The degree of automorphisms of quasi-circular domains fixing the origin

Feng Rong

Department of Mathematics, School of Mathematical Sciences
Shanghai Jiao Tong University, 800 Dong Chuan Road
Shanghai, 200240, P. R. China
frong@sjtu.edu.cn

Received 20 March 2016
Accepted 17 May 2017
Published 15 June 2017

By using the Bergman representative coordinates, we give the necessary and sufficient condition for the degree of automorphisms of quasi-circular domains fixing the origin to be bounded by the resonance order, thus solving a conjecture of the author.

Keywords: Quasi-circular domain; automorphism; resonance order.

Mathematics Subject Classification 2010: 32A07, 32H02

1. Introduction

Denote by ρ the linear circle action on \mathbb{C}^n as follows:

$$
\rho : \mathbb{C}^n \to \mathbb{C}^n; \quad z = (z_1, \ldots, z_n) \mapsto \rho(z) = (e^{im_1\theta}z_1, \ldots, e^{im_n\theta}z_n),
$$

where m_i, $1 \leq i \leq n$, are positive integers, and $\theta \in \mathbb{R}$. A bounded domain D of \mathbb{C}^n is called a quasi-circular domain of weight $m = (m_1, \ldots, m_n)$, if $\rho(D) = D$. Without loss of generality, we will assume that $1 \leq m_1 \leq \cdots \leq m_n$ and $\gcd(m_1, \ldots, m_n) = 1$. And we always assume that $0 \in D$.

In [4], Kaup showed that all automorphisms of quasi-circular domains fixing the origin are polynomial mappings. And we gave a uniform upper bound for such mappings in [5], in terms of the so-called “quasi-resonance order”. Also, in [5], we conjectured that the optimal upper bound should be given by the so-called “resonance order”. In a recent work [9], the authors showed that, in dimension two, this conjecture does not hold in general and indeed the upper bound given by the quasi-resonance order is optimal (cf. [3]).

The main purpose of this paper is to give the necessary and sufficient condition for the above mentioned conjecture to hold, i.e. when the optimal upper bound is given by the resonance order.
Assume that for \(0 = k_0 < \cdots < k_l = n\), one has
\[
m_{k_p+1} = \cdots = m_{k_p+1}, \quad 0 \leq p \leq l - 1
\]
and
\[
m_{k_p} < m_{k_p+1}, \quad 1 \leq p \leq l - 1.
\]
Then, our main result is as follows.

Theorem 1.1. Let \(D\) be a bounded quasi-circular domain containing the origin, and of weight \(m = (m_1, \ldots, m_n)\), with \(m\) satisfying (1.1) and (1.2). Then all automorphisms of \(D\) fixing the origin are polynomial mappings with degree less than or equal to the resonance order if and only if the linear part of each of such automorphisms is of the form \(\text{Diag}(A_1, \ldots, A_l) \cdot z^t\), where \(A_p\) is a \((k_p - k_{p-1}) \times (k_p - k_{p-1})\) matrix, \(1 \leq p \leq l\).

In Sec. 2, we recall the definitions of the resonance order and the Bergman representative coordinates. In Sec. 3, we prove Theorem 1.1.

2. Preliminaries

Let \(\mathbb{N}\) be the set of nonnegative integers and \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n\). Denote \(|\alpha| = \alpha_1 + \cdots + \alpha_n\) and \(m \cdot \alpha = m_1\alpha_1 + \cdots + m_n\alpha_n\).

For \(1 \leq i \leq n\), define the \(i\)th resonance set as
\[
E_i := \{\alpha : m \cdot \alpha = m_i\},
\]
and the \(i\)th resonance order as
\[
\mu_i := \max\{|\alpha| : \alpha \in E_i\}.
\]
Note that \(\mu_i \leq m_i\). Then, define the resonance set as
\[
E := \bigcup_{i=1}^n E_i,
\]
and the resonance order as
\[
\mu := \max\{|\alpha| : \alpha \in E\} = \max_{1 \leq i \leq n} \mu_i.
\]

A polynomial \(P\) is said to be \(m\)-homogeneous of order \(k\) if, for any \(\lambda \in \mathbb{C}\), \(P(\lambda^{m_1}z_1, \ldots, \lambda^{m_n}z_n) = \lambda^k P(z_1, \ldots, z_n)\). When \(k = m_i\) for some \(1 \leq i \leq n\), one says that \(P\) is an \(i\)th resonant polynomial.

Let \(K_D(z, w)\) be the Bergman kernel, i.e. the reproducing kernel of the space of square integrable holomorphic functions on \(D\). Since \(D\) is bounded, one has \(K_D(z, z) > 0\) for \(z \in D\). The Bergman metric tensor \(T_D(z, w)\) is defined as the \(n \times n\) matrix with entries \(t_{ij}^D(z, w) = \frac{\partial^2}{\partial w_j \partial z_i} \log K_D(z, w), 1 \leq i, j \leq n\). For \(z \in D\), one knows that \(T_D(z, z)\) is a positive definite Hermitian matrix (see e.g. [1]), and one has the following transformation formula for the Bergman metric tensor,
\[
T_D(z, w) = \overline{\text{Jac}_f(w)} T_D(f(z), f(w)) \text{Jac}_f(z), \quad f \in \text{Aut}(D).
\]

1740008-2
The degree of automorphisms of quasi-circular domains

The Bergman representative coordinates at $\xi \in D$ is defined as (see, e.g. [1,7])

$$\sigma^D_\xi(z) := T_D(\xi,\xi)^{-1} \operatorname{grad}_w \log \frac{K_D(z,w)}{K_D(w,w)}|_{w=\xi}. \quad (2.2)$$

As in [6], one readily checks that $K_D(z,0) \equiv K_D(0,0)$ when D is a quasi-circular domain. Thus, the Bergman representative coordinates $\sigma^D_0(z)$ is defined for all $z \in D$. Note that as in [3], the power of $T_D(\xi,\xi)$ is set to be -1 instead of $-1/2$.

3. The Degree of Automorphisms

Throughout this section, we assume that D is a quasi-circular domain containing the origin, and f is an automorphism of D with $f(0) = 0$. Write $\sigma(z)$ for $\sigma^D_0(z)$, $J_f(z)$ for the linear part of $f(z)$, i.e. $J_f(z) = \text{Jac}_f(0) \cdot z^t$, and $\zeta = (\zeta_1, \ldots, \zeta_n) = (\sigma(z) = (\sigma_1(z), \ldots, \sigma_n(z)))$.

Lemma 3.1. For each $1 \leq i \leq n$, $\sigma_i(z)$ is of the form $\sigma_i(z) = z_i + g_i(z)$, where $g_i(z)$ contains only nonlinear ith resonant monomials.

Proof. Applying (2.1) to ρ, one gets

$$T_D(z,w) = \text{Jac}_\rho^D(w) T_D(\rho(z),\rho(w)) \text{Jac}_\rho(z). \quad (3.1)$$

Setting $w = 0$ in (3.1), one obtains

$$T_D(z,0) = \text{diag}(e^{-im_1 \theta}, \ldots, e^{-im_n \theta}) T_D(\rho(z),0) \text{diag}(e^{im_1 \theta}, \ldots, e^{im_n \theta}). \quad (3.2)$$

Write $t^D_{ij}(z,0) = \sum_{|\alpha| \geq 0} a^\alpha_{ij} z^\alpha = \sum_{|\alpha| \geq 0} a^\alpha_{ij} z_1^{\alpha_1} \cdots z_n^{\alpha_n}, 1 \leq i,j \leq n$. Then from (3.2), one gets

$$\sum_{|\alpha| \geq 0} a^\alpha_{ij} z^\alpha = e^{(m_j - m_i) \theta} \sum_{|\alpha| \geq 0} a^\alpha_{ij} e^{i(m-a) \theta} z^\alpha. \quad (3.3)$$

Since (3.3) holds for any $\theta \in \mathbb{R}$, a^α_{ij} can be nonzero only when

$$(m_j - m_i) + m \cdot \alpha = 0,$$

which is satisfied if and only if $\alpha + e_j \in E_i$.

Here, e_j denotes the multi-index with the jth entry equal to 1 and all other entries zero.

Therefore, one can write $T_D(z,0)$ as

$$T_D(z,0) = T_D(0,0) + M(z). \quad (3.5)$$

Here $T_D(0,0) = \text{Diag}(T_1, \ldots, T_l)$, where $T_p, 1 \leq p \leq l$, is a $(k_p - k_{p-1}) \times (k_p - k_{p-1})$ matrix. And $M(z) = [M_{pq}(z)]_{1 \leq p,q \leq l}$, where $M_{pq}(z)$ is a $(k_p - k_{p-1}) \times (k_q - k_{q-1})$ matrix and $M_{pq} = 0$ for $p > q$.

By (2.2) and (3.3), one has

$$\text{Jac}_\rho(z) = T_D(0,0)^{-1} T_D(z,0) = I_n + T_D(0,0)^{-1} M(z) =: I_n + N(z). \quad (3.6)$$
From the form of \(T_D(0,0) \) and \(M(z) \), one gets that \(N(z) = [N_{pq}(z)]_{1 \leq p, q \leq l} \), where \(N_{pq}(z) = 0 \) for \(p < q \) and \(N_{pq}(z) = T_p^{-1}M_{pq}(z) \) for \(p > q \).

Since \(\sigma(0) = 0 \), from (3.6) and (3.4), one sees that \(\sigma_i(z) \), \(1 \leq i \leq n \), is of the desired form.

Corollary 3.2. The Bergman mapping \(\sigma(z) \) is invertible. Moreover, writing \(\sigma^{-1}(\zeta) = (\tau_1(\zeta), \ldots, \tau_n(\zeta)) \), for each \(1 \leq i \leq n \), \(\tau_i(\zeta) \) is of the form \(\tau_i(\zeta) = \zeta_i + h_i(\zeta) \), where \(h_i(\zeta) \) contains only nonlinear \(i \)th resonant monomials.

Proof. By Lemma 3.1, it is clear that \(\sigma(z) \) is invertible.

For \(1 \leq i \leq k_1 \), one has \(\zeta_i = \sigma_i \circ \sigma^{-1}(\zeta) = \tau_i(\zeta) \). Thus, \(h_i(\zeta) = 0 \).

For \(k_1 + 1 \leq i \leq k_2 \), one has \(\zeta_i = \sigma_i \circ \sigma^{-1}(\zeta) = \tau_i(\zeta) + g_i \circ \sigma^{-1}(\zeta) \). Thus,

\[
\begin{align*}
h_{k_1+1}(\zeta) &= -g_{k_1+1} \circ \sigma^{-1}(z) = -g_{k_1+1}(\zeta_1, \ldots, \zeta_{k_1}, 0, \ldots, 0),
\end{align*}
\]

which contains only nonlinear \((k_1 + 1) \)th resonant monomials.

\[
\begin{align*}
h_{k_1+2}(\zeta) &= -g_{k_1+2} \circ \sigma^{-1}(z) \\
&= -g_{k_1+2}(\zeta_1, \ldots, \zeta_{k_1}, \zeta_{k_1+1} - g_{k_1+1}(\zeta_1, \ldots, \zeta_{k_1}, 0, \ldots, 0), 0, \ldots, 0),
\end{align*}
\]

which contains only nonlinear \((k_1 + 2) \)th resonant monomials. By induction, one gets for every \(1 \leq i \leq n \),

\[
h_i(\zeta) = -g_i(\tau_1(\zeta), \ldots, \tau_{i-1}(\zeta), 0, \ldots, 0),
\]

which contains only nonlinear \(i \)th resonant monomials.

Lemma 3.3. \(f(z) = \sigma^{-1} \circ J_f \circ \sigma(z) \).

Proof. It is well-known that in Bergman representative coordinates, there exists a linear map \(L \) such that \(\sigma \circ f = L \circ \sigma \). Since \(\text{Jac}_p(0) \) is the identity, one has \(L = J_f \). By Corollary 3.2 \(\sigma \) is invertible. Therefore, the lemma follows.

Remark 3.4. Lemma 3.3 gives a complete description of all possible forms of automorphisms of quasi-circular domains fixing the origin. It also gives an alternative definition of the “quasi-resonance order”, which is easier to use and compute.

Proof of Theorem 1.1. If \(J_f \) is of the diagonal form as given in Theorem 1.1, then by the expressions of \(\sigma \) and \(\sigma^{-1} \) given in Corollary 3.2 each \(f_i \), \(1 \leq i \leq n \), contains only \(i \)th resonant monomials, and thus the degree of \(f \) is bounded by the resonance order.

If \(J_f \) is not of the diagonal form as given in Theorem 1.1, then in general \(f_i \) can contain monomials which are not \(i \)th resonant, and thus the degree of \(f \) can be only bounded by the quasi-resonance order.
The degree of automorphisms of quasi-circular domains

From the proof above, one sees that the following is true.

Corollary 3.5. Let D be a bounded quasi-circular domain containing the origin and $f = (f_1, \ldots, f_n)$ an automorphism of D fixing the origin. Then the degree of f is less than or equal to the resonance order if and only if each f_i, $1 \leq i \leq n$, is an ith resonant polynomial.

Remark 3.6. We recently noticed that Lemma 1 in [2] is quite relevant to our discussion above.

Acknowledgment

The author is partially supported by the National Natural Science Foundation of China (Grant No. 11371246).

References

