Simple waves and characteristic decompositions of quasilinear hyperbolic systems in two independent variables

Wancheng Sheng

Department of Mathematics, Shanghai University
(Joint with Yanbo Hu)

Joint Workshop on Partial Differential Equations

Shanghai Jiaotong University, Shanghai, China
November 15-17, 2012
1 Introduction
 - Simple waves
 - Characteristic decompositions

2 Characteristic decompositions
 - 2×2 strictly hyperbolic system
 - Simple wave adjacent to a constant state

3 Simple wave
 - Simple wave with straight characteristics
 - Simple wave solutions

4 Applications
 - Pseudo-steady Euler equations
 - The generalized UTSD system
A simple wave is defined as a flow in a region whose image is a curve in the phase space.

It plays an important role in the theories of gas dynamics and fluid mechanics.

Simple waves play a fundamental role in describing and building up solutions of flow problems. (pp. 59-60)
Simple wave

Hyperbolic systems in two independent variables

\[u_x + A(u)u_y = 0 \]

where \(A(u) = (a_{ij}(u))_{n \times n}, \ u = (u_1, \cdots, u_n)^\top. \) The real and distinct eigenvalues

\[\lambda_1(u) < \cdots < \lambda_n(u). \]

Lax 1957 and Dafermos 2000

The states in a domain adjacent to a domain of constant state is always a simple wave by using the Riemann invariants.

Remark

The treatment is invalid when the matrix \(A \) depends on \(x \) and \(y \) as well as \(u \).
Characteristic decompositions—an example

A classical 1-D wave equation

\[u_{tt} - c^2 u_{xx} = 0 \]

with constant speed \(c \), which has an interesting decomposition

\[(\partial_t \pm c \partial_x)(\partial_t \mp c \partial_x)u = 0. \]

One can rewrite them as

\[\partial_+ R = 0 \quad \text{and} \quad \partial_- S = 0, \]

where

\[R = \partial_- u := \partial_t u - c \partial_x u, \quad S = \partial_+ u := \partial_t u + c \partial_x u. \]
Characteristic decompositions—quasilinear equations

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
</tr>
</thead>
</table>
The general 2×2 strictly hyperbolic system

\[
\begin{pmatrix} u \\ v \end{pmatrix}_x + \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}_y = 0, \tag{1}
\]

where the coefficients $a_{ij} = a_{ij}(x, y, u, v), i, j = 1, 2$, which satisfy

\[(a_{11} + a_{22})^2 - 4(a_{11}a_{22} - a_{12}a_{21}) > 0.\]

The coefficient matrix of the system has two eigenvalues

\[
\lambda_{\pm} = \frac{(a_{11} + a_{22}) \pm \sqrt{(a_{11} + a_{22})^2 - 4(a_{11}a_{22} - a_{12}a_{21})}}{2},
\]

which are solutions to the characteristic equation

\[
\lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21} = 0.
\]
The characteristic form of system (1) is

\[\partial_{\pm} u + \frac{\lambda_{\pm} - a_{22}}{-a_{21}} \partial_{\pm} v = 0, \]

(2)

where \(\partial_{\pm} := \partial_x + \lambda_{\pm} \partial_y \). Here we assume without loss of generality that \(a_{21} \neq 0 \). Denote

\[A_1 := a_{11x} + a_{11} a_{11y} + a_{21} a_{12y}, \]
\[A_2 := a_{12x} + a_{12} a_{11y} + a_{22} a_{12y}, \]
\[A_3 := a_{21x} + a_{11} a_{21y} + a_{21} a_{22y}, \]
\[A_4 := a_{22x} + a_{12} a_{21y} + a_{22} a_{22y}, \]

where \(u \) and \(v \) are parameters in \(a_{ij} = a_{ij}(x, y, u, v) \) \((i, j = 1, 2) \).
If the coefficients a_{ij} ($i, j = 1, 2$) satisfy

$$A_1 = A_2 = A_3 = A_4 = 0,$$

then there hold

$$\partial_\pm \lambda_\pm = \frac{(\lambda_+ - a_{22})\lambda_\pm u + a_{21}\lambda_\pm v}{\lambda_+ - a_{22}} \partial_\pm u,$$

and $\partial_\mp \partial_\pm u = h_\pm \partial_\pm u$ for some suitable factors h_\pm. Consequently, the role of above equations is to ensure that the simple wave region be covered by a family of straight characteristics.

Characteristic decomposition of the 2×2 quasilinear strictly hyperbolic systems
If the sufficient condition (4) does not satisfy, we will obtain more general results.

(commutator relation) For any quantity $l = l(x, y)$, there holds

$$
\partial_- \partial_+ l - \partial_+ \partial_- l = \frac{\partial_- \lambda_+ - \partial_+ \lambda_-}{\lambda_- - \lambda_+} (\partial_- l - \partial_+ l).
$$

Taking $l = u$, we get

$$
\partial_\pm \partial_{\mp} u + \frac{\partial_+ \lambda_- - \partial_- \lambda_+}{\lambda_+ - \lambda_-} \partial_{\mp} u = \frac{\lambda_- - a_{22}}{\lambda_- - \lambda_+} \left(\partial_{\mp} \left(\frac{\lambda_- - a_{22}}{a_{21}} \right) \frac{a_{21}}{\lambda_- - a_{22}} \partial_{\pm} u + \frac{\lambda_- - a_{22}}{a_{21}} \partial_{\mp} \left(\frac{a_{21}}{\lambda_- - a_{22}} \right) \partial_{\mp} u \right).
$$
We compute
\[
\partial_{\pm} \left(\frac{\lambda_{\pm} - a_{22}}{a_{21}} \right) = \partial_{\pm} (\lambda_{\pm} - a_{22}) a_{21} - (\lambda_{\pm} - a_{22}) \partial_{\pm} a_{21} \\
= m_{\pm} \partial_{\pm} u - \frac{a_{21}(a_{22x} + \lambda_{\pm} a_{22y}) + (\lambda_{\pm} - a_{22})(a_{21x} + \lambda_{\pm} a_{21y}) - a_{21}(\lambda_{\pm} x + \lambda_{\pm} y)}{a_{21}^2}
\]

where
\[
m_{\pm} = a_{21} \left(\lambda_{\pm} u + \frac{a_{21}}{\lambda_{\pm} - a_{22}} \lambda_{\pm} v - a_{22} u - a_{22} v \frac{a_{21}}{\lambda_{\pm} - a_{22}} \right) - (\lambda_{\pm} - a_{22}) \left(a_{21} u + a_{21} v \frac{a_{21}}{\lambda_{\pm} - a_{22}} \right) \frac{a_{21}}{a_{21}^2}.
\]
Then there hold

$$\partial_\pm \left(\frac{\lambda_\pm - a_{22}}{a_{21}} \right) = m_\pm \partial_\pm u$$

if the coefficients a_{ij} ($i, j = 1, 2$) satisfy the following equations:

$$a_{22x} + \lambda_\pm a_{22y} + \frac{\lambda_\pm - a_{22}}{a_{21}} (a_{21x} + \lambda_\pm a_{21y}) = \lambda_\pm x + \lambda_\pm \lambda_\pm y.$$
It follows that

\[B_1 + \lambda \pm B_2 = 0, \]

where

\[B_1 = a_{21}(a_{11}a_{22} - a_{12}a_{21})x + (a_{11} + a_{22})(a_{22}a_{21}x - a_{21}a_{22}x) \]
\[- (a_{11}a_{22} - a_{12}a_{21})[(a_{11} - a_{22})a_{21}y - (a_{11} - a_{22})_y a_{21} + 2a_{21}x] \]

\[B_2 = a_{21}(a_{11}a_{22} - a_{12}a_{21})y - a_{21}(a_{11}x + a_{22}x) + 2a_{21}a_{22}x - 2a_{22}a_{21}x \]
\[- (a_{11} + a_{22})(a_{21}x + a_{21}a_{22}y - a_{22}a_{21}y) + (a_{11} + a_{22})[2a_{21}x + 2a_{21}a_{22}y - 2a_{22}a_{21}y - (a_{11} + a_{22})a_{21}y - a_{21}(a_{11}y + a_{22}y)] + 2[(a_{11} + a_{22})^2 \]
\[- (a_{11}a_{22} - a_{12}a_{21})]a_{21}y. \]
Thus, from $\lambda_+ - \lambda_- \neq 0$, we have $B_1 = B_2 = 0$, which can be simplified as

\[
\begin{cases}
 a_{21}A_2 - a_{12}A_3 = 0, \\
 a_{21}(A_1 - A_4) + (a_{22} - a_{11})A_3 = 0.
\end{cases}
\]

Therefore there hold the identities

\[
\partial_+ \partial_\pm u = h_\pm \partial_\pm u
\]

for some suitable factors h_\pm if system (5) is satisfied.
2 × 2 strictly hyperbolic system—more general one.

Theorem 1.

There hold

\[\partial_{\pm} u = \frac{\lambda_{\mp} - a_{22}}{a_{21}} \partial_{\pm} v, \]

and

\[\partial_{\mp} \partial_{\pm} u = h_{\pm} \partial_{\pm} u \]

for some factors \(h_{\pm} \) if the coefficients \(a_{ij} \ (i, j = 1, 2) \) with \(a_{21} \neq 0 \) satisfy system

\[
\begin{align*}
 a_{21} A_2 - a_{12} A_3 &= 0, \\
 a_{21} (A_1 - A_4) + (a_{22} - a_{11}) A_3 &= 0.
\end{align*}
\]
Simple wave adjacent to a constant state

Theorem 2.

Adjacent to a constant state of equations (1) is a simple wave in which the variables \((u,v)\) are constant along a family of characteristics if the coefficients \(a_{ij} \ (i,j = 1,2)\) with \(a_{21} \neq 0\) satisfy system

\[
\begin{align*}
 a_{21}A_2 - a_{12}A_3 &= 0, \\
 a_{21}(A_1 - A_4) + (a_{22} - a_{11})A_3 &= 0.
\end{align*}
\]

Remark

Similar arguments can be made for the case \(a_{21} = 0\).
Theorem 2.

A simple wave region to be covered by one family of straight characteristics if and only if the coefficients \(a_{ij}\) \((i, j = 1, 2)\) satisfy

\[A_1 = A_2 = A_3 = A_4 = 0. \]

where

\[A_1 := a_{11}x + a_{11}a_{11}y + a_{21}a_{12}y, \quad A_2 := a_{12}x + a_{12}a_{11}y + a_{22}a_{12}y, \]
\[A_3 := a_{21}x + a_{11}a_{21}y + a_{21}a_{22}y, \quad A_4 := a_{22}x + a_{12}a_{21}y + a_{22}a_{22}y. \]
In fact, if
\[\lambda_{\pm x} + \lambda_{\pm} \lambda_{\pm y} = 0, \quad (6) \]
then
\[\partial_{\pm} \lambda_{\pm} = \frac{(\lambda_{\mp} - a_{22}) \lambda_{\pm u} + a_{21} \lambda_{\pm v}}{\lambda_{\mp} - a_{22}} \partial_{\pm} u. \]

Thus, the condition (6) can be rewritten as
\[\left((a_{11} + a_{22})(a_{11} + a_{22})y + (a_{11} + a_{22})x - (a_{11} a_{22} - a_{12} a_{21})y \right) \lambda_{\pm} \]
\[- [(a_{11} a_{22} - a_{12} a_{21})x + (a_{11} a_{22} - a_{12} a_{21})(a_{11} + a_{22}) y] = 0, \]
from which we get after some simplifications
\[\left\{ \begin{array}{l}
A_1 + A_4 = 0, \\
(a_{11} - a_{22})A_1 + a_{21} A_2 + a_{12} A_3 = 0.
\end{array} \right. \]
Simple wave with straight characteristics

Then, we have

\[
\begin{pmatrix}
0 & a_{21} & -a_{12} & 0 \\
a_{21} & 0 & a_{22} - a_{11} & -a_{21} \\
1 & 0 & 0 & 1 \\
a_{11} - a_{22} & a_{21} & a_{12} & 0
\end{pmatrix}
\begin{pmatrix}
A_1 \\
A_2 \\
A_3 \\
A_4
\end{pmatrix} = 0.
\]

Therefore, we find

\[A_1 = A_2 = A_3 = A_4 = 0\]

by the fact that the determinant of coefficient matrix

\[a_{21}[(a_{11} + a_{22})^2 - 4(a_{11}a_{22} - a_{12}a_{21})] \neq 0.\]
Theorem 3. Assume that the coefficients a_{ij} ($i, j = 1, 2$) with $a_{21} \neq 0$ satisfy

$$\begin{align*}
 a_{21}A_2 - a_{12}A_3 &= 0, \\
 a_{21}(A_1 - A_4) + (a_{22} - a_{11})A_3 &= 0.
\end{align*}$$

Then $(u, v)(x, y)$ is a simple wave solution of (1).
Simple wave solutions

\[
\begin{align*}
 & y \\
 & 0 \\
 & x
\end{align*}
\]

\[c_{+}(s)\]
1. Pseudo-steady Euler equations

In 2-D isentropic irrotational ideal flow in the self-similar plane \((\xi, \eta) = (x/t, y/t)\), the equations of motion is

\[
\begin{bmatrix}
u \\
v
\end{bmatrix}_{\xi} + \begin{bmatrix}
-2UV & \frac{c^2-V^2}{c^2-U^2} \\
-1 & 0
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}_{\eta} = 0,
\tag{7}
\]

where \(c\) is the speed of sound satisfying the pseudo-Bernoulli’s law

\[
\frac{c^2}{\gamma - 1} + \frac{U^2 + V^2}{2} = -\varphi,
\]

\((U, V) = (u - \xi, v - \eta)\) is the pseudo-velocity, and \(\varphi = \varphi(\xi, \eta)\) is the pseudo-potential such that \(\varphi_{\xi} = U, \varphi_{\eta} = V\). Taking \(u\) and \(v\) are parameters in \(c\), we can directly obtain \(c_{\xi} = 0\) and \(c_{\eta} = 0\).
Then we have

\[a_{11}\xi + a_{11}a_{11}\eta + a_{21}a_{12}\eta = \left(\frac{-2(u - \xi)(v - \eta)}{c^2 - (u - \xi)^2} \right) \xi
+ \frac{-2(u - \xi)(v - \eta)}{c^2 - (u - \xi)^2} \cdot \left[\frac{-2(u - \xi)(v - \eta)}{c^2 - (u - \xi)^2} \right] \eta
- \frac{c^2 - (v - \eta)^2}{c^2 - (u - \xi)^2} \eta
= 2(v - \eta)\left[c^2 - (u - \xi)^2 \right] + 4(u - \xi)^2(v - \eta) \]

\[\frac{1}{[c^2 - (u - \xi)^2]^2} \]

\[+ \frac{-2(u - \xi)(v - \eta)}{c^2 - (u - \xi)^2} \cdot \frac{2(u - \xi)[c^2 - (u - \xi)^2]}{[c^2 - (u - \xi)^2]^2}
- \frac{2(v - \eta)}{c^2 - (u - \xi)^2} = 0, \]
1. Pseudo-steady Euler equations

and

\[a_{12} \xi + a_{12} a_{11} \eta \]

\[= \left[\frac{c^2 - (v - \eta)^2}{c^2 - (u - \xi)^2} \right] \xi + \frac{c^2 - (v - \eta)^2}{c^2 - (u - \xi)^2} \cdot \left[\frac{-2(u - \xi)(v - \eta)}{c^2 - (u - \xi)^2} \right] \eta \]

\[= -2(u - \xi) \left[\frac{c^2 - (v - \eta)^2}{[c^2 - (u - \xi)^2]^2} \right] + \frac{c^2 - (v - \eta)^2}{c^2 - (u - \xi)^2} \cdot \frac{2(u - \xi)}{c^2 - (u - \xi)^2} \]

\[= 0, \]

which imply the coefficients of equations (7) satisfy system (3).
2. The generalized UTSD system

The generalized UTSD system

\[(A(U) - xJ(U))U_x + (B(U) - yJ(U))U_y = 0,\] (8)

where \(U = [u, v]^\top\), \(A(U) = (a_{ij}(U))\), \(B(U) = (b_{ij}(U))\), \(J(U) = (j_{ij}(U))\), \(i, j = 1, 2\).

This kind of system was used in dealing with the unsteady transonic small disturbance (UTSD) equations by Čanić and Keyfitz.

Quasi-one-dimensional Riemann problems and their role in self-similar two-dimensional problems
Assume without loss of generality that $|A(U) - xJ(U)| \neq 0$, then we can rewrite (8) in a new form

\[
\begin{bmatrix}
u \\
v
\end{bmatrix}_x + \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} u \\
v
\end{bmatrix}_y = 0, \quad (9)
\]
2. The generalized UTSD system

where

\[
\begin{align*}
c_{11} &= \frac{(a_{22} - x_{j22})(b_{11} - y_{j11}) - (a_{12} - x_{j12})(b_{21} - y_{j21})}{(a_{11} - x_{j11})(a_{22} - y_{j22}) - (a_{12} - x_{j12})(a_{21} - y_{j21})}, \\
c_{12} &= \frac{(a_{22} - x_{j22})(b_{12} - y_{j12}) - (a_{12} - x_{j12})(b_{22} - y_{j22})}{(a_{11} - x_{j11})(a_{22} - y_{j22}) - (a_{12} - x_{j12})(a_{21} - y_{j21})}, \\
c_{21} &= \frac{(a_{11} - x_{j11})(b_{21} - y_{j21}) - (a_{21} - x_{j21})(b_{11} - y_{j11})}{(a_{11} - x_{j11})(a_{22} - y_{j22}) - (a_{12} - x_{j12})(a_{21} - y_{j21})}, \\
c_{22} &= \frac{(a_{11} - x_{j11})(b_{22} - y_{j22}) - (a_{21} - x_{j21})(b_{12} - y_{j12})}{(a_{11} - x_{j11})(a_{22} - y_{j22}) - (a_{12} - x_{j12})(a_{21} - y_{j21})}.
\end{align*}
\]

We find that the coefficients $c_{ij}, i, j = 1, 2$ of equations (9) satisfy system (5) by direct computation.
Thank you!