Global dimensions of endomorphism algebras of generator-cogenerators over m-replicated algebras

Shunhua Zhang
School of Mathematics, Shandong University
This is a joint with Hongbo Lv

2011.10.6 Shanghai Jiao Tong University
Contents

Motivation 1
Notations 2
Main results 3
Motivation

- The endomorphism algebras of generator-cogenerators have attracted a lot of interest, and these are just the artin algebras of dominant dimension at least two.
Motivation

- The endomorphism algebras of generator-cogenerators have attracted a lot of interest, and these are just the artin algebras of dominant dimension at least two.

- The smallest value of the global dimensions of the endomorphism algebras of generator-cogenerators was defined to be the representation dimension by M. Auslander.
Motivation

- The endomorphism algebras of generator-cogenerators have attracted a lot of interest, and these are just the artin algebras of dominant dimension at least two.

- The smallest value of the global dimensions of the endomorphism algebras of generator-cogenerators was defined to be the representation dimension by M.Auslander.

- In particular, M.Auslander proved that an artin algebra is representation-finite if and only if its representation dimension is at most two.
Motivation

- 2003, O.Iyama has shown that the representation dimension of an artin algebra is always finite.
Motivation

- **2003**, O.Iyama has shown that the representation dimension of an artin algebra is always finite.

- **2006**, R.Rouquier has shown that there is no upper bound for the representation dimensions of artin algebras.
Motivation

- **2003**, O.Iyama has shown that the representation dimension of an artin algebra is always finite.

- **2006**, R.Rouquier has shown that there is no upper bound for the representation dimensions of artin algebras.

- These motivate the investigation on the possibilities for the global dimensions of the endomorphism algebras of generator-cogenerators.
Motivation

- **2003**, O.Iyama has shown that the representation dimension of an artin algebra is always finite.

- **2006**, R.Rouquier has shown that there is no upper bound for the representation dimensions of artin algebras.

- These motivate the investigation on the possibilities for the global dimensions of the endomorphism algebras of generator-cogenerators.

- In general, it is not easy to compute the global dimension of $\text{End}(M)$ whenever M is a generator-cogenerator. Hence constructions of generator-cogenerators with a fixed global dimension have an independent interest.
Motivation

- 2008, V.Dlab and C.M.Ringel described the possibilities for the global dimensions of the endomorphism algebras of generator-cogenerators for a hereditary algebra.
Motivation

- **2008**, V.Dlab and C.M.Ringel described the possibilities for the global dimensions of the endomorphism algebras of generator-cogenerators for a hereditary algebra.

- We follow the idea of V.Dlab and C.M.Ringel and investigate the possible values for the global dimensions of the endomorphism algebras of generator-cogenerators for m-replicated algebra.
Notations

- Let \(\Lambda \) be an artin algebra.
 - \(\text{gl.dim } \Lambda \) is the global dimension of \(\Lambda \).
 - \(\tau_\Lambda \) is the Auslander-Reiten translation of \(\Lambda \).
- Let \(M \) be a \(\Lambda \)-module.
 - \(\text{pd } M \) is the projective dimension of \(M \).
 - \(\Omega_{\Lambda}^{-k}M \) is the \(k^{\text{th}} \) cosyzygy of \(M \).
Notations

- Let Λ be an artin algebra.
 - $\text{gl.dim } \Lambda$ is the global dimension of Λ.
 - τ_Λ is the Auslander-Reiten translation of Λ.
- Let M be a Λ-module.
 - $\text{pd } M$ is the projective dimension of M.
 - $\Omega_\Lambda^{-k} M$ is the k^{th} cosyzygy of M.

M is called a generator-cogenerator if all indecomposable projective modules and indecomposable injective modules are in $\text{add } M$.

- Let M be a generator-cogenerator.
 - If $\text{gl.dim End}_\Lambda(M) = d$, then M is also called a generator-cogenerator with global dimension d.

Return
Notations

- From now on, let A be a hereditary algebra.

\[
A^{(m)} = \begin{pmatrix}
A_0 & 0 \\
Q_1 & A_1 \\
Q_2 & A_2 \\
& & \ddots & \ddots \\
& & & 0 & Q_m & A_m
\end{pmatrix}.
\]

is the m-replicated algebra of A, where $A_i = A$ and $Q_i = DA$, D is the standard duality between $\text{mod } A$ and $\text{mod } A^{op}$, multiplication is induced from the canonical isomorphisms $A \otimes_A DA \cong DA \cong DA \otimes_A A$ and the zero morphism $DA \otimes_A DA \rightarrow 0$.

Return
Notations

Let $\Sigma_k = \Omega_{A'}^{-k} \Sigma_0 = \{ \Omega_{A'}^{-k} X \mid X \in \Sigma_0 \}$ for $k \geq 0$. Σ_0 is the set of all non-isomorphic indecomposable projective A-modules.
Notations

- Let $\Sigma_k = \Omega_{A'}^{-k} \Sigma_0 = \{\Omega_{A'}^{-k} X | X \in \Sigma_0\}$ for $k \geq 0$. $
\Sigma_0$ is the set of all non-isomorphic indecomposable projective A-modules.

- Let U_k be the direct sum of all the indecomposable modules in $\Sigma_k \cap \text{ind } A^{(m)}$ for $k \geq 0$.
Notations

- Let $\Sigma_k = \Omega_{\mathcal{A}'}^{-k} \Sigma_0 = \{ \Omega_{\mathcal{A}'}^{-k} X \mid X \in \Sigma_0 \}$ for $k \geq 0$. $
\Sigma_0$ is the set of all non-isomorphic indecomposable projective A-modules.

- Let U_k be the direct sum of all the indecomposable modules in $\Sigma_k \cap \text{ind } A^{(m)}$ for $k \geq 0$.

- Let P be the direct sum of all indecomposable projective-injective $A^{(m)}$-modules.
Main results

- **Theorem 1.** Let d be an integer with $d \geq 2$ and A be a representation finite hereditary Artin algebra. There exists an $A^{(m)}$-module M which is a generator-cogenerator with global dimension d if and only if there exists a $\tau_{A^{(m)}}$-orbit of cardinality at least d.
Main results

- **Theorem 1.** Let d be an integer with $d \geq 2$ and A be a representation finite hereditary Artin algebra. There exists an $A^{(m)}$-module M which is a generator-cogenerator with global dimension d if and only if there exists a $\tau^{A^{(m)}}$-orbit of cardinality at least d.

- **Remark.** In this finite type case, let s be the maximal length of all $\tau^{A^{(m)}}$-orbits. Then for any d with $2 \leq d \leq s$, one can find a generator-cogenerator $A^{(m)}$-module M such that $	ext{gl.dim } \text{End}_{A^{(m)}}(M) = d$.
Generator-cogenerators with dimension $i + 2$

- Assume that $\text{gl.dim } A^{(m)} = t$.
Generator-cogenerators with dimension $i + 2$

- Assume that $\text{gl.dim } A^{(m)} = t$.

- Now I can tell you how to construct a generator-cogenerator with special global dimension.
Generator-cogenerators with dimension $i + 2$

- Assume that $\text{gl.dim } A^{(m)} = t$.

- Now I can tell you how to construct a generator-cogenerator with special global dimension.

Proposition 1. Let $E_i = A \oplus DA_m \oplus P \oplus \bigoplus_{k=i}^{t-1} U_k$ for $1 \leq i \leq t - 1$. Then E_i is a generator-cogenerator $A^{(m)}$-module and $\text{gl.dim } \text{End}_{A^{(m)}}(E_i) = i + 2$.
Generator-cogenerators with dimension $i + 2$

- Assume that $\text{gl.dim } A^{(m)} = t$.

- Now I can tell you how to construct a generator-cogenerator with special global dimension.

Proposition 1. Let $E_i = A \oplus D A_m \oplus P \oplus \bigoplus_{k=i}^{t-1} U_k$ for $1 \leq i \leq t - 1$. Then E_i is a generator-cogenerator $A^{(m)}$-module and $\text{gl.dim } \text{End}_{A^{(m)}}(E_i) = i + 2$.

Corollary 2. Let d be an integer with $3 \leq d \leq t + 1$. Then there exists a generator-cogenerator M in $\text{mod } A^{(m)}$ with global dimension d. In particular, the representation dimension of $A^{(m)}$ is at most 3.
Generator-cogenerators with dimension d

Proposition 3. Let d be an integer with $d \geq 2m + 3$. Let Z be an indecomposable non-injective $A^{(m)}$-module such that $\tau^{d-(2m+2)}Z$ is a simple and projective A-module. Let

$$0 \rightarrow \tau Z \rightarrow \bigoplus Y_j \rightarrow Z \rightarrow 0$$

be the Auslander-Reiten sequence ending in Z, with indecomposable modules Y_j. Let

$$M = A \oplus DA_m \oplus \bigoplus_{i=0}^{d-(2m+3)} (\bigoplus \tau^i Y_j) \oplus P.$$

Then M is a generator-cogenerator $A^{(m)}$-module and $\text{gl.dim } \text{End}_{A^{(m)}}(M) = d$.

▶ Return
Generator-cogenerators with dimension ∞

- **Proposition 4.** Let N be an indecomposable A-module whose endomorphism algebra is a division ring and such that there is a non-split sequence $0 \to N \xrightarrow{u} N' \xrightarrow{v} N \to 0$. Let $M = A \oplus DA_m \oplus P \oplus N'$. Then M is a generator-cogenerator in $\text{mod } A^{(m)}$ and $\text{gl.dim } \text{End}_{A^{(m)}}(M) = \infty$.
Main results

- According to Proposition 1, Proposition 3 and Proposition 4, we get the following theorem.
Main results

According to Proposition 1, Proposition 3 and Proposition 4, we get the following theorem.

Theorem 2. Let A be a representation infinite hereditary Artin algebra and d be either an integer with $d \geq 3$ or else the symbol ∞. Then there exists a generator-cogenerator $A^{(m)}$-module M with $\text{gl.dim End}_{A^{(m)}}(M) = d$.
Main results

- According to Proposition 1, Proposition 3 and Proposition 4, we get the following theorem.

Theorem 2. Let A be a representation infinite hereditary Artin algebra and d be either an integer with $d \geq 3$ or else the symbol ∞. Then there exists a generator-cogenerator $A^{(m)}$-module M with \(\text{gl.dim } \text{End}_{A^{(m)}}(M) = d \).

Remark. In this infinite type case, for any d with $3 \leq d \leq \infty$, we explicitly construct a generator-cogenerator $A^{(m)}$-module M with \(\text{gl.dim } \text{End}_{A^{(m)}}(M) = d \).
Main References

THANK YOU!