THE POWER-SUBSTITUTION CONDITION OF
ENDOMORPHISM RINGS OF QUASI-PROJECTIVE MODULES

TONGSUO WU

Department of Applied Mathematics, Shanghai
Jiaotong University, Shanghai 200030, P. R. China

Dedicated to Professor Zhou Boxun for his 80’th birthday.

Abstract. In the first part of this paper, we give necessary and sufficient conditions for a quasi-projective module whose endomorphism ring has the power-substitution property, by way of completion of diagrams. In the second part, we study exchange rings with the right power-substitution property. We prove that for any module M with the finite exchange property, the ring $\text{End}_R(M)$ has the right power-substitution property if (and only if) M has the power cancellation property, if and only if for any regular element $a \in \text{End}_R(M)$, there exists an integer $n \geq 1$ such that aI_n is unit-regular in $M_n(\text{End}_R(M))$.

1. Introduction

All rings in this paper are associative with identity and all modules right unital. Let $M_n(R)$ be the ring of all $n \times n$ matrices over R, let I be the identity matrix in $M_n(R)$. Recall that a ring R is said to have the right power-substitution property, if for any a, b and c in R satisfying $ab + c = 1$, there exist a positive integer n and a matrix $Q \in M_n(R)$ such that $aI + cQ$ is invertible in $M_n(R)$. This definition is left-right symmetric([7]) and for any module M, $\text{End}_R(M)$

1991 Mathematics Subject Classification. Primary 16D60, Secondary 19A.
Key words and phrases. power-substitution, exchange ring, completion of diagrams.
This paper will appear in Comm. in Algebra. No.1(2000).
The author is supported by the NNSF of P. R. China(No.19601009).

Typeset by \texttt{AMS-\LaTeX}
has the power-substitution property if and only if the module M has the power-substitution property, only if M has the power cancellation property (i.e., for any module isomorphism $M \oplus A \cong M \oplus B$, there exists an integer $n \geq 1$ such that $A^n \cong B^n$). Goodearl in [6] also proved, among other things, that the power-substitution property of rings is preserved under taking corners and fractions; but it is not Morita invariant ([3]). This property and the related power cancellation of modules have also been studied by several other authors (see, e.g., [9], [2] and [5]).

In the first part of this paper, motivated by the work of Canfell [4], we give necessary and sufficient conditions for a quasi-projective module whose endomorphism ring has the power-substitution property, by way of completion of diagrams. In the second part, we study exchange rings with the right power-substitution property. We prove that for any module M with the finite exchange property, the ring S has the right power-substitution property if (and only if) M has the power cancellation property. This is the converse to one of the above mentioned results in the regular case. We also prove that an exchange ring R has the power-substitution property, if and only if for any regular element $a \in R$, there exists an integer $n \geq 1$ such that aI_n is unit-regular in $M_n(R)$.

Throughout, P^n represents direct sums of n copies of a module P, $J(R)$ the Jacobson radical of a ring R. For other notations and results used in this paper without mention, please refer to the books [1], [8] and [10].

2. The power-substitution condition versus completion of diagrams

Definition 2.1. For any module P, P is said to be power-epi-projective if for any epimorphisms $f : P \to M$ and $g : P \to M$, there exist a positive integer n and an isomorphism $h : P^n \to P^n$ such that the following diagram commutes:

\[
\begin{array}{ccc}
P^n & \xrightarrow{\oplus f} & M^n \\
\downarrow & & \\
\oplus g & \rightarrow & \\
\end{array}
\]

that is, $\oplus f = (\oplus g)h$.

We first record an easy but useful result:
Proposition 2.2. For any power-epi-projective module P, any epimorphism of P is an isomorphism.

Proof. For any epimorphism $f : P \to P$, there is an integer n and an isomorphism $h : P^n \to P^n$ such that the following diagram commutes:

$$
\begin{array}{c}
P^n \\
\downarrow 1 \\
P^n \oplus f \to P^n,
\end{array}
$$

that is, $1 = (\oplus f)h$. Thus $\oplus f$ and hence f, are isomorphisms. QED

Recall that a module M is said to be N-projective, if for any epimorphism $f : N \to K$ and any $g : M \to K$, there exists an $h : M \to N$ such that $g = fh$; a module M is said to be quasi-projective, if M is M-projective. It is well-known that P^r is quasi-projective for any positive integer r if P is quasi-projective. Obviously, every projective module is quasi-projective. We have

Theorem 2.3. For any right module P, let $S = \text{End}_R(P)$. If P is quasi-projective, then the following statements are equivalent:

1. The ring S has the right power-substitution property;
2. The ring S has the left power-substitution property;
3. The module P is power-epi-projective;
4. S is power-epi-projective as a right(or left) S-module.

Proof. (1)\iff(2). see [7].

(1)\implies(3). For any given epimorphisms $f : P \to M$ and $g : P \to M$, since P is quasi-projective, we have an $h : P \to P$ such that $f = gh$. In this case, we have $P = \text{im}(h) + \text{ker}(g)$. Now consider the following diagram

$$
\begin{array}{c}
P \\
\downarrow \pi \\
\pi h : P \to P/\text{ker}(g).
\end{array}
$$

Since both π and πh are epimorphisms, there exists an $\alpha : P \to P$ such that $\pi h \alpha = \pi$. In this case, $\text{im}(1 - h \alpha) \subseteq \text{ker}(g)$. Since $h \alpha + (1 - h \alpha) = 1$, where
$h \in S$, $\alpha \in S$, by assumption there exist an integer $n \geq 1$ and an $Q \in M_n(S)$ such that $hI + (1 - h\alpha)Q$ is invertible in $M_n(S)$. In this case, denotes

$$\phi = hI + (1 - h\alpha)Q : P^n \rightarrow P^n.$$

Then ϕ is an isomorphism such that the following diagram commutes

$$
\begin{array}{ccc}
P^n & \xrightarrow{\phi} & P^n \\
\downarrow^{\oplus f} & & \downarrow^{\oplus g} \\
P^n & \xrightarrow{\oplus} & M^n.
\end{array}
$$

Thus P is power-epi-projective.

(3) \Rightarrow (1). Suppose that P is a power-epi-projective module and let $b + cd = 1$, where $b \in S$, $c \in S$ and $d \in S$. Consider the following diagram:

$$
\begin{array}{ccc}
P & \xrightarrow{\pi} & P/im(b) \\
\downarrow^{\pi c} & & \downarrow^{\pi} \\
P & \xrightarrow{\pi} & P/im(b).
\end{array}
$$

Since both πc and π are epimorphisms, there exists a natural number n and an isomorphism $\alpha : P^n \rightarrow P^n$ such that the following diagram commutes:

$$
\begin{array}{ccc}
P^n & \xrightarrow{\oplus (c)} & \oplus(P/im(b)) \\
\downarrow^{\oplus (\pi c)} & & \downarrow^{\oplus \pi} \\
P^n & \xrightarrow{\oplus (\pi c)} & \oplus(P/im(b)).
\end{array}
$$

that is, $(\oplus \pi)\alpha = \oplus (\pi c)$. Now that $im(\alpha - \oplus c) \subseteq \oplus im(b)$, We have got an $Q : P^n \rightarrow P^n$ (or equivalently, $Q \in M_n(S)$) such that the following diagram commutes:

$$
\begin{array}{ccc}
P^n & \xrightarrow{\alpha - \oplus c} & \oplus im(b), \\
\downarrow^{\alpha - \oplus c} & & \downarrow^{\oplus b} \\
P^n & \xrightarrow{\oplus (\pi c)} & \oplus(P/im(b)).
\end{array}
$$

i.e., $\alpha = \oplus c + (\oplus b)Q$. Thus we have an $n \times n$ matrix $Q \in M_n(S)$ such that $cI_n + bQ$ is invertible in $M_n(S)$.
(1)⇐⇒(4). This is a special case of the "(1)⇐⇒(3)". QED

[Remark] Consider the following weak right power-substitution of rings \(S \): For any \(f, g \) and \(h \) in \(S \) with \(fg + h = 1 \), there exist a positive integer \(n \) and an \(Q \in M_n(S) \) such that \(fI + hQ \) is right invertible in \(M_n(S) \). In Definition 2.1., simply replacing the condition "there exist a positive integer \(n \) and an isomorphism \(h : P^n \to P^n \)" by the condition "there exist a positive integer \(n \) and a splitting epimorphism \(h : P^n \to P^n \)" we obtain a weak version of Theorem 2.3.

Corollary 2.4. For any ring \(R \), the following statements are equivalent:

1. The ring \(R \) has the right power-substitution property;
2. \(R \) is power-epi-projective as a right \(R \)-module;
3. \(R \) is power-epi-projective as a left \(R \)-module.

Corollary 2.5. For any quasi-projective module \(P \), let \(S = \text{End}_R(P) \). If \(P \) is power-epi-projective, then for any \(f_i \in S \) \((i=1,2,3)\) with \(f_1(P) + f_2(P) = f_3(P) \), there exist a positive integer \(n, k_1, k_2 \in M_n(S) \) and invertible matrices \(h_1, h_2 \in M_n(S) \) such that \(f_1h_1 + f_2k_1 = f_3I_n, f_1k_2 + f_2h_2 = f_3I_n \).

Proof. Similar to the Proof of the (3)⇒(1) part of Theorem 2.3. QED

Definition 2.6. The principal right ideals of a ring \(R \) are said to be powerly uniquely generated, if for any \(a, b \in R \) such that \(aR = bR \), there exist an integer \(n \geq 1 \) and an invertible matrix \(Q \in M_n(R) \) such that \((a, a, \ldots, a) = (b, b, \ldots, b)Q \). As we shall see, this condition is weaker than the right power-substitution property for any ring \(R \).

Proposition 2.7. For any quasi-projective module \(P \), let \(S = \text{End}_R(P) \). Then the following statements are equivalent:

1. The principal right ideals of \(S \) are powerly uniquely generated;
2. For any endomorphic image \(M \) of \(P \) and any epimorphisms \(f : P \to M \) and \(g : P \to M \), there exists an integer \(n \geq 1 \) and an isomorphism \(Q : P^n \to P^n \) such that the following diagram commutes:
Proof. (1)⇒ (2). For any endomorphic image M of P and any epimorphisms $f : P \rightarrow M$ and $g : P \rightarrow M$, we have $fS = gS$. By assumption, there exist an integer $n \geq 1$ and an invertible matrix $Q \in M_n(S)$ such that $\oplus g = (\oplus f)Q$. Thus we have got the required commutative diagram.

(2)⇒ (1). Let $fS = gS$ for some $f, g \in S$. Assume $f = gk, g = fh$. Then $fP = gP$. By assumption, there exist an integer $n \geq 1$ and an isomorphism $Q : P^n \rightarrow P^n$ such that $\oplus g = (\oplus f)Q$. Now recognizing Q as the corresponding invertible $n \times n$ matrix, we finally have $(g, g, \cdots, g) = (f, f, \cdots, f)Q$. Thus the principal right ideals of S are powerly uniquely generated.

QED

Corollary 2.8. If a ring R has the right power-substitution property, then the principal right(left) ideals of R are powerly uniquely generated.

Proposition 2.9. For any R, the following statements are equivalent:

(1) The principal right ideals of R are powerly uniquely generated;

(2) For any $a, b \in R$, $aR + rann(b) = R$ implies that there exist an integer $n \geq 1$ and a matrix $Q \in M_n(rann(b))$ such that $aI_n + Q$ is invertible in $M_n(R)$.

Proof. First assume that $aR + rann(b) = R$ for some $a, b \in R$, then $baR = bR$. If the principal right ideals of R are powerly uniquely generated, then there exist an integer $n \geq 1$ and an invertible matrix $Q \in M_n(R)$ such that $b(a, a, \cdots, a) = (b, b, \cdots, b)Q$. Let $U = Q - aI_n$, then we have $(b, b, \cdots, b)U = 0$. Thus $U \in M_n(rann(b))$ and $aI_n + U$ is invertible.

Conversely, assume $aR = bR$ for some $a, b \in R$. Then we have $a(1 - cd) = 0$, where $a = bd, b = ac$. Since $1 - cd \in rann(a)$, by assumption, there exist an integer $n \geq 1$ and a matrix $Q \in M_n(rann(a))$ such that $cI_n + Q$ is invertible in $M_n(R)$. And we have

$$(a, a, \cdots, a)(cI_n + Q) = (b, b, \cdots, b),$$
i.e., the principal right ideals of R are powerly uniquely generated. QED

Dualizing the concept of power-epi-projectivity, we now define:

Definition 2.10. For any module P, P is said to be power-mono-injective if for any monomorphisms $f : M \to P$ and $g : M \to P$ there is a positive n and an isomorphism $h : P^n \to P^n$ such that the following diagram commutes:

\[
\begin{array}{c}
P^n \\
\uparrow^{\oplus f} \\
\oplus g M^n.
\end{array}
\]

The proof of the following results are dual to the corresponding results in projective cases, so we omit all the proofs:

Theorem 2.11. For any right module P, let $S = \text{End}_R(P)$. If P is quasi-injective, then the following statements are equivalent:

1. The ring S has the right power-substitution property;
2. The ring S has the left power-substitution property;
3. P is power-mono-injective;
4. S is power-mono-injective as a right(left) S-module.

[Remark] By Theorem 2.3. and [6, Proposition 2.6.], any direct summand of power-epi-projective module is power-epi-projective; but direct sums of power-epi-projective modules need not to be power-epi-projective. In fact, by [3], there exists a power-epi-projective module P and a positive integer n, such that P^n is not power-epi-projective.

3. **Power-substitution property of exchange rings**

Recall that a ring R is an exchange ring, if the right R-module R has the finite exchange property. Examples of exchange rings include von Neumann regular rings, π-regular rings, right semi-artinian rings, etc. In this section, we study the right power-substitution property of exchange rings. Our results are analogous to those on the stable range one condition of regular rings.
Theorem 3.1. For any exchange ring R, R has the right power-substitution property if and only if for any regular element $a \in R$, there exists a positive integer n such that aI_n is unit-regular in $M_n(R)$.

Proof. For any regular element $a \in R$, let $a = axa$. If R has the right power-substitution property, then there exist an integer n and a matrix $Q \in M_n(R)$ such that $U = aI + (1 - ax)Q$ is invertible in $M_n(R)$. We have $axI_n = aU^{-1}$.

Thus we have

$$aI_n = axaI_n = axI_nax = axI_n = aU^{-1}a,$$

and we known that aI_n is unit-regular in $M_n(R)$.

Conversely, for any $a, b', c' \in R$ with $ab' + c' = 1$, there exists an idempotent $c \in c'R$ such that $ab + c = 1$. In this case, if a is regular in R, then there exist a positive integer r and invertible matrices $U, W \in M_r(R)$ such that

$$aI_r = axaI_r = axI_r = axI_r = aU^{-1}a,$$

and we known that aI_r is unit-regular in $M_r(R)$.

Denote $e_1 = cW$, $e_2 = aU$. Then both e_i are idempotent matrices of the ring $M_r(R)$, and $M_r(R) = aM_r(R) + cM_r(R) = e_2M_r(R) + e_1M_r(R)$. Let $(1 - e_2) = (e_2)t + e_1s$, then we have $1 - e_2 = (1 - e_2)e_1s$. Thus if we let $f = (1 - e_2)e_1s(1 - e_2)$, then f is idempotent and orthogonal with e_2, and $(1 - e_2)e_1 = fe_1$. Thus we have $M_r(R) = e_2M_r(R) + fM_r(R)$. Then $e_2 + f = 1$, that is, $aU[1 - e_2e_1d(1 - e_2)] + cWd(1 - e_2) = 1$. Finally, we have got a positive integer r and a matrix $Q \in M_r(R)$ such that $aI_r + c'Q$ is invertible in $M_r(R)$.

If a is not regular in R, then we already have the idempotent $c \in c'R$ and $b \in R$ such that $1 = c + ab$. Then aba is regular in R and $1 = c + (aba)b$. In this case, there exist a positive integer r and a matrix $Q \in M_r(R)$ such that $(aba)I_r + cQ$ is invertible in $M_r(R)$. Since $aba - a \in cR \subseteq c'R$, we have $(aba)I_r + cQ = aI + c'Q'$ which is invertible in $M_r(R)$ and this shows that the ring R has the right power-substitution property.

Since the left version of Theorem 3.1. is obviously also true, this provides a proof of the left-right symmetry of the power-substitution property for exchange rings.

Recall that a module M is said to have the (finite) exchange property, if for any (finite) index set I and any module decompositions $E = M_1 \oplus N = \bigoplus_{i \in I} N_i$ with
$M_1 \cong M$, there exist submodules M_i of N_i such that $E = M_1 \oplus (\oplus_{i \in I} M_i)$; a right module M is said to satisfy power-substitution, if for any module decompositions $E = M_1 \oplus N_1 = M_2 \oplus N_2$, where $M_i \cong M$, there exist a positive integer n and a submodule C such that $E = C \oplus N_1^n = C \oplus N_2^n$ ([6]). Goodearl in [6] proved that this condition is equivalent to the right power-substitution property of the ring $\text{End}_R(M)$, and that it implies the following power cancellation property of M: for any isomorphism $M \oplus A \cong M \oplus B$, there exists an integer n such that $A^n \cong B^n$. Now we will prove the converse under the assumption that the module M has the finite exchange property:

Theorem 3.2. For any right module M, let $S = \text{End}_R(M)$. If M has finite exchange property, then the following statements are equivalent:

1. The ring S has the right power-substitution property;
2. The module M has the right power-substitution property;
3. The module M has the power cancellation property;
4. The module M has the internal power cancellation property, i.e., for any decompositions $M = N_1 \oplus A = N_2 \oplus B$ with $N_1 \cong N_2$, there is a positive integer n such that $A^n \cong B^n$.

Proof.

$(1) \implies (2)$. This was proved in [6].

$(2) \implies (3) \implies (4)$. These implications hold obviously for any module M.

$(4) \implies (1)$. For any regular element $f \in S$, let $f = fgf$. Then by

$$M = fM \oplus (1 - fg)M = \text{ker}(g) \oplus gfM,$$

and the assumption, there is a positive integer n such that

$$[(1 - fg)M]^n \cong \text{ker}(f)^n.$$

Let $t : \text{ker}(f)^n \to [(1 - fg)M]^n$ be any isomorphism. Then we have got an isomorphism:

$$U = (t \oplus f^n) : M^n = [\text{ker}(f) \oplus gfM]^n \to M^n = [(1 - fg)M \oplus fM]^n.$$

Then $U \in \text{GL}_n(S)$ and it is routine to verify that $fI_n = fUf$. Finally, by Theorem 3.1., we conclude that the ring S has the right power-substitution property. QED
Corollary 3.3. For any regular projective module P, let $S = \text{End}_R(P)$. Then the following statements are equivalent:

1. The ring S has the right(left) power-substitution property;
2. The module P has the power cancellation property;
3. The module P has the internal power cancellation property;
4. For any $a \in S$, there exist a positive integer n such that aI_n is unit-regular in $M_n(S)$;
5. The module P is power-epi-projective;
6. S is power-epi-projective as a right(left) S-module.

Proof. Since regular projective modules have the exchange property, the result follows from Theorem 3.1., Theorem 3.2. and Theorem 2.3.

Corollary 3.4. For any quasi-injective module M, let $S = \text{End}_R(M)$. Then the following statements are equivalent:

1. The ring S has the right(left) power-substitution property;
2. The module M has the power cancellation property;
3. The module M has the internal power cancellation property;
4. The regular ring $S/J(S)$ has the right power-substitution property;
5. For any $a \in S/J(S)$, there exist a positive integer n such that aI_n is unit-regular in $M_n(S/J(S))$;
6. The module M is power-mono-injective;
7. S is power-mono-injective as a right(left) S-module.

Corollary 3.5. For any exchange ring R, the following statements are equivalent:

1. The ring R has the right power-substitution property;
2. $R \oplus A \cong R \oplus B$ implies $A^n \cong B^n$ for some $n \geq 1$;
3. For any $P, Q \in p(R)$, the category of all finitely generated projective right R-modules, $R \oplus P \cong R \oplus Q$ implies $P^n \cong Q^n$ for some $n \geq 1$;
4. For any idempotents $e, f \in R$, $eR \cong fR$ implies that $[(1 - e)R]^n \cong [(1 - f)R]^n$ for some $n \geq 1$.

Proof. This follows from Theorem 3.2. QED
In [12, Theorem 12], we proved that a right module M satisfies the internal n-weak cancellation (i.e., for any decompositions $M = A_1 \oplus A_2$ and $M^n = B_1 \oplus B_2$, where $A_1 \cong B_1$, A_2 is isomorphic to a direct summand of B_2), if and only if for any regular element $b \in S^n$, there exists a unimodular column $u \in S^n$ such that $b = b u b$, where $S = \text{End}_R(M)$. Now for any module M, we characterize the internal power cancellation property as follows:

Theorem 3.6. For any module M, let $S = \text{End}_R(M)$. Then the following statements are equivalent:

1. M satisfies the internal power cancellation property, i.e., for any decompositions $M = A_1 \oplus N_1 = A_2 \oplus N_2$, where $A_1 \cong A_2$, there exists an integer $n \geq 1$ such that $N_1^n \cong N_2^n$;
2. For any regular element $a \in S$, there exists an integer $n \geq 1$ such that $a I_n$ is unit-regular in $M_n(S)$.

Proof. (1)\Rightarrow(2). For any regular element a of S, let $a = axa$ for some $x \in S$. Let $e = ax$ and $f = xa$. Then both e and f are idempotent elements of S. We have a right R-module decomposition

$$M = (I - f)(M) \oplus f(M).$$

Also, $x : eM \longrightarrow f(M)$ is a R-module isomorphism. By assumption, there exist a positive integer n and an isomorphism

$$((I - e)M)^n \longrightarrow ((I - f)(M))^n.$$

Thus there is an isomorphism $\sigma : M^n \longrightarrow M^n$ such that the restriction of σ on $(eM)^n$ is the same as the left multiplication by $x I^n$. Then it is routine to verify that $(a I_n)\sigma(a I_n) = a I_n$, where I_n is the identity $n \times n$ matrix of $M_n(S)$. Thus $a I_n$ is unit-regular in $M_n(S)$.

(2)\Rightarrow(1). Let $M = A_1 \oplus B_1 = A \oplus B$ such that $A \cong A_1$. Let

$$x : M \longrightarrow M : B_1 \longmapsto 0, A_1 \longmapsto A,$$

$$y : M \longrightarrow M : B \longmapsto 0, A \longmapsto A_1.$$

Then $y = yxy$. Then by assumption, there exist a positive integer n and a unit $u \in M_n(S)$ such that $y I_n = (y I_n)u(y I_n)$. Finally, from

$$u((A_1)^n) \oplus B^n = M^n = u((A_1)^n) \oplus u((B_1)^n),$$
we obtain $B^n \cong (B_1)^n$. QED

ACKNOWLEDGEMENTS

The author expresses his gratitude to the referee for his(or her) valuable suggestions.

REFERENCES

No.1954, Huashan Road, Shanghai

E-mail address: wutsc@online.sh.cn