 \\ \frac{\alpha}{\sqrt{\beta}}w_{k+1,k} & \frac{\alpha}{\sqrt{\beta}}w_{k+1,n} & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix} \begin{pmatrix} \sqrt{\beta}x \\ \sqrt{\beta}x \\ \sqrt{\beta}x \\ \sqrt{\beta}x \\ \sqrt{\beta}x \\ \sqrt{\beta}x \end{pmatrix}.$$
Proof. We will prove as the proof of Theorem 2. Let $S(G)$ be the block diagonal matrix $\text{diag}(x_1f_{p,p}, x_2f_{p,p}, \ldots, x_nf_{p,p})$ where $x_i = \sum a_i p_i(w_{ik}), i = 1, 2, \ldots, n$.

Let $\mathbf{X} = (x_1^T, x_2^T, \ldots, x_n^T)^T$ be an eigenvector corresponding to the largest eigenvalue ρ_1 of $S(G)^{-1}A(G)S(G)$. We assume that x_i is the vector component of \mathbf{X} such that $x_i^T x_i = \max_{k \in V} \{x_k^T x_k\}$. Since \mathbf{X} is nonzero, so is x_i.

$$x_i^T x_i = \max_{k \in V} \{x_k^T x_k\}$$

(2.22)

for all $k, i \sim k$.

The (i,j) th block of $S(G)^{-1}A(G)S(G)$ is

$$\begin{cases} \frac{x_i}{x_j} w_{ij} & \text{if } i \sim j, \\ 0 & \text{otherwise.} \end{cases}$$

We have

$$\{S(G)^{-1}A(G)S(G)\} \mathbf{X} = \rho_1 \mathbf{X}.$$

(2.23)

From the ith equation of (2.23), we have

$$\rho_1 x_i = \sum_{k \sim i} \frac{x_k}{x_i} w_{ik} x_i,$$

(2.24)

i.e., $\rho_1 x_i^T x_i = \sum_{k \sim i} x_k^T \frac{x_k}{x_i} w_{ik} x_i$. Taking modulus on both sides and using inequalities of (2.1) and (2.22), we get

$$|\rho_1 | x_i^T x_i \leq \sum_{k \sim i} \left| \frac{x_k}{x_i} w_{ik} x_i \right|$$

(2.25)

$$\leq \sum_{k \sim i} \frac{x_k}{x_i} \rho_1(w_{ik}) \sqrt{x_i^T x_i} \sqrt{x_k^T x_k}$$

(2.26)

$$\leq \sqrt{x_i^T x_i} \sqrt{x_i^T x_i} \sum_{k \sim i} \frac{x_k}{x_i} \rho_1(w_{ik}).$$

(2.27)

From the jth equation of (2.23), we have

$$\rho_1 x_j = \sum_{k \sim j} \frac{x_k}{x_j} w_{jk} x_k,$$

(2.28)

i.e.,

$$\rho_1 x_j^T x_j = \sum_{k \sim j} x_k^T \frac{x_k}{x_j} w_{jk} x_k.$$

Taking modulus on both sides and using inequalities of (2.1) and since $x_i^T x_i = \max_{k \in V} \{x_k^T x_k\}$, we have

$$|\rho_1 | x_j^T x_j \leq \sum_{k \sim j} \left| \frac{x_k}{x_j} w_{jk} x_k \right|$$

(2.29)

$$\leq \sum_{k \sim j} \frac{x_k}{x_j} \rho_1(w_{jk}) \sqrt{x_j^T x_j} \sqrt{x_k^T x_k}$$

(2.30)

$$\leq \sqrt{x_j^T x_j} \sqrt{x_j^T x_j} \sum_{k \sim j} \frac{x_k}{x_j} \rho_1(w_{jk}).$$

(2.31)

We assume that $x_j = 0$. Then $x_k = 0$, for all $k, k \sim i$. From ith equation of (2.23), we get $\rho_1 x_i = 0$. Since $x_i \neq 0$, $\rho_1 = 0$, which is not possible as $|\rho_1|$ is spectral radius of a nonzero matrix. Hence $x_j^T x_j \neq 0$. From (2.27) and (2.31), we get

$$|\rho_1 | \leq \sqrt{\sum_{k \sim j} \frac{x_k}{x_j} \rho_1(w_{jk}) \sum_{k \sim j} \frac{x_k}{x_j} \rho_1(w_{jk})}. $$

Hence,

$$|\rho_1 | \leq \max_{i,j} \left\{ \sqrt{\sum_{k \sim j} \frac{x_k}{x_j} \rho_1(w_{jk}) \sum_{k \sim j} \frac{x_k}{x_j} \rho_1(w_{jk})} \right\}.$$

This completes the proof (2.21). The state of equality in (2.21) can be proven with the same method applied in Theorem 2. □
Corollary 1 ([6]). Let G be a weighted graph which is simple, connected, the weights of the edges are positive numbers (i.e. 1×1 matrices). Then

$$
\rho_1 \leq \max_{i,j} \left\{ \sqrt{\sum_{k \in \Gamma(i)} w_{ik} \sum_{k \in \Gamma(j)} w_{jk}} \right\},
$$

(2.32)

where w_i is the sum of the weights of the edges that are adjacent to vertex i. Moreover, equality if and only if G is a regular graph or G is a bipartite semiregular graph.

Corollary 2. Let G be a weighted graph which is simple, connected, the weights of the edges are positive numbers (i.e. 1×1 matrices). Then

$$
\rho_1 \leq \max_{i,j} \left\{ \sqrt{\sum_{k \in \Gamma(i)} w_{ik} \sum_{k \in \Gamma(j)} w_{jk} \rho_{ij}} \right\},
$$

(2.33)

where w_i is the sum of the weights of the edges that are adjacent to vertex i. Moreover, equality if and only if G is a regular graph or G is a bipartite semiregular graph.

Proof. For a weighted graph where the weights w_{ij} are positive numbers, we get $\rho_1(w_{ij}) = w_{ik}$ for $i \sim k$ and $\rho_1(w_{kj}) = w_{kj}$. Using Theorem 2, we get the required result. \[\square\]

Corollary 3 [5]. Let G be a simple connected unweighted graph Then

$$
\rho_1 \leq \min \left\{ \sqrt{m_i m_j} : i \sim j \right\},
$$

where m_i is the average of the degrees of the vertices adjacent to i. Moreover, equality if and only if G is a regular graph or G is a bipartite semiregular graph.

Proof. For an unweighted graph, $w_{ij} = 1$ for $i \sim j$ and $w_i = d_i$. Using Corollary 2, we get the required result. \[\square\]

Corollary 4. The upper bound in (2.21) is sharper than the upper bound in (2.3).

Proof. We wish to prove that

$$
\max_{i,j} \left\{ \sum_{k \in \Gamma(i)} \frac{z_k}{z_i} \rho_1(w_{ik}) \sum_{k \in \Gamma(j)} \frac{z_k}{z_j} \rho_1(w_{jk}) \right\} \leq \max_{i,j} \left\{ \sum_{k \in \Gamma(i)} \rho_1(w_{ik}) \sum_{k \in \Gamma(j)} \rho_1(w_{jk}) \right\}.
$$

Let $A = \max_{i,j} \left\{ \sum_{k \in \Gamma(i)} \frac{z_k}{z_i} \rho_1(w_{ik}) \sum_{k \in \Gamma(j)} \frac{z_k}{z_j} \rho_1(w_{jk}) \right\}$ be. Then, it is easy to see the following inequalities.

$$
A \leq \max_{i,j} \left\{ \left(\frac{1}{z_i} \max_{i \sim k} \rho_1(w_{ik}) \right) \left(\sum_{k \in \Gamma(j)} \frac{z_k}{z_j} \rho_1(w_{jk}) \right) \right\} \leq \max_{i,j} \left\{ \max_{i \sim k} \rho_1(w_{ik}) \left(\frac{1}{z_j} \max_{j \sim k} \rho_1(w_{jk}) \right) \right\}
$$

$$
= \max_{i,j} \left\{ \max_{i \sim k} \rho_1(w_{ik}) \right\} = \max_{i,j} \left\{ \rho_1(w_{ij}) \right\}.
$$

Hence the upper bound in (2.21) is sharper than the upper bound in (2.3). \[\square\]

Corollary 5. The upper bound in (2.33) is sharper than the upper bound in (2.32).

Proof. It is clear from Corollary 4. \[\square\]

Example 1. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be weighted graphs such that each weights w_{ij} of the edges are positive definite matrices of order p of the edge ij. For G_1, let us take the weights of the edges as follows;

$$
w_{12} = w_{12} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}, \quad w_{23} = w_{32} = \begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix}, \quad w_{24} = w_{42} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix},
$$
For G_2, let us take the weights of the edges as follows:

\[
\begin{align*}
W_{13} &= W_{31} = \begin{bmatrix} 7 & -1 \\ -1 & 6 \end{bmatrix}, \\
W_{15} &= W_{51} = \begin{bmatrix} 5 & -3 \\ -3 & 4 \end{bmatrix}, \\
W_{12} &= W_{21} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \\
W_{27} &= W_{72} = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}, \\
W_{26} &= W_{62} = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}, \\
W_{28} &= W_{82} = \begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix}, \\
W_{14} &= W_{41} = \begin{bmatrix} 11 & 1 \\ 1 & 2 \end{bmatrix}.
\end{align*}
\]

The adjacency matrices of these graphs are shown that

\[
A(G_1) =
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 2 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 0 & 0 & 0 & 25 & 15 & -5 & 2 \\
1 & 2 & 1 & 0 & 0 & 0 & 15 & 18 & 0 & -1 \\
1 & 1 & 2 & 0 & 0 & -5 & 0 & 11 & 0 & -1 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 & 3 & 6 & -1 \\
0 & 0 & 0 & 25 & 15 & -5 & 0 & 0 & 6 & 3 \\
0 & 0 & 0 & 15 & 18 & 0 & 0 & 0 & 3 & 6 \\
0 & 0 & 0 & -5 & 0 & 11 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 2 & -1 & 0 & 6 & 3 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 3 & 6 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 3 & 6 & -1 \\
0 & 0 & 0 & 11 & -3 & 1 & 0 & 0 & 5 & 0 \\
0 & 0 & 0 & -3 & 11 & 1 & 0 & 0 & 5 & 2 \\
0 & 0 & 0 & 1 & 1 & 8 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 1 & 1 & 8 & 0 & 0 & 2 & 2
\end{bmatrix}
\]

and

\[
A(G_2) =
\begin{bmatrix}
0 & 0 & 0 & 2 & 1 & 7 & -1 & 11 & 1 & 5 & -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & -1 & 6 & 1 & 2 & -3 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 & 1 & 1 & 2 & -3 & 3 & 5 & 5 \\
1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 1 & 3 & -3 & 5 & 5 \\
7 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
n & 11 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
7 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-3 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -3 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

For these graphs, $|\rho_1(G_1)| = 40.05$ and $|\rho_1(G_2)| = 14.66$ rounded two decimal places and the above mentioned upper bounds give the following results:

\[
\begin{align*}
(2.3) & \\
G_1 & 53.10 \\
(2.4) & \\
G_2 & 45.84 \\
(2.21) & \\
G_2 & 46.79
\end{align*}
\]

Consequently, the upper bounds in (2.4) and (2.21) are sharper than the upper bound in (2.3).
3. Summary and conclusion

To summarize; we have introduced weighted graphs, where the weights of the edges are positive definite matrices of the same order in this paper. Then, we have given a known upper bound and found two different upper bounds for the spectral radius of weighted graphs. We have obtained some results by characterizing these upper bounds. We have also compared them with the known upper bound. So, we have seen that our upper bounds are sharper than its bounds.

Acknowledgements

The authors are grateful to the referees for many suggestions which led to an improved version of this paper.

References