ON THE STABLE RANGE OF ENDOMORPHISM RINGS OF QUASI-PROJECTIVE MODULES

TONGSUO WU

Department of Applied Mathematics
Shanghai Jiaotong University
Shanghai 200030, P. R. China

1. Introduction

All rings in this paper are associative with identity and all modules right unital. For any ring R, let $R^n = R \times \cdots \times R$ and $^{n}R = \{b^t, \text{ all } b \in R^n\}$. Recall that $b \in R^n$ is said to be a unimodular row, if $b^t(R) = R$; A ring R is said to have stable range at most n, if for any unimodular row $b = (b_1, b') \in R \times R^n$, there exists $x \in R^n$ such that $b_1x + b'$ is a unimodular row of R^n. In this paper, we introduced the concepts of n-epi-projectivity and its dual. For any quasi-projective module P, we proved that the stable range of $End_R(P)$ is at most n if and only if P is an n-epi-projective module. This generalizes a recent result of Canfell [3] and certainly, it is true particularly for projective modules. In section 3, we will study the properties of n-epi-projective modules.

The stable range condition was introduced by Bass to study the stability of the K_1-groups ([2]). In [9], Warfield proved that for any module M, $End_R(M)$ has stable range at most n, if and only if M satisfies the n-substitution condition (see [9] for the detailed definition.). When $End_R(M)$ is von Neumann regular, Menal and Moncasi [5] proved that this condition can be replaced by a somewhat weaker condition, i.e., the n-weak cancellation. Recently, we studied
the general stable range condition of the endomorphism rings of modules with the finite exchange property ([10]). We proved that for any module M with the finite exchange property, S has stable range at most n if and only if M satisfies the (internal) n-weak cancellation, if and only if for any von Neumann regular element $b \in S^n$, there exists a unimodular column $u \in {}^nS$ such that $b = bub$, where $S = \text{End}_R(M)$. On the other hand, Canfell in [3] characterized quasi-projective modules whose endomorphism rings have stable range one, by way of the completions of diagrams, a fundamental technique widely used in homological algebra.

For definitions and results used in this paper without mention, one can refer to [1] and [6]

2. The Stable Range Condition

Definition 2.1. For any module P and any positive integer n, P is said to be n-epi-projective if for any epimorphism
\[
P^n \xrightarrow{f} P \xrightarrow{g} M,
\]
there is an epimorphism $h : P^n \to P$ such that $f = gh$.

Recall that a module M is said to be N-projective, if for any epimorphism $f : N \to K$ and any $g : M \to K$, there exists an $h : M \to N$ such that $g = fh$; a module M is said to be quasi-projective, if M is M-projective. Obviously, every projective module is quasi-projective. We have

Proposition 2.2. (1) A module P is quasi-projective if and only if for any $n \geq 1$, P is P^n-projective and P^n is P-projective;

(2) If P is quasi-projective, then any epimorphism $P^n \to P$ is splitting.

Proof. (1) By [1, P186], $\oplus P_i$ is Q-projective if and only if each P_i is Q-projective; P is $\oplus Q_i$-projective if and only if P is Q_i-projective for all i. The result follows from these facts.

(2) If P is quasi-projective, then P is P^n-projective by (1). Thus for any epimorphism $f : P^n \to P$, there exists an $g : P \to P^n$ such that $1_P = fg$. QED
Theorem 2.3. For any right module P, let $S = \text{End}_R(P)$. If P is quasi-projective, then the following statements are equivalent:

1. The stable range of S is at most n;
2. P is n-epi-projective;
3. S is n-epi-projective as a right S-module.

Proof. (1)\Rightarrow(2). Suppose that the stable range of S is at most n. For any given epimorphism $f : P^n \to M$ and $g : P \to M$, since P is quasi-projective, we have an $h : P^n \to P$ such that $f = gh$. In this case, we have

$$P = \text{im}(h) + \ker(g).$$

Now consider the following diagram

$$\begin{array}{ccc}
P & \xrightarrow{\pi} & P/\ker(g) \\
\downarrow{\pi h} & & \\
P^n & \to & P/\ker(g).
\end{array}$$

Since both π and πh are epimorphism, by Proposition 2.2, there exists $\alpha : P \to P^n$ such that $\pi h \alpha = \pi$. In this case, $\text{im}(1 - h \alpha) \subseteq \ker(g)$. Since $h \alpha + (1 - h \alpha) = 1$, where $h \in S^n$, $\alpha \in nS$, by assumption there exists an $u \in S^n$ such that $h + (1 - h \alpha)u$ is a unimodular row of S^n. Let $\phi = h + (1 - h \alpha)u$. Then $\phi : P^n \to P$ is a splitting epimorphism such that $g \phi = f$. This proves that P is n-epi-projective.

(2)\Rightarrow(1). Suppose that P is an n-epi-projective module and let $b + cd = 1$, where $b \in S$, $c \in S^n$ and $d \in nS$. Consider the following diagram:

$$\begin{array}{ccc}
P^n & \xrightarrow{\pi c} & P/im(b) \\
\downarrow{\pi c} & & \\
P & \xrightarrow{\pi} & P/im(b).
\end{array}$$

Since both πc and π are epimorphism, there exists an epimorphism $\alpha : P^n \to P$ such that $\pi \alpha = \pi c$. By Proposition 2.2, α is splitting. Now $\text{im}(c - \alpha) \subseteq \text{im}(b)$. We have

$$\begin{array}{ccc}
P^n & \xrightarrow{\alpha - c} & P/im(b) \\
\downarrow{\alpha - c} & & \\
P & \xrightarrow{b} & \text{im}(b).
\end{array}$$
Since P is quasi-projective, we have got an $\beta : P^n \to P$ such that $b \beta = \alpha - c$. Hence $b \beta + c$ is a unimodular row of S^n.

(1)\Leftrightarrow(3). This is a special case of (1)\Leftrightarrow(2). QED

Corollary 2.4. For any ring R, the following statements are equivalent:

1. The stable range of R is at most n;
2. R is n-epi-projective as a right R-module;
3. R is n-epi-projective as a left R-module.

Proof. This follows from the fact that the stable range condition is left-right symmetric. QED

Theorem 2.5. For any quasi-projective module P with the finite exchange property, let $S = \text{End}_R(P)$. Then the following statements are equivalent:

1. The stable range of S is at most n;
2. P is n-epi-projective;
3. $P^n \oplus A \cong P \oplus B$ implies that A is isomorphic to a direct summand of B;
4. For any decompositions $P = A_1 \oplus B_1$, $P^n = A_2 \oplus B_2$, where $A_1 \cong A_2$, B_1 is isomorphic to a direct summand of B_2;
5. S is n-epi-projective as a right S-module;
6. Any regular element $b \in S^n$ can be written as $b = bu$ for some unimodular column $u \in nS$.

Proof. (1)\Leftrightarrow(2)\Leftrightarrow(5). By Theorem 2.3.

(1)\Leftrightarrow(3)\Leftrightarrow(4)\Leftrightarrow(6). By [Theorem13 of 10].

By [7], *every regular projective module has the exchange property*, hence Theorem 2.5. holds for each regular projective module.

Dualizing the concept of n-epi-projectivity, we now define:

Definition 2.6. For any module P and any positive integer n, P is said to be
n-mono-injective if for any monomorphism

\[
\begin{array}{c}
P^n \\
\uparrow f \\
P \xleftarrow{g} M,
\end{array}
\]

there is a monomorphism \(h : P \to P^n \) such that \(f = hg \).

The proof of the following results are dual to the corresponding results in projective cases, so we omit all the proofs:

Proposition 2.7. (1) A module \(E \) is quasi-injective if and only if for any \(n \geq 1 \), \(E \) is \(E^n \)-injective and \(E^n \) is \(E \)-injective;

(2) If \(E \) is quasi-injective, then any monomorphism \(f : E \to E^n \) is splitting.

Theorem 2.8. For any right module \(P \), let \(S = \text{End}_R(P) \). If \(P \) is quasi-injective, then the following statements are equivalent:

(1) The stable range of \(S \) is at most \(n \);

(2) \(P \) is \(n \)-mono-injective;

(3) \(S \) is \(n \)-mono-injective as a right \(S \)-module.

It is well-known that quasi-injective modules have the finite exchange property. So we have

Theorem 2.9. For any quasi-injective module \(P \), let \(S = \text{End}_R(P) \). Then the following statements are equivalent:

(1) The stable range of \(S \) is at most \(n \);

(2) \(P \) is \(n \)-mono-injective;

(3) \(P^n \oplus A \cong P \oplus B \) implies that \(A \) is isomorphic to a direct summand of \(B \);

(4) For any decompositions \(P = A_1 \oplus B_1 \), \(P^n = A_2 \oplus B_2 \), where \(A_1 \cong A_2 \), \(B_1 \) is isomorphic to a direct summand of \(B_2 \);

(5) \(S \) is \(n \)-mono-injective as a right \(S \)-module;

(6) Any regular element \(b \in S^n \) can be written as \(b = b u b \) for some unimodular column \(u \in \mathbb{N} S \).

Proof. The result follows from Theorem 2.8 and [Theorem 13 of 10]. QED
Proposition 3.1. For any \(n \)-epi-projective module \(P \), every epic endomorphism of \(P \) is splitting.

Proof. For any epimorphism \(g \) of \(P \), let \(\pi : P^n \to P \) be the projection from the first component. Then there exists an epimorphism \(h : P^n \to P \) such that \(\pi = gh \). Let \(i : P \to P^n \) be the injection. Then we have \(g(hi) = 1 \). Thus \(g \) is splitting. QED

Theorem 3.2. (1) For any projective module \(P \) and \(Q \), if both \(P \) and \(Q \) are \(n \)-epi-projective, then \(P \oplus Q \) is also \(n \)-epi-projective;

(2) For any quasi-projective module \(P \) and any integers \(r \) and \(n \), if \(P \) is \(n \)-epi-projective, then \(P^r \) is \(n \)-epi-projective.

Proof. (1) If \(P \) and \(Q \) are \(n \)-epi-projective, by Theorem 2.3, both \(\text{End}_R(P) \) and \(\text{End}_R(Q) \) have stable ranges at most \(n \). By [9, Theorem 1.6.], both \(P \) and \(Q \) have the \(n \)-substitution properties. Thus by [9, Theorem 1.9.], \(P \oplus Q \) has the \(n \)-substitution property. Thus \(\text{End}_R(P \oplus Q) \) has stable range at most \(n \). Again by Theorem 2.3., \(P \oplus Q \) is \(n \)-epi-projective.

(2) If \(P \) is quasi-projective and \(n \)-epi-projective, then by theorem 2.3, \(\text{End}_R(P) \) has stable range at most \(n \). Since \(P^r \) is also quasi-projective and \(\text{End}_R(P^r) \) has \(n \) in its stable range, again by theorem 2.3, \(P^r \) is \(n \)-epi-projective. QED

A natural question one would like to ask is the following: If \(P \) is \(n \)-epi-projective, is the direct summand of \(P \) also \(n \)-epi-projective? For \(n \geq 2 \), this need not to be true, even for projective modules. In fact, by a formula given by Vaserstein [8], the stable range of \(M_n(R) \) is at most 2 if the stable range of \(R \) is \(n \) (\(> 2 \)). Thus there exists a ring \(R \) whose stable range is \(n \) (\(> 2 \)), but the endomorphism ring of \(R^{n-1} \) is at most 2. Thus by Theorem 2.3, the right \(R \)-module \(R^{n-1} \) is 2-epi-projective, but its direct summand \(R \) is not 2-epi-projective. When \(n = 2 \), we have the following example which is essentially taken from [5, P38]:

Example 3.3. Let \(R = \text{End}_K(V) \), where \(V \) is a countably infinitely generated vector space over a field \(K \). Then \(R \) is a regular ring whose stable range is not
finite. Choose any cardinal $\aleph > \aleph_0$ and let W be the K-vector space of dimension \aleph. Let

$$M = \{\phi \in \text{End}_K(W) | \dim \text{Im}(\phi) < \aleph\}.$$

Let $S = M + K$. Then by [5, Example 3], S is a regular ring with stable range 2, and $R \cong eSe$ for some idempotent element $e \in S$. By Theorem 2.3, S_S is 2-epi-projective, but its direct summand eS is not n-epi-projective for any $n \geq 1$.

Inspite of the above remark, we have the following

Proposition 3.4. For any quasi-projective module P, if P is 1-epi-projective, then any direct summand of P is also 1-epi-projective.

Proof. By Theorem 2.3, $\text{End}_R(P)$ has one in its stable range. For any direct summand Q of P, $\text{End}_R(Q)$ is a corner of $\text{End}_R(P)$. By [8], the stable range one property is preserved under taking corners. Thus $\text{End}_R(Q)$ also has stable range one. Since Q is also quasi-projective, thus Q is 1-epi-projective by Theorem 2.3. QED

We remark that Proposition 3.4 was proved in [3] without the condition of quasi-projectivity. But there is a serious gap in the proof there that could not be filled.

It would be interesting to give a direct module-theoretic proof of Theorem 3.2. and Proposition 3.4.

Proposition 3.5. Let Q be a direct summand of an n-epi-projective module. If $\text{Hom}_R(P/Q, Q) = 0$, then Q is also n-epi-projective.

Proof. Let $P = Q \oplus K$, and $\pi : K^n \rightarrow K$ be any projection. For any epimorphism $f : Q \rightarrow M$ and $g : Q^n \rightarrow M$, we have epimorphism

$$f' : Q \oplus K \rightarrow M \oplus K, \text{ and } g' : Q^n \oplus K^n \rightarrow M \oplus K,$$

where f' is determined by f and 1_K, g' is determined by g and π. Since P is n-epi-projective, there exists an epimorphism $h : P^n \rightarrow P$ such that $g' = f'h$.

Thus we have $h = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}$ such that

$$\begin{pmatrix} g & 0 \\ 0 & \pi \end{pmatrix} = \begin{pmatrix} f & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}.$$
Since $\text{Hom}_R(P/Q, Q) = 0$, $h_{11} : Q^n \to Q$ is epimorphic and $g = fh_{11}$. This shows that Q is also n-epi-projective. QED

The proof of the following results are dual to the proof of the above results:

Proposition 3.6. For any n-mono-injective module P, every monic endomorphism of P is splitting.

Theorem 3.7. (1) For any injective module P and Q, if both P and Q are n-mono-injective, then $P \oplus Q$ is also n-mono-injective;

(2) For any quasi-injective module P, if P is n-mono-injective, then P^r is also n-mono-injective.

The direct summand of an n-mono-injective module need not to be n-mono-injective.

Proposition 3.8. For any quasi-injective module P, if P is 1-mono-injective, then any direct summand of P is also 1-mono-injective.

Proposition 3.9. Let Q be a direct summand of an n-mono-injective module P. If $\text{Hom}_R(Q, P/Q) = 0$, then Q is also n-mono-injective.

We end this paper with the following example

Example 3.10. Any semisimple artinian module is quasi-projective and quasi-injective. It is also n-epi-projective and n-mono-injective for all n. It needs not to be projective.

Acknowledgements. The author expresses his sincere thanks to Professor Xu Yonghua for his encouragement.

REFERENCES