Maximizing the signless Laplacian spectral radius of graphs with given diameter or cut vertices

Jianfeng Wang a b & Qiongxiang Huang b

a Department of Mathematics and Information Science, Qinghai Normal University, Xining, Qinghai 810008, P.R. China
b College of Mathematics and System Science, Xinjiang University, Urumqi 830046, P.R. China

Available online: 24 May 2011

To cite this article: Jianfeng Wang & Qiongxiang Huang (2011): Maximizing the signless Laplacian spectral radius of graphs with given diameter or cut vertices, Linear and Multilinear Algebra, 59:7, 733-744

To link to this article: http://dx.doi.org/10.1080/03081087.2010.499363
Maximizing the signless Laplacian spectral radius of graphs with given diameter or cut vertices

Jianfeng Wangab* and Qiongxiang Huangb

aDepartment of Mathematics and Information Science, Qinghai Normal University, Xining, Qinghai 810008, P.R. China; bCollege of Mathematics and System Science, Xinjiang University, Urumqi 830046, P.R. China

Communicated by B. Mohar

(Received 25 August 2009; final version received 3 June 2010)

The signless Laplacian matrix of a graph is defined to be the sum of its adjacency matrix and degree matrix. Let G_{d}^{n} be the set of all the connected graphs of order n and diameter d and $G_{n,k}$ the set of all connected graphs with order n and k cut vertices. In this article, we determine the graphs that have the maximal signless Laplacian spectral radius and give the upper bounds of graphs in these two sets.

Keywords: adjacency matrix; signless Laplacian; diameter; cut vertices; spectral radius

AMS Subject Classification: 05C50

1. Introduction

All graphs considered here are simple. For a graph G, let M be a responding graph matrix defined in a prescribed way. The M-spectrum of G is a multiset consisting of the eigenvalues of its graph matrix M. The M-spectral radius (or M-index) of G is the largest eigenvalue of its graph matrix M. It is well-known that there are several graph matrices two of which named adjacency matrix $A(G)$ and Laplacian matrix $L(G) = D(G) - A(G)$ where $D(G)$ is a diagonal matrix of vertices degrees, are investigated extensively, and the other one named signless Laplacian $Q(G) = A(G) + D(G)$.

Recently, Cvetković et al. [6] intended to build a spectral theory for the signless Laplacian matrices (see [6–9,18] for more results). For this purpose, in this article we will focus our attention on $Q(G)$-spectrum of a graph G.

Brualdi and Solheid [4] posed the following problem concerning the spectral radius of graphs:

Given a set \mathcal{S} of graphs, find an upper bound for the spectral radius of graphs in \mathcal{S} and characterize the graphs in which the maximal spectral radius is attained.

Let us call such a graph the maximal graph of \mathcal{S}. From then on, this problem has drawn much attention, and some important results have been obtained by many researchers. For the $A(G)$-index of graphs, let the set \mathcal{S}_{A} be \{size, order and size,
diameter, cut vertices cut edges, chromatic number}, then the maximal graph with one of the conditions given in \mathcal{S}_L are studied in [1–3, 5, 10–12, 14–17]. For the $L(G)$-index, let the set \mathcal{S}_L be \{maximal degree, cut edges, diameter\}, the maximal (bipartite) graphs with one of the conditions given in \mathcal{S}_L are investigated in [19–21]. For the Q-index, as far as we know, the only result is that Zhai et al. [20] determined the maximal bipartite graphs with given diameter. In this article, for the Q-index we will determine the general maximal graphs with given diameter and the graphs with cut vertices and give the upper bounds for Q-index. We shall see that the methods in this article can be also extended to the $A(G)$-spectrum, which can be applied to give a new proof of Berman and Zhang’s result [2] and van Dam’s [17] result (see also [12]).

Now we introduce some notation and terminology. Let $G = (V(G), E(G))$ be a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G)$, where its order and size are $|V(G)| = n(G) = n$ and $|E(G)| = m(G) = m$, respectively. For $S \subseteq V(G)$, let $G[S]$ be the induced subgraph by S, and $E(S, V(G)\setminus S)$ the set of all the edges with one end-vertex in S and the other in $V(G)\setminus S$. Let $N_G(v)$ denote the set of vertices adjacent to the vertex v in G and d_v the degree of v. As usual, P_n and C_n, respectively, denote the path and the cycle. By $K_{1,n-1}$ and K_n we denote, respectively, the star and the complete graph of order n.

Since $Q(G)$ is positive semidefinite and symmetric, we denote the eigenvalues of $Q(G)$ in non-increasing order by $q_1(G) \geq q_2(G) \geq \cdots \geq q_n(G) \geq 0$, where $q_1(G)$ is usually called the Q-index of G and is denoted by $\varrho(G) = \varrho$. Moreover, since $Q(G)$ is non-negative, the eigenvector associated with $\varrho(G)$ can be taken to be non-negative. In addition, if G is connected (i.e. if $Q(G)$ is irreducible), then $\varrho(G)$ is of multiplicity one and its corresponding eigenvector can be taken to be positive. Such an eigenvector is called the Q-Perron eigenvector of G, which is denoted by $x = (x_1, x_2, \ldots, x_n)^T$, where x_i corresponds to the vertex v_i ($1 \leq i \leq n$). Hence, we have

$$\varrho - d_i)x_i = \sum_{j \neq i} x_j \quad (i = 1, 2, \ldots, n),$$

where the summation is over all neighbors j of the vertex i. As a matter of fact, (1) is the eigenvalue equation for the i-th vertex (associated with the Q-index).

This article is organized as follows: In Section 2, some useful results will be introduced. In Section 3, the maximal graphs with order n and diameter d will be determined. In Section 4, the maximal graphs with order n and k cut vertices will be determined.

2. Basic results

Applying the Perron–Frobenius theory of non-negative matrices we have the following lemma.

Lemma 2.1 Let H be a proper subgraph of a connected graph G. Then $\varrho(H) < \varrho(G)$.

Lemma 2.2 [6] Let G be a graph with maximal degree Δ and minimal degree δ. Then

$$2\delta \leq \varrho(G) \leq 2\Delta.$$
LEMMA 2.3 [6] Let G be a graph. Then the following statements hold:

(i) $\rho(G) = 0$ if and only if G has no edges;
(ii) $0 < \rho(G) < 4$ if and only if all components of G are paths;
(iii) For a connected graph G, we have $\rho(G) = 4$ if and only if G is a cycle C_n or $K_{1,3}$.

Let $e = st$ and $f = uv$ be two edges of a graph G, and assume that the vertices s and v, and t and u are non-adjacent. A local switching (with respect to e and f) consists of the deletion of edges e and f, followed by the addition of edges $e' = sv$ and $f' = tu$.

LEMMA 2.4. [6] Let H be a graph obtained from a connected graph G of order n by a local switching, as given above. Let $x = (x_1, x_2, \ldots, x_n)^T$ be the Q-Perron eigenvector of G. If $(x_s - x_u)(x_v - x_t) \geq 0$, then $\rho(H) \geq \rho(G)$, with equality if and only if $x_s = x_u$ and $x_v = x_t$.

LEMMA 2.5. [13] Let G be a connected graph and $\rho(G)$ be the spectral radius of $Q(G)$. Let u, v be two vertices of G. Suppose v_1, v_2, \ldots, v_s ($1 \leq s \leq d_v$) are some vertices of $N_G(v) \setminus N_G(u)$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Q-Perron eigenvector. Let H be the graph obtained from G by deleting the edges vv_i and adding the edges uv_i ($1 \leq i \leq s$). If $x_u \geq x_v$, then $\rho(G) < \rho(H)$.

Let $G_{s,t}$ be the graph obtained from a non-trivial connected graph H by attaching pendant paths P_s and P_t at some vertex u in $V(H)$. We, for convenience, write $G_{s,t} = H_u + P_s + P_t$, where $P_s = x_s x_{s-1} \cdots x_2 x_1$, $P_t = y_t y_{t-1} \cdots y_2 y_1$ and u is called the coalescent vertex (Figure 1). Given H and constant $a = s + t$, let $\mathcal{G}_{s,t} = \{G_{s,t} \mid G_{s,t} = H_u + P_s + P_t, s + t = a, u \in V(H)\}$ be the set of all the graphs $G_{s,t}$. Now we pose the following question:

Among all the graphs in the set $\mathcal{G}_{s,t}$, which graph $G_{s,t}$ has the maximal Q-index?

Next, we will give a necessary condition for the above problem. Note, any graph $G_{s,t} \in \mathcal{G}_{s,t}$ cannot be a path by the choice of graph H. So, by Lemma 2.3 we have the following facts.

Fact 1 For any graph $G_{s,t} \in \mathcal{G}_{s,t}$, $\rho(G_{s,t}) \geq 4$, and for the coalescent vertex u, $d_{G_{s,t}}(u) \geq 3$.

Let $\rho = \rho(G_{s,t})$ and x be the corresponding Q-Perron eigenvector whose entries are labelled the same as the vertices x_i and y_j at P_s and P_t (Figure 1).

![Figure 1. $G_{s,t} = H_u + P_s + P_t$.](attachment:image.png)
From (1) it follows that

\[
\begin{align*}
\frac{x_2}{x_1} &= \varrho - 1 \\
\frac{x_3}{x_2} &= \varrho - 2 - \frac{1}{\varrho - 1} \\
\frac{x_4}{x_3} &= \varrho - 2 - \frac{1}{\varrho - 2 - \frac{1}{\varrho - 1}} \\
&\quad \vdots \\
\frac{x_s}{x_{s-1}} &= \varrho - 2 - \frac{1}{\frac{x_{s-1}}{x_{s-2}}} \\
\frac{x_u}{x_s} &= \varrho - 2 - \frac{1}{\frac{x_s}{x_{s-1}}} \\
\end{align*}
\]

and

\[
\begin{align*}
\frac{y_2}{y_1} &= \varrho - 1 \\
\frac{y_3}{y_2} &= \varrho - 2 - \frac{1}{\varrho - 1} \\
\frac{y_4}{y_3} &= \varrho - 2 - \frac{1}{\varrho - 2 - \frac{1}{\varrho - 1}} \\
&\quad \vdots \\
\frac{y_t}{y_{t-1}} &= \varrho - 2 - \frac{1}{\frac{y_{t-1}}{y_{t-2}}} \\
\frac{y_u}{y_t} &= \varrho - 2 - \frac{1}{\frac{y_t}{y_{t-1}}} \\
\end{align*}
\]

(2)

Let \(\{a_i = \frac{x_{i+1}}{x_i} \mid i = 1, 2, \ldots, s \} \) and \(\{b_i = \frac{y_{i+1}}{y_i} \mid i = 1, 2, \ldots, t \} \). By simple observation, we obtain the following facts from (2) and Fact 1.

Fact 2 \(\varrho > a_i, b_j > 1 \). In addition, \(a_i = b_i \) for \(i = 1, 2, \ldots, \min \{s, t\} \).

Fact 3 The sequences \(\{a_i \mid i = 1, 2, \ldots, s\} \) and \(\{b_i \mid i = 1, 2, \ldots, t\} \) are decreasing.

Proof By induction on \(i \) we prove \(a_i > a_{i+1} \), where \(i = 1, 2, \ldots, s \). For \(i = 1 \), we have \(a_1 - a_2 = 1 + \frac{1}{\varrho - 1} \), and so \(a_1 > a_2 \) by \(\varrho \geq 4 \). Suppose that the result is true for \(i - 1 \), i.e., \(a_{i-1} > a_i \). For \(i \), we get \(a_i - a_{i+1} = \frac{1}{a_i} - \frac{1}{a_{i-1}} \), and thus \(a_i > a_{i+1} \) by the inductive assumption. The same argument can be applied to show that \(\{b_i \mid i = 1, 2, \ldots, t\} \) is decreased.

Lemma 2.6 Let \(G_{s,t}^* \subseteq \mathcal{G}_{s,t} \) be the maximal graph. If \(t \geq s + 2 \), then

\[x_u > y_I > \cdots > y_{s+1} > x_s > y_s > x_{s-1} > \cdots > y_3 > x_2 > y_2 > x_1 > y_1. \]

Proof From Lemma 2.5, we first claim that \(x_u > x_i, y_j \) for \(1 \leq i \leq s \) and \(1 \leq j \leq t \). By Fact 1 we have,

\[
\frac{x_{i+1}}{x_i} = \frac{y_{i+1}}{y_I}, \quad \text{where } i = 1, 2, \ldots, s.
\]

Taking \(i = s \), we have \(\frac{x_s}{x_1} = \frac{x_{s+1}}{y_I} \) and so \(\frac{y_I}{x_1} = \frac{x_{s+1}}{x_s} \). Since \(x_u > y_{s+1} \), then \(x_1 > y_1 \). If \(x_1 \geq y_2 \), by resetting \(P_s = x_u x_s \cdots x_1 y_1 \) and \(P_I = x_u y_I \cdots y_3 y_2 \) we know that the \(Q \)-index increases by Lemma 2.5, and thus \(y_2 > x_1 \). Again, taking \(i = 1 \) in (3) we get \(\frac{x_1}{x_s} = \frac{y_1}{y_I} \), and so \(x_2 > y_2 \). By Fact 2 we have \(x_{i+1} > x_i \) and \(y_{i+1} > y_I \). If \(y_3 \leq x_2 \), then \((x_2 - y_3) (y_2 - x_1) \geq 0 \). By setting

\[G = G_{s,t}^* - x_1 x_2 - y_2 y_3 + x_1 y_3 + x_2 y_2, \]

we get, by Lemma 2.4, that \(G \in \mathcal{G}_{s,t} \) and \(\varrho(G) > \varrho(G^*) \), which contradicts our assumption. Hence \(y_3 > x_2 > y_2 > x_1 \).

By induction on \(i \) we will show \(y_{i+2} > x_{i+1} > y_{i+1} > x_i \), where \(i \leq s - 1 \). For \(i = 1 \), we have finished. Suppose that it is true for \(i = k - 1 \), i.e., \(y_{k+1} > x_k > y_k > x_{k-1} \).
For $i = k$, since $\frac{x_{k+1}}{x_k} = \frac{y_{k+1}}{y_k}$, then $x_{k+1} > y_{k+1}$, if $y_{k+2} \leq x_{k+1}$, then $(x_{k+1} - y_{k+2}) (y_{k+1} - x_k) \geq 0$. By setting

$$G = G^*_s - x_k y_{k+1} - y_{k+1} y_{k+2} + x_k y_{k+2} + x_{k+1} y_{k+1},$$

we obtain, by Lemma 2.4 again, that $G \in \mathcal{G}_{s,t}$ and $\varphi(G) > \varphi(G^*)$, which contradicts our assumption. Hence, we get $y_{k+2} > x_{k+1} > y_{k+1} > x_k$.

Theorem 2.1 Let $G^*_s, t \in \mathcal{G}_{s,t}$ be the maximal graph. Then $|s - t| \leq 1$.

Proof Fact 1 indicates that $\varphi(G^*_s, t) \geq 4$ and $d_{\mathcal{G}_{s,t}}(u) \geq 3$, where u is the coalescent vertex. Suppose that $s + t \leq 2$. We conclude that $s = t = 1$. Otherwise, without loss of generality, set $t > s$ and so $t = 2$, $s = 0$. Since $x_u > y_2$, by setting $G = G^*_s, t + P_1 + P_1$ we get from Lemma 2.5 that $\varphi(G) > \varphi(G^*_s, t)$, a contradiction. Thus, the theorem holds.

In what follows we suppose $s + t \geq 3$. Assume, by way of contradiction, that $t \geq s + 2$. Let $q = s + 2$ and $p = s + 1$. Let x be the corresponding Q-Perron eigenvector of G^*_s, t whose entries are labelled the same as the vertices x_i and y_j at P_s and P_t (Figure 1). We have $x_u > y_q > y_p > x_s$ by Lemma 2.6. Let

$$\begin{align*}
P_{p-p+s} &= x_u y_1 \cdots y_q x_s \cdots x_2 x_1, \\
P_p &= x_u y_p \cdots y_3 y_2 y_1,
\end{align*}$$

and $G(t-p)+s, p = H_u + P_{p-p+s} + P_p$. Let Q and Q' be the signless Laplacians of G^*_s, t and $G(t-p)+s, p$, respectively. Then

$$x^T Q x - x^T Q' x = x_u x_s + y_p y_q - (y_q x_s + x_u y_p)$$

$$= x_s (x_u - y_q) + y_p (y_q - x_u)$$

$$= (x_u - y_q) (x_s - y_p) < 0,$$

which gives that $\varphi(G(t-p)+s, p) \geq x^T Q' x > x^T Q x = \varphi(G^*_s, t)$, a contradiction.

We will see that this method is helpful to show Theorem 2.2. Let $G_{s_1, s_2, \ldots, s_k}$ be the graph obtained from a nontrivial connected graph H by attaching k pendant paths $P_{s_1}, P_{s_2}, \ldots, P_{s_k}$ at some vertex $u \in V(H)$. According to Theorem 2.1, we have the following generalization.

Corollary 2.1 If $s_1 + s_2 + \cdots + s_k = a$ is a constant, then the maximal Q-index of $G_{s_1, s_2, \ldots, s_k}$ is attained at $|s_i - s_j| \leq 1$ for $1 \leq i, j \leq k$.

Let $G_{s, t}^{u, v} = H + P_{s}^{u} + P_{t}^{v}$ be the graph of order n such that $u \in V(H)$ connects one end-vertex of P_{s} and $v \in V(H)$ connects one end-vertex of P_{t} (Figure 2), where H is a nontrivial connected graph. Similarly, given $H = H_{u, v}$ and constant $a = s + t$, let

![Figure 2. $G_{s, t}^{u, v} = H_{u, v} + P_{s}^{u} + P_{t}^{v}$](image)

...
\[\mathcal{G}_{H,a}^{u,v} = \{G_{s,t}^{u,v} = H_{u,v} + P_s + P_t | s + t = a, u, v \in V(H) \} \]

be the set of all the graphs \(G_{s,t}^{u,v} \). Naturally, we ask; which graph in \(\mathcal{G}_{H,a}^{u,v} \) has maximal \(Q \)-index? In the following, we shall provide a theorem similar to Theorem 2.1.

Suppose that \(G^* \in \mathcal{G}_{H,a}^{u,v} \) is the maximal graph, i.e. \(\varrho(G^*) \geq \varrho(G_{s,t}^{u,v}) \) for any graph \(G_{s,t}^{u,v} \in \mathcal{G}_{H,a}^{u,v} \), and the vertices \(x_i \) and \(y_j \) are regarded as the entries of \(Q \)-Perron eigenvector at that vertex (Figure 2). First, it is easy to see that Facts 1–3 still hold.

Fact 4 Let \(G^* \in \mathcal{G}_{H,a}^{u,v} \) be the maximal graph. Then

\[y_2 > x_1, \quad x_2 > y_1, \quad x_u > x_3 > \cdots > x_2 > x_1 \quad \text{and} \quad y_t > y_1 > \cdots > y_2 > y_1. \]

Proof If \(x_1 \geq y_2 \), then \(G = G^* - y_1y_2 + x_1y_1 \) is a graph in \(\mathcal{G}_{H,a}^{u,v} \) that has larger \(Q \)-index than \(G^* \) by Lemma 2.5. Similarly, \(x_2 > y_1 \). The last two inequalities follows from Facts 2 and 3.

Fact 5 Let \(G^* \in \mathcal{G}_{H,a}^{u,v} \) be a maximal graph. If \(x_u > y_v \), then \(x_1 > y_2 \); If \(y_v > x_u \), then \(y_t > x_1 \).

Proof Let \(G = G^* - x_uy_3 - y_2y_1 + x_1y_1 + y_2x_3 \). Then \(\varrho(G^*) \geq \varrho(G) \), and so

\[x^T Q(G^*) x - x^T Q(G) x = x_u x_3 + y_v y_1 - (x_u y_1 + y_v x_3) = (x_u - y_u)(x_t - y_t) \geq 0, \]

which gives the results.

Fact 6 Let \(G^* \in \mathcal{G}_{H,a}^{u,v} \) be the maximal graph. If \(y_v > x_u \), then \(t \geq s \).

Proof From Fact 2 we know that \(\frac{x_{s+1}}{X_t} = \frac{y_{s+1}}{Y_t} \) for \(i = 1, 2, \ldots \). If \(s \geq t \), then \(\frac{x_{s+1}}{X_t} = \frac{y_{s+1}}{Y_t} \), which gives by Fact 4 that \(\frac{x_{s+1}}{X_t} = \frac{y_{s+1}}{Y_t} \), and so \(y_t > x_1 \). Since \(\frac{x_1}{x_t} = \frac{y_1}{y_t} \), then \(y_2 > x_2 \).

By Fact 4 again we get \(y_2 > x_2 > y_1 > x_1 \). Consequently, as the proof of Lemma 2.6, we obtain

\[x_u > \cdots > y_v > x_{t+1} > y_t > x_1 > y_{t-1} > x_{t-1} > \cdots > y_2 > x_2 > y_1 > x_1, \]

which contradicts the condition that \(y_v > x_u \).

Theorem 2.2 Let \(G^* \in \mathcal{G}_{H,a}^{u,v} \) be the maximal graph. Then \(|s - t| \leq 1 \).

Proof If \(x_u = y_v \), then our result holds by the proof of Theorem 2.1. Without loss of generality, we assume that \(y_v > x_u \). By way of contradiction, we may assume, according to Fact 6, that \(t \geq s + 2 \), and thus (4) becomes

\[y_v > y_1 > \cdots > y_{s+1} > x_u > y_s > x_2 > \cdots > y_2 > x_2 > y_1 > x_1, \]

similar to the proof of Theorem 2.1, we produce a contradiction from (5). Thus, \(s + 1 \geq t \geq s \) and it follows our result.

Given a graph \(H \) and \(u_1, u_2, \ldots, u_k \in V(H) \), where the \(u_i \) is not necessary to be distinct, let \(G_{u_1 u_2 \ldots u_k}^{a} \) be a graph obtained from \(H \) by joining \(u_i \) with pendant path \(P_{a_i}(i = 1, 2, \ldots, k) \) at its end. According to the above proof, we can generalize Theorem 2.2 as follows.

Corollary 2.2 If \(s_1 + s_2 + \cdots + s_k = a \) is a constant, then the maximal radius of \(G_{s_1 s_2 \ldots s_k}^{a} \) is attained at \(|s_i - s_j| \leq 1 \) for \(1 \leq i, j \leq k \).
3. The maximal graphs with order n and diameter d

Let \mathcal{G}_n^d be the family of all the connected graphs of order n and diameter d. Let P_{d+1} be a path of order $d+1$ whose vertices are successively labelled by $1, 2, \ldots, d, d+1$. Now we construct a graph, denoted by K_{d-i}^{n-d-1}, which is obtained from the complete graph K_{d-i} and the path P_{d+1} by joining each vertex of K_{d-i} to the vertices i, $i+1$ and $i+2$ of P_{d+1}. Obviously, $K_{d-i}^{n-d-1} \in \mathcal{G}_n^d$ for $2 \leq i \leq d-2$. Especially, for $i = \lceil \frac{d}{2} \rceil$ the graph $K_{\lceil \frac{d}{2} \rceil}^{n-d-1}$ is shown in Figure 3.

Theorem 3.1 In the set \mathcal{G}_n^d, the maximum Q-index is attained by the following graphs:

The complete graph K_n for $d = 1$ and the graph $K_{\lceil \frac{d}{2} \rceil}^{n-d-1}$ for $2 \leq d < n$.

Proof Since the complete graph K_n is the unique graph with order n and $d = 1$, then the theorem holds for $d = 1$. Since $P_n \cong K_{\lceil \frac{n}{2} \rceil}$ and it is the unique graph with order n and $d = n - 1$, the theorem holds for $d = n - 1$.

For $2 \leq d \leq n - 2$, assume that $K^* \in \mathcal{G}_n^d$ is the maximal graph. Let $P_{d+1} = u_1 u_2 \cdots u_d u_{d+1}$ be the path of K^* that connects x and y, where $x = u_1$ and $y = u_{d+1}$, and let $S = V(K^*) \setminus V(P_{d+1})$. Clearly, $n > d + 1$ and thus $|S| = |V(K^*)| - |V(P_{d+1})| = n - (d + 1) > 0$. Since K^* is connected, $E(S, V(P_{d+1})) \neq \emptyset$. For $s \in S$, set $N_{V(P_{d+1})}(s) = \{u_i \in V(P_{d+1}) | su_i \in E(K^*)\}$. We will prove $K^* \cong K_{\lceil \frac{d}{2} \rceil}^{n-d-1}$ by the following claims.

Claim 1 The set S induces a clique K_{n-d-1} in K^*.

It follows the fact that adding edges to a connected graph increases the Q-index.

Claim 2 Let $s \in S$. Then $N_{V(P_{d+1})}(s) = \{u_i \} \text{ for some } 3 \leq i \leq d - 1$.

If $N_{V(P_{d+1})}(s) = \{u_j\}$, where $j \leq \frac{d}{2}$ by symmetry, then $K^* + su_j \in \mathcal{G}_n^d$ will contain K^* as a proper subgraph, which is impossible. Thus there exists at least $u_j, u_k \in N_{V(P_{d+1})}(s)$, and say $j < k$. Clearly, $k \leq j + 2$ since P_{d+1} is the shortest path between x and y. Suppose that $N_{V(P_{d+1})}(s) = \{u_j, u_k\}$. If $k = j + 1$ then, by setting $l = j + 2$, $K^* + su_l \in \mathcal{G}_n^d$ will contains K^* as a proper subgraph; If $k = j + 2$ then, by setting $l = j + 1$, $K^* + su_l \in \mathcal{G}_n^d$ will contains K^* as a proper subgraph; Therefore, $N_{V(P_{d+1})}(s) = \{u_j, u_j, u_{j+1}\}$ for some $1 \leq j \leq d$.

Claim 3 $N_{V(P_{d+1})}(s) = N_{V(P_{d+1})}(t)$ for $s, t \in S$ and $s \neq t$.

By Claim 2, we can set $N_{V(P_{d+1})}(s) = \{u_{j-1}, u_j, u_{j+1}\}$ and $N_{V(P_{d+1})}(t) = \{u_{j-1}, u_j, u_{j+1}\}$. Assume, by way of contradiction, that $N_{V(P_{d+1})}(s) \neq N_{V(P_{d+1})}(t)$. Hence,

$$|N_{V(P_{d+1})}(s) \cap N_{V(P_{d+1})}(t)| \leq 2.$$

Note, Claim 1 shows that $st \in E(K^*)$. Thus if $|N_{V(P_{d+1})}(s) \cap N_{V(P_{d+1})}(t)| \leq 1$, then the diameter of K^* will decrease, and so $|N_{V(P_{d+1})}(s) \cap N_{V(P_{d+1})}(t)| = 2$ which must
yield, without loss of generality, that $N_{V(P_{n+1})}(t) = \{u_i, u_{i+1}, u_{i+2}\}$. Let $x = (x_1, x_2, \ldots, x_n)$ be the Q-Perron eigenvector, where the entries x_i, x_{i+1} and x_{i+2} correspond to the vertices u_i, u_{i+1} and u_{i+2}, respectively. Without loss of generality, set $x_{i-1} \geq x_{i+2}$. By constructing $G = K^* - tu_{i+2} + tu_{i-1}$ we obtain that $G \in \mathcal{G}_n^d$ and $\varphi(G) > \varphi(K^*)$ by Lemma 2.5, a contradiction.

Claim 4 $K^* = K_n^{n-d-1}$.

From Claims 2 and 3, we get $N(S) = \{y \in V(K^*) \setminus S \mid ys \in E(K^*), s \in S\} = \{u_{i-1}, u_{i}, u_{i+1}\}$. By Claim 1 and Theorem 2.1, we have that $K^* \cong K_n^{n-d-1}$. By Claim 1 and Theorem 2.1, we have that $K^* \cong K_n^{n-d-1}$.

Theorem 3.2 Let $n - d$ be a fixed constant. Then

$$\lim_{n \to \infty} \varphi\left(K_n^{n-d-1}\right) = \frac{4(n-d)^2}{2(n-d) - 1}.$$

Proof Since $n - d = s$ is a constant, $Q_{n,d} = \varphi(K_n^{n-d-1})$ is an increasing function of order n and diameter d, and $\varphi_{n,d} \leq 2\Delta(K_n^{n-d-1})$ by Lemma 2.2. Hence $\lim_{n \to \infty} \varphi_{n,d} = \lim_{d \to \infty} \varphi_{n,d} = \varphi$ exists. Note that $\varphi(K_n^{n-d-1}) \leq \varphi(K_n^{n-d-1})$, since K_n^{n-d-1} is a subgraph of K_n^{n-d-1}. Now we consider the graph $K_{r,r}^{n-d-1}$, where $r = \lfloor \frac{n}{2} \rfloor$. As labelled in Figure 3, by (1) we get

$$\begin{align*}
(Q_{n,d} - 2)x_2 &= x_1 + x_3, \\
\ldots &
\ldots\ldots \\
(Q_{n,d} - 2)x_{r-1} &= x_{r-2} + x_r.
\end{align*}$$

Setting $Q_{n,d} = 2 \cosh t = e^t + e^{-t}$ and solving the above difference equations system, we have

$$x_2 = \frac{cx_1 + ax_r}{b} \quad \text{and} \quad x_{r-1} = \frac{ax_1 + cx_r}{b},$$

where $a = \sinh t$, $b = \sinh(r-1)t$, $c = \sinh(r-2)t$ and $t = \ln \frac{Q_{n,d} - 2 + \sqrt{(Q_{n,d} - 2)^2 - 4}}{2}$. By the symmetry of K_n^{n-d-1}, we have $(Q_{n,d} - 1)x_1 = x_2$ and $(Q_{n,d} - (s+1))x_r = x_{r-1} + x_r$. Combing the above two equalities we get

$$Q_{n,d} - 2s - 1 - \left(\frac{a}{b}\right)^2Q_{n,d} - 1 - \frac{c}{b} = 0.$$

Since $\lim_{r \to \infty} \frac{a}{b} = 0$ and $\lim_{r \to \infty} \frac{c}{b} = \frac{2}{e^2 + \sqrt{(e-2)^2 - 4}}$, from the above equality we arrive at

$$Q - 2s - 1 - \frac{2}{Q - 2 + \sqrt{(Q - 2)^2 - 4}} = 0.$$

Hence,

$$Q = \frac{4s^2}{2s - 1} = \frac{4(n-d)^2}{2(n-d) - 1}.$$

This ends the proof.
THEOREM 4.1
Proof

Let G_n be a maximum graph in the set \mathcal{G}_n. Clearly, G_n is the maximal graph in the set \mathcal{G}_n. Next, we will show that G_n is the maximal graph in the set \mathcal{G}_n.

THEOREM 4.1 In the set \mathcal{G}_n, the graph G_n is the maximal graph.

Proof Let G^* be a maximum graph in \mathcal{G}_n. We first show the following claims.

CLAIM 1 Each cut vertex of G^* is precisely in two blocks, and all of these blocks are cliques.

For a connected graph, its signless Laplacian is irreducible. Thus, adding edges to this graph will increase its Q-index. On the other hand, adding the edge to a block does not change the order of G and the number of cut vertices of G. Since G^* is the maximal graph, then the claim holds.

CLAIM 2 Let a vertex $u \in V(G^*)$ be such that it lies in two maximal cliques G_1 and G_2. Then u must be a cut vertex, and at least one of G_1 and G_2 is the complete graph K_2.

By Claim 1 we know that any vertex, which is not a cut vertex, must be contained in an unique clique, and thus u is a cut vertex. Assume, by way of contradiction, that $G_1 = K_p$ and $G_2 = K_q$, where $p, q \geq 3$. Let $u_1 \in V(K_p)$ and $u_2 \in V(K_q)$. Let x be the Q-Perron eigenvector of G^* whose entries are labelled by the vertices. Without loss of generality, suppose that $x_{u_1} \geq x_{u_2}$. Set $G = G^* - \sum_{w \in N_G(u_2) \setminus u} u_2 w + \sum_{w \in N_G(u_1) \setminus u} u_1 w$. It is easy to see that $G \in \mathcal{G}_n$. But $\varrho(G) > \varrho(G^*)$ by Lemma 2.5, a contradiction.

CLAIM 3 There is at most one clique with order at least three in G^*.

Assume, by way of contradiction, that K_p and K_q are two cliques, where $p, q \geq 3$. Claim 2 indicates that these two cliques have no common vertex. Thus, there exists a path $P_k = u_1 v_1 v_2 \cdots v$ connecting K_p and K_q, where $k \geq 2$, $u \in V(K_p)$ and $v \in V(K_q)$. Choose $u' \in V(K_p)$ and $v' \in V(K_q)$ such that $u' \neq u$ and $v' \neq v$. Without loss of generality, set $x_{u} \geq x_{v}$. Let v'' (if any) be a vertex in $N_{G^*}(v)$ other than the vertex in K_q. Let $G = G^* - \sum_{z \in N_{G^*}(v'') \setminus \{v, v''\}} v'' z + \sum_{z \in N_{G^*}(v') \setminus \{v, v''\}} u' z$. It is easy to see that $G \in \mathcal{G}_n$ and $\varrho(G) > \varrho(G^*)$ by Lemma 2.5. It is a contradiction.
Now, we are at the stage of finishing of this proof of this theorem. Obviously, a connected graph of order n has at most $n - 2$ cut vertices. If G^* has $k = n-2$ cut vertices then it is the unique path $P_n = G_{n,n-2}$, and so our result holds. Assume now that $k \leq n - 3$. This implies that G^* has a vertex u of degree no less than three. By the latter part of Claim 1, there is a clique K with order at least three containing u. By Claim 3, G^* must be a graph constructed from K by adding some pendant paths on it. By the former part Claim 1, any vertex not in K is pendant or in at most one path. Then by Corollary 2.2 we obtain that $G^* \cong G_{n,k}$.

Theorem 4.2 Let $\tau = 2(n-k-1)$. If $k \leq \frac{n}{2}$, then

$$\varphi(G_{n,k}) < \tau + \frac{2\tau k}{\tau^2 - 2n}.$$

Proof Since $k \leq \frac{n}{2}$, $G_{n,k}$ is the graph with $V(G_{n,k}) = \{v_1, v_2, \ldots, v_n\}$, $G_{n,k}[\{v_1, \ldots, v_{n-k}\}] = K_{n-k}$ and $v_i v_{n-k+i} \in E(G_{n,k})$ for $i = 1, \ldots, k$. Let $x = (x_1, x_2, \ldots, x_n)$ be the Q-Perron eigenvector of $G_{n,k}$, where x_i denote the entry of x at vertex v_i. By the symmetry of $G_{n,k}$, we have from (1) and $\varphi(G_{n,k}) = \varphi$ that

$$\begin{align*}
(q - 1)x_{n-k-1} &= x_1, \\
(q - (n-k-1))x_{n-k} &= kx_1 + (n - 2k - 1)x_{n-k}, \\
(q - (n-k))x_1 &= (k-1)x_1 + x_{n-k+1} + (n - 2k)x_{n-k},
\end{align*}$$

which leads to

$$\varphi^3 - (3n - 3k - 2)\varphi^2 - [(n+2) - 2(n-k)^2]\varphi - 2(n-k-1)(n-k-2) = 0. \quad (6)$$

Since $G_{n,k}$ contains a proper subgraph K_{n-k}, by Lemma 2.2 we get $\varphi(G_{n-k}) > \varphi(K_{n-k}) = 2(n-k-1)$. Thus, substituting $\varphi = 2(n-k-1) + \epsilon$, where $\epsilon > 0$, into Equation (6) we have

$$\epsilon^3 + [3(n-k) - 4]\epsilon^2 + [2(n-k)^2 - 5n + 4k + 2]\epsilon - 2k(n-k-1) = 0,$$

which indicates that

$$\epsilon < \frac{2k(n-k-1)}{2(n-k)^2 - 5n + 4k + 2} = \frac{2k(n-k-1)}{2(n-k-1)^2 - n} = \frac{2\tau k}{\tau^2 - 2n}.$$

Hence the theorem holds.

Theorem 4.3 Let $n-k$ be a fixed constant and $\tau = 2(n-k-1)$. If $\frac{n}{2} < k \leq n-3$, then

$$\lim_{n \to \infty} \varphi(G_{n,k}) = \tau + \frac{\tau}{\tau - 1}.$$

Proof Since $\frac{n}{2} < k \leq n-3$, $G_{n,k}$ is the graph obtained from K_{n-k} by identifying each of its vertex v_i with one pendant vertex of the path P_l, where $|l_i - l| \leq 1$ and $1 \leq i, j \leq n-k$. For convenience, write $G_{n,k} = G_{l_1, \ldots, l_{n-k}}$. Since $n-k$ is constant, the Q-index of $G_{n,k}$ is an increasing function of order n of $G_{n,k}$ and $\varphi_n = \varphi(G_{n,k}) \leq \Delta(G_{n,k})$ by Lemma 2.2, which implies that $\lim_{n \to \infty} \varphi_n = \varphi$ exists. Let $l = \max\{l_i | 1 \leq i \leq n-k\}$. Then $\varphi(G_{l_1, \ldots, l_{n-k}}) \leq \varphi(G_{l_1, \ldots, l_{n-k}})$, since $G_{l_1, \ldots, l_{n-k}}$ is the subgraph of $G_{l_1, \ldots, l_{n-k}}$. Now we consider
the graph $G_{l,...,l}^{n,k}$, where the vertices of P_l are labelled as v_1, v_2, \ldots, v_l. Let $x=(x_1, x_2, \ldots, x_n)$ be the Q-Perron eigenvector of $G_{l,...,l}^{n,k}$. From (1) it follows that

$$(\rho_n - 2)x_1 = x_2, \ldots, (\rho_n - 2)x_{l-1} = x_{l-2} + x_l,$$

which has the following solutions

$$x_2 = \frac{cx_1 + ax_l}{b} \quad \text{and} \quad x_{l-1} = \frac{ax_1 + cx_l}{b},$$

where $a = \sinh t$, $b = \sinh(l-1)t$, $c = \sinh(l-2)t$ and $t = \ln \frac{\rho_n - 2 + \sqrt{(\rho_n - 2)^2 - 4}}{2}$. By the symmetry of $G_{l,...,l}^{n,k}$ we get

$$(\rho_n - (n-k))x_1 = x_2 \quad \text{and} \quad (\rho_n - (n-k))x_l = x_{l-1} + (n-k-1)x_l$$

which, together with the above two equalities, yields

$$\rho_n - 2(n-k) + 1 - \frac{c}{b} - \left(\frac{a}{b}\right)^2 \frac{1}{\rho_n - 1 - \frac{c}{b}} = 0.$$

Since $\lim_{l \to \infty} \frac{c}{b} = 0$ and $\lim_{l \to \infty} \frac{a}{b} = \frac{2}{\rho - 2 + \sqrt{(\rho - 2)^2 - 4}}$, from the above equality we arrive at

$$\rho - 2(n-k) + 1 - \frac{2}{\rho - 2 + \sqrt{(\rho - 2)^2 - 4}} = 0.$$

Hence

$$\rho = \frac{4(n-k-1)^2}{2(n-k) - 3} = 2(n-k-1) + \frac{2(n-k-1)}{2(n-k) - 3 - 1} = \tau + \frac{\tau}{\tau - 1}.$$
References