Spectral Analysis of Growing Graphs
A Quantum Probability Point of View
by
Nobuaki Obata (Tohoku University)

5. Asymptotic Spectral Analysis of Growing Regular Graphs
5.1. Main Theme

Growing graphs and spectral distributions

Our Main Theme

The asymptotic behavior of μ_n as $n \to \infty$. In fact, we will investigate the limit:

$$\lim_{n \to \infty} \mu_n$$
5.2. Simple Example (I) \(P_n \) as \(n \to \infty \)

\[
\text{Spec} (P_n) = \left\{ 2 \cos \frac{k\pi}{n+1} ; 1 \leq k \leq n \right\}
\]

\[
\mu_n = \frac{1}{n} \sum_{k=1}^{n} \delta_{2 \cos \frac{k\pi}{n+1}}
\]

For \(f \in C_b(\mathbb{R}) \) we have

\[
\int_{-\infty}^{+\infty} f(x) \mu_n (dx) = \frac{1}{n} \sum_{k=1}^{n} f \left(2 \cos \frac{k\pi}{n+1} \right)
\]

\[
\rightarrow \int_{0}^{1} f(2 \cos \pi t) dt
\]

\[
= \int_{-2}^{+2} f(x) \frac{dx}{\pi \sqrt{4-x^2}}.
\]
5.2. Simple Example (II) K_n as $n \to \infty$

K_n as $n \to \infty$

$\text{Spec } (K_n) = \{-1(n-1), n-1(1)\}$

$\mu_n = \frac{1}{n} \delta_{n-1} + \frac{n-1}{n} \delta_{-1}$

Let us see what happens in the limit μ_n as $n \to \infty$

For $f \in C_b(\mathbb{R})$ we have

$$\int_{-\infty}^{+\infty} f(x) \mu_n(dx) = \frac{1}{n} f(n-1) + \frac{n-1}{n} f(-1)$$

$$\to f(-1) = \int_{-\infty}^{+\infty} f(x) \delta_{-1}(dx) \quad \text{as } n \to \infty$$

This means that $\mu_n \to \delta_{-1}$

Can we accept it? What about the mean values?
5.2. Simple Example (II) K_n as $n \to \infty$

Normalization is a basic idea in probability theory to grasp the limit distribution.

E.g., central limit theorem (CLT) and its variants.

Definition (normalization)

For a probability distribution μ its *normalization* is a probability distribution $\tilde{\mu}$ defined by

$$\int f(x) \tilde{\mu}(dx) = \int f\left(\frac{x - m}{\sigma}\right) \mu(dx),$$

where

$$m = \text{mean}(\mu), \quad \sigma^2 = \text{var}(\mu).$$

Then we have

$$\text{mean}(\tilde{\mu}) = 0, \quad \text{var}(\tilde{\mu}) = 1.$$
5.2. Simple Example (II) K_n as $n \to \infty$

K_n as $n \to \infty$

Spectral distribution (eigenvalue distribution): $\mu_n = \frac{1}{n} \delta_{n-1} + \frac{n-1}{n} \delta_{-1}$

Since $\text{mean}(\mu_n) = 0$ and $\text{var}(\mu_n) = n - 1$, after normalization we have

$$
\int_{-\infty}^{+\infty} f(x) \tilde{\mu}_n(dx) = \frac{1}{n} f\left(\frac{n-1}{\sqrt{n-1}}\right) + \frac{n-1}{n} f\left(\frac{-1}{\sqrt{n-1}}\right)
$$

$\rightarrow f(0) = \int_{-\infty}^{+\infty} f(x) \delta_0(dx)$ as $n \to \infty$.

This means that $\tilde{\mu}_n \to \delta_0$.

![Normalized Limit of Spectral Distribution](image-url)
5.3. Formulation of Question in General

A difference between K_n and P_n as $n \to \infty$

\[
\mu_{P_n} = \frac{1}{n} \sum_{k=1}^{n} \delta_{2 \cos \frac{k\pi}{n+1}}, \quad \mu_{K_n} = \frac{1}{n} \delta_{n-1} + \frac{n-1}{n} \delta_{-1}
\]

mean value

\[
\text{mean}(\mu_{P_n}) = \text{mean}(\mu_{K_n}) = 0
\]

variance

\[
\text{var}(\mu_{P_n}) = \frac{2(n-1)}{n} \to 2, \quad \text{var}(\mu_{K_n}) = n - 1 \to \infty
\]

▶ In general, it is not reasonable to consider $\lim \mu_n$ when $\text{var}(\mu_n) \to \infty$.

We should take normalized limit $\lim \tilde{\mu}_n$.
5.3. Formulation of Question in General

\(G_\nu = (V_\nu, E_\nu) \): growing graphs

\((\mathcal{A}(G_\nu), \langle \cdot \rangle_\nu)\): adjacency algebra with a state (algebraic probability space)

\(\mu_\nu \): spectral distribution of the adjacency matrix \(A_\nu \) of \(G_\nu \), i.e.,

\[
\langle A_\nu^m \rangle = \int_{-\infty}^{+\infty} x^m \mu_\nu(dx), \quad m = 0, 1, 2, \ldots .
\]

Note: \(\text{mean}(A_\nu) = \langle A_\nu \rangle \) and \(\text{var}(A_\nu) = \langle (A_\nu - \text{mean}(A_\nu))^2 \rangle \).

Main question in general

For the normalization \(\tilde{\mu}_\nu \) of \(\mu_\nu \) find the limit spectral distribution:

\[
\mu = \lim_\nu \tilde{\mu}_\nu .
\]

In other words,

\[
\lim_\nu \left\langle \left(\frac{A_\nu - \text{mean}(A_\nu)}{\sqrt{\text{var}(A_\nu)}} \right)^m \right\rangle_\nu = \int_{-\infty}^{+\infty} x^m \mu(dx), \quad m = 0, 1, 2, \ldots .
\]
5.4. Growing Distance-Regular Graphs (DRGs)

Definition
A graph $G = (V, E)$ is called distance regular if the intersection numbers:

$$p_{i,j}^k = |\{z \in V ; d(x, z) = i, d(y, z) = j\}|,$$

is constant for all pairs x, y such that $d(x, y) = k$.

Examples: Hamming graphs, Johnson graphs, odd graphs, homogeneous trees, ...

We are interested in growing distance-regular graphs, e.g.,

$H(d, N)$ as $d \to \infty$ and $N \to \infty$

$J(v, d)$ as $v \to \infty$ and $d \to \infty$

O_k as $k \to \infty$

T_k as $k \to \infty$

\ldots
5.4. Growing Distance-Regular Graphs (DRGs)

Some general facts on a distance-regular graph G (exercise)

1. Let $A = A^+ + A^- + A^\circ$ be the quantum decomposition (with respect to a fixed origin $o \in V$). Then

$$A^+ \Phi_n = \sqrt{\omega_n+1} \Phi_{n+1}, \quad A^- \Phi_n = \sqrt{\omega_n} \Phi_{n-1}, \quad A^\circ \Phi_n = \alpha_{n+1} \Phi_n,$$

where

$$\omega_n = p_{1,n-1}^{n-1} p_{1,n}^{n-1}, \quad \alpha_n = p_{1,n-1}^{n-1}.$$

2. In particular, $(\Gamma(G), \{\Phi_n\}, A^+ , A^\circ, A^-)$ is an IFS associated to $(\{\omega_n\}, \{\alpha_n\})$.

3. Mean value and variance:

$$\text{mean}(A) = \langle A \rangle = 0, \quad \text{var}(A) = \langle A^2 \rangle = \deg(o) = p_{11}^0.$$

4. If G is a finite distance-regular graph, the tracial and vacuum states coincide:

$$\langle A^m \rangle_{\text{tr}} = \langle A^m \rangle_{\circ} = \langle e_o, A^m e_o \rangle, \quad m = 1, 2, \ldots.$$
5.5. Growing DRGs: An Example $H(d, N)$

$H(d, N) = K_N \times \cdots \times K_N$ (d times): Hamming graph

\[p^0_{1,1} = \deg H(d, N) = d(N - 1), \]
\[p^n_{1,n-1} = n, \quad p^{n-1}_{1,n} = (d - n)(N - 1), \quad p^{n-1}_{1,n-1} = (n - 1)(N - 2). \]

Theorem

Let $\mu_{d,N}$ be the vacuum spectral distribution of $H(d, N)$ (in coincidence with the eigenvalue distribution). Then the Jacobi parameters of $\mu_{d,N}$ are given by

\[\omega_n = p^n_{1,n-1} p^{n-1}_{1,n} = n(d - n + 1)(N - 1), \quad 1 \leq n \leq d, \]
\[\alpha_n = p^{n-1}_{1,n-1} = (n - 1)(N - 2), \quad 1 \leq n \leq d + 1. \]

In fact, the vacuum spectral distribution of A is the binomial distribution.

The IFS structure:

\[A^+ \Phi_n = \sqrt{\omega_{n+1}} \Phi_{n+1} = \sqrt{(n + 1)(d - n)(N - 1)} \Phi_{n+1}, \]
\[A^- \Phi_n = \sqrt{\omega_n} \Phi_{n-1} = \sqrt{n(d - n + 1)(N - 1)} \Phi_{n-1}, \]
\[A^0 \Phi_n = \alpha_{n+1} \Phi_n = n(N - 2) \Phi_n, \]
5.5. Growing DRGs: An Example $H(d, N)$

\[
A^+ \Phi_n = \sqrt{\omega_{n+1}} \Phi_{n+1} = \sqrt{(n + 1)(d - n)(N - 1)} \Phi_{n+1},
\]
\[
A^- \Phi_n = \sqrt{\omega_n} \Phi_{n-1} = \sqrt{n(d - n + 1)(N - 1)} \Phi_{n-1},
\]
\[
A^\circ \Phi_n = \alpha_{n+1} \Phi_n = n(N - 2) \Phi_n,
\]

- What happens when $N \to \infty$ and $d \to \infty$?

- Normalization: $\text{mean}(A) = \langle A \rangle = 0$ and $\text{var}(A) = \langle A^2 \rangle = d(N - 1)$.

\[
\frac{A^+}{\sqrt{d(N - 1)}} \Phi_n = \sqrt{(n + 1) \left(1 - \frac{n}{d}\right)} \Phi_{n+1},
\]
\[
\frac{A^-}{\sqrt{d(N - 1)}} \Phi_n = \sqrt{n \left(1 - \frac{n - 1}{d}\right)} \Phi_{n-1},
\]
\[
\frac{A^\circ}{\sqrt{d(N - 1)}} \Phi_n = n \sqrt{\frac{N - 2}{d}} \sqrt{\frac{N - 2}{N - 1}} \Phi_n,
\]

- We thus find the proper scaling:

\[
N \to \infty, \quad d \to \infty, \quad \frac{N}{d} \to \tau \geq 0.
\]
5.5. Growing DRGs: An Example $H(d, N)$

- Taking the limit as $N \to \infty$, $d \to \infty$ and $\frac{N}{d} \to \tau \geq 0$, we have

$$A^+ \sqrt{\frac{d}{d(N-1)}} \Phi_n = \sqrt{(n+1)\left(1 - \frac{n}{d}\right)} \Phi_{n+1} \to \sqrt{n+1} \ \Phi_{n+1} \ 	ext{and}$$

$$A^- \sqrt{\frac{d}{d(N-1)}} \Phi_n = \sqrt{n\left(1 - \frac{n-1}{d}\right)} \Phi_{n-1} \to \sqrt{n} \ \Phi_{n-1} \ \text{and}$$

$$A^\circ \sqrt{\frac{d}{d(N-1)}} \Phi_n = n \sqrt{\frac{N-2}{d}} \sqrt{\frac{N-2}{N-1}} \Phi_n \to n \sqrt{\tau} \ \Phi_n \ .$$

- Recall the Boson Fock space $(\Gamma, \{\Psi_n\}, B^+, B^-)$ is defined by

$$B^+ \Psi_n = \sqrt{n+1} \Psi_{n+1}, \quad B^- \Psi_n = \sqrt{n} \Psi_{n-1} .$$

- Note also that

$$B^+ B^- \Psi_n = n \Psi_n .$$
5.5. Growing DRGs: An Example $H(d, N)$

Theorem (Quantum central limit theorem (QCLT) for $H(d, N)$)

Let $A = A^+ + A^- + A^\circ$ be the quantum decomposition of the adjacency matrix of $H(d, N)$. Let $(\Gamma, \{\Psi_n\}, B^+, B^-)$ be the Boson Fock space. Then we have

$$
\left(\frac{A^+}{\sqrt{d(N-1)}}, \frac{A^-}{\sqrt{d(N-1)}}, \frac{A^\circ}{\sqrt{d(N-1)}} \right) \xrightarrow{m} (B^+, B^-, \sqrt{\tau} B^+ B^-),
$$

as $N \to \infty$, $d \to \infty$ and $\frac{N}{d} \to \tau \geq 0$.

where \xrightarrow{m} means the convergence of all mixed moments.

Deteiled proof is omitted (exercise).
5.5. Growing DRGs: An Example $H(d, N)$

Finding the asymptotic spectral distribution for $H(d, N)$

$$
\left(\frac{A^+}{\sqrt{d(N-1)}}, \frac{A^-}{\sqrt{d(N-1)}}, \frac{A^\circ}{\sqrt{d(N-1)}} \right) \xrightarrow{m} (B^+, B^-, \sqrt{\tau} B^+ B^-)
$$

implies that

$$
\langle e_o \left(\frac{A}{\sqrt{d(N-1)}} \right)^m e_o \rangle \xrightarrow{} \langle \Psi_0, (B^+ + B^- + \sqrt{\tau} B^+ B^-)^m \Psi_0 \rangle.
$$

On the other hand, by observing moments or generating functions, we see that

$$
\langle \Psi_0, (B^+ + B^- + \sqrt{\tau} B^+ B^-)^m \Psi_0 \rangle = \int_{-\infty}^{+\infty} x^m \mu(dx),
$$

where

$$
\mu = \begin{cases}
N(0, 1), & \tau = 0, \\
\text{affine transformed Po}(\tau^{-1}), & \tau > 0.
\end{cases}
$$

This μ is the asymptotic spectral (\equiv eigenvalue) distribution of $H(d, N)$.
5.6. Growing DRGs: General Results

\{G_\nu\}: growing DRGs with adjacency matrices \(A_\nu\)

- Using mean\((A_\nu) = \langle A_\nu \rangle = 0\) and var\((A_\nu) = \langle A_\nu^2 \rangle = \deg(G_\nu) = p_{11}^0(\nu)\), the normalization of \(A_\nu\) is given by

\[
\frac{A_\nu - \text{mean}(A_\nu)}{\sqrt{\text{var}(A_\nu)}} = \frac{A_\nu^+}{\sqrt{\deg(G_\nu)}} + \frac{A_\nu^0}{\sqrt{\deg(G_\nu)}} + \frac{A_\nu^-}{\sqrt{\deg(G_\nu)}}.
\]

Theorem (Quantum CLT for growing DRGs)

Assume that for all \(n = 1, 2, \ldots\) the limits

\[
\omega_n = \lim_\nu p_{1,n-1}^n(\nu)p_{1,n-1}^{n-1}(\nu), \quad \alpha_n = \lim_\nu \frac{p_{1,n-1}^{n-1}(\nu)}{\sqrt{p_{1,1}^0(\nu)}},
\]

exist. Let \((\Gamma, \{\Phi_n\}, B^+, B^-, B^0)\) be the interacting Fock space associated with \((\{\omega_n\}, \{\alpha_n\})\). Then we have

\[
\left(\frac{A_\nu^+}{\sqrt{\deg(G_\nu)}}, \frac{A_\nu^-}{\sqrt{\deg(G_\nu)}}, \frac{A_\nu^0}{\sqrt{\deg(G_\nu)}}\right) \xrightarrow{m} (B^+, B^-, B^0).
\]
5.7. Growing Regular Graphs — Going Slightly Beyond DRGs

Z^N as $N \to \infty$

1. $\Gamma(Z^N)$ is asymptotically invariant under A^ϵ:

\[
A^+ \Phi_n = \sqrt{2N} \sqrt{n+1} \Phi_{n+1} + O(1),
\]
\[
A^- \Phi_n = \sqrt{2N} \sqrt{n} \Phi_{n-1} + O(N^{-1/2}).
\]

2. Normalized adjacency matrices:

\[
\frac{A^\epsilon_N}{\sqrt{\text{deg}(A_N)}} = \frac{A^\epsilon_N}{\sqrt{2N}} \to B^\epsilon
\]

3. The interacting Fock space in the limit:

\[
B^+ \Psi_n = \sqrt{n+1} \Psi_{n+1},
\]
\[
B^- \Phi_n = \sqrt{n} \Psi_{n-1}, \quad B^\circ = 0.
\]

This is Boson Fock space!

4. The asymptotic spectral distribution is the standard Gaussian distribution:

\[
\lim_{N \to \infty} \left \langle e_o, \left(\frac{A_N}{\sqrt{2N}} \right)^m e_o \right \rangle = \left \langle \Psi_0, (B^+ + B^-)^m \Psi_0 \right \rangle
\]
\[
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^m e^{-x^2/2} dx.
\]
5.7. Growing Regular Graphs — Going Slightly Beyond DRGs

Statistics of $\omega_\epsilon(x)$

$$M(\omega_\epsilon|V_n) = \frac{1}{|V_n|} \sum_{x \in V_n} |\omega_\epsilon(x)|$$

$$\Sigma^2(\omega_\epsilon|V_n) = \frac{1}{|V_n|} \sum_{x \in V_n} \{ |\omega_\epsilon(x)| - M(\omega_\epsilon|V_n) \}^2$$

$$L(\omega_\epsilon|V_n) = \max\{|\omega_\epsilon(x)|; x \in V_n\}.$$

Conditions for growing regular graphs $G_\nu = (V^{(\nu)}, E^{(\nu)})$

(A1) $\lim_\nu \kappa(\nu) = \infty$, where $\kappa(\nu) = \text{deg}(G_\nu)$.

(A2) for each $n = 1, 2, \ldots$,

$$\exists \lim_\nu M(\omega_-|V_n^{(\nu)}) = \omega_n < \infty, \quad \lim_\nu \Sigma^2(\omega_-|V_n^{(\nu)}) = 0, \quad \sup_\nu L(\omega_-|V_n^{(\nu)}) < \infty.$$

(A3) for each $n = 0, 1, 2, \ldots$,

$$\exists \lim_\nu \frac{M(\omega_\circ|V_n^{(\nu)})}{\sqrt{\kappa(\nu)}} = \alpha_{n+1} < \infty, \quad \lim_\nu \frac{\Sigma^2(\omega_\circ|V_n^{(\nu)})}{\kappa(\nu)} = 0, \quad \sup_\nu \frac{L(\omega_\circ|V_n^{(\nu)})}{\sqrt{\kappa(\nu)}} < \infty.$$
5.7. Growing Regular Graphs — Going Slightly Beyond DRGs

Theorem (QCLT for growing regular graphs)

Let \(\{ G_\nu = (V^{(\nu)}, E^{(\nu)}) \} \) be a growing regular graph satisfying

(A1) \(\lim_\nu \kappa(\nu) = \infty \), where \(\kappa(\nu) = \deg(G_\nu) \).

(A2) for each \(n = 1, 2, \ldots \),

\[\exists \lim_\nu M(\omega_-|V_n^{(\nu)}) = \omega_n < \infty, \quad \lim_\nu \Sigma^2(\omega_-|V_n^{(\nu)}) = 0, \quad \sup_\nu L(\omega_-|V_n^{(\nu)}) < \infty. \]

(A3) for each \(n = 0, 1, 2, \ldots \),

\[\exists \lim_\nu \frac{M(\omega_0|V_n^{(\nu)})}{\sqrt{\kappa(\nu)}} = \alpha_{n+1} < \infty, \quad \lim_\nu \frac{\Sigma^2(\omega_0|V_n^{(\nu)})}{\kappa(\nu)} = 0, \quad \sup_\nu \frac{L(\omega_0|V_n^{(\nu)})}{\sqrt{\kappa(\nu)}} < \infty. \]

Let \((\Gamma, \{ \Psi_n \}, B^+, B^-, B^\circ) \) be the interacting Fock space associated with the Jacobi parameters \((\{ \omega_n \}, \{ \alpha_n \}) \). Then

\[\left(\frac{A^+_\nu}{\sqrt{\kappa(\nu)}}, \frac{A^-_\nu}{\sqrt{\kappa(\nu)}}, \frac{A^\circ_\nu}{\sqrt{\kappa(\nu)}} \right) \xrightarrow{m} (B^+, B^-, B^\circ) \]

In particular, the asymptotic spectral distribution of the normalized \(A_\nu \) in the vacuum state is a probability distribution determined by \((\{ \omega_n \}, \{ \alpha_n \}) \).
Outline of Proof

(1) \[\frac{A_{\epsilon}}{\sqrt{\kappa}} \Phi_n = \gamma_{n+\epsilon}^{\epsilon} \Phi_{n+\epsilon} + S_{n+\epsilon}^{\epsilon}, \quad \epsilon \in \{+,-,\circ\}, \quad n = 0, 1, 2, \ldots. \]

\[\gamma_{n+} = M(\omega_- | V_n) \left(\frac{|V_n|}{\kappa |V_{n-1}|} \right)^{1/2}, \quad \gamma_{n-} = M(\omega_+ | V_n) \left(\frac{|V_n|}{\kappa |V_{n+1}|} \right)^{1/2}, \quad \gamma_{n} = \frac{M(\omega_0 | V_n)}{\sqrt{\kappa}}. \]

(2) \[|V_n| = \left\{ \prod_{k=1}^{n} M(\omega_- | V_k) \right\}^{-1} \kappa^n + O(\kappa^{n-1}). \]

(3) \[\lim_{\nu} \gamma_n^+ = \sqrt{\omega_n}, \quad \lim_{\nu} \gamma_n^- = \sqrt{\omega_{n+1}}, \quad \lim_{\nu} \gamma_n^\circ = \alpha_{n+1}. \]

(4) \[\frac{A_{\epsilon_m}}{\sqrt{\kappa}} \cdots \frac{A_{\epsilon_1}}{\sqrt{\kappa}} \Phi_n = \gamma_{n+\epsilon_1}^{\epsilon_1} \gamma_{n+\epsilon_1+\epsilon_2}^{\epsilon_2} \cdots \gamma_{n+\epsilon_1+\cdots+\epsilon_m}^{\epsilon_m} \Phi_{n+\epsilon_1+\cdots+\epsilon_m} + \sum_{k=1}^{m} \gamma_{n+\epsilon_1}^{\epsilon_1} \cdots \gamma_{n+\epsilon_1+\cdots+\epsilon_{k-1}}^{\epsilon_{k-1}} \cdot \left(\frac{A_{\epsilon_m}}{\sqrt{\kappa}} \cdots \frac{A_{\epsilon_{k+1}}}{\sqrt{\kappa}} \right) S_{n+\epsilon_1+\cdots+\epsilon_{k}}^{\epsilon_{k}}. \]

(5) Estimate the error terms and show that

\[\lim_{\nu} \left\langle \Phi_j^{(\nu)}, \frac{A_{\epsilon_m}}{\sqrt{\kappa(\nu)}} \cdots \frac{A_{\epsilon_{k+1}}}{\sqrt{\kappa(\nu)}} S_{n+\epsilon_1+\cdots+\epsilon_{k}}^{\epsilon_{k}} \right\rangle = 0. \]
5.8. Deformed Vacuum States on $\mathcal{A}(G)$

Definition (Q-matrix and deformed vacuum functional)

The *Q-matrix* of a graph $G = (V, E)$ is defined by

$$Q = Q_q = [q^{d(x,y)}]_{x,y \in V}, \quad d(x, y) = \text{graph distance},$$

where q is a parameter (in fact, we are interested only in the case of $-1 \leq q \leq 1$). The *deformed vacuum functional* is defined by

$$\langle a \rangle_q = \langle Q_q e_o, a e_o \rangle, \quad a \in \mathcal{A}(G).$$

1. For $q = 0$ we have $Q_0 = I$ so that $\langle \cdot \rangle_q$ coincides with the vacuum state.
2. $Q e_o$ does not necessarily belong to $\ell^2(V)$ but $\langle a \rangle_q$ is well-defined for $a \in \mathcal{A}(G)$.
3. $\mathcal{A}(G) \ni a \mapsto \langle a \rangle_q$ is a merely a *normalized linear function*.
4. Positivity of $\langle \cdot \rangle_q$ is an interesting question from several aspects.
5.8. Deformed Vacuum States on $\mathcal{A}(G)$

Let G be a κ-regular graph and consider the deformed vacuum functional on $\mathcal{A}(G)$:

$$\langle a \rangle_q = \langle Q_q e_0, a e_0 \rangle, \quad a \in \mathcal{A}(G).$$

We have

$$\langle A \rangle_q = \kappa q,$$

$$\Sigma^2_q(A) = \langle (A - \langle A \rangle_q)^2 \rangle_q = \kappa (1 - q) \{1 + q + q M(\omega | V_1)\}$$

so that the quantum decomposition of the normalized adjacency matrix is given by

$$\frac{A - \langle A \rangle_q}{\Sigma_q(A)} = \frac{A^+}{\Sigma_q(A)} + \frac{A^-}{\Sigma_q(A)} + \frac{A^\circ - \langle A \rangle_q}{\Sigma_q(A)}$$

Let $\{G_\nu\}$ be growing regular graphs. We need to find a proper scaling balance between $\kappa(\nu)$ and $q(\nu)$.

The balance condition found from the actions of A^e and explicit form of $Q_q e_0$:

$$\lim_{\nu} \kappa(\nu) = \infty, \quad \lim_{\nu} q(\nu) = 0, \quad \lim_{\nu} q(\nu) \sqrt{\kappa(\nu)} = \gamma \in \mathbb{R}.$$
5.8. Deformed Vacuum States on $A(G)$

(A1) $\lim_\nu \kappa(\nu) = \infty$, where $\kappa(\nu) = \text{deg}(G_\nu)$.

(A2) for each $n = 1, 2, \ldots$,

$\exists \lim_\nu M(\omega_-|V_n^{(\nu)}) = \omega_n < \infty, \quad \lim_\nu \Sigma^2(\omega_-|V_n^{(\nu)}) = 0, \quad \sup_\nu L(\omega_-|V_n^{(\nu)}) < \infty$.

(A3) for each $n = 0, 1, 2, \ldots$,

$\exists \lim_\nu \frac{M(\omega_0|V_n^{(\nu)})}{\sqrt{\kappa(\nu)}} = \alpha_{n+1} < \infty, \quad \lim_\nu \frac{\Sigma^2(\omega_0|V_n^{(\nu)})}{\kappa(\nu)} = 0, \quad \sup_\nu \frac{L(\omega_0|V_n^{(\nu)})}{\sqrt{\kappa(\nu)}} < \infty$.

(A4) (scaling balance) $\lim_\nu q(\nu) = 0$ and $\lim_\nu q(\nu) \sqrt{\kappa(\nu)} = \gamma \in \mathbb{R}$ (constant).

Lemma

Under (A1)–(A4) we have

$$Qe_o = \sum_{n=0}^{\infty} q^n \sqrt{|V_n|} \Phi_n \rightarrow \sum_{n=0}^{\infty} \frac{\gamma^n}{\sqrt{\omega_n \cdots \omega_1}} \Psi_n = \Omega_\gamma$$

The above Ω_γ is reasonably called a coherent vector of the interacting Fock space since

$$B^- \Omega_\gamma = \gamma \Omega_\gamma.$$

5.8. Deformed Vacuum States on $\mathcal{A}(G)$

Theorem (Deformed QCLT for growing regular graphs)

Let $\{G_\nu = (V^{(\nu)}, E^{(\nu)})\}$ be a growing regular graph satisfying conditions (A1)–(A3) and A_ν its adjacency matrix. Let $(\Gamma, \{\Psi_n\}, B^+, B^-, B^\circ)$ be the IFS associated to $\{\omega_n\}, \{\alpha_n\}$. Under (A4) we have

$$\lim_{\kappa \to \infty, q \to 0} \frac{\tilde{A}^{\epsilon_m}}{\Sigma_q(A)} \cdots \frac{\tilde{A}^{\epsilon_1}}{\Sigma_q(A)} e_0 = \langle \Omega_\gamma, \tilde{B}^{\epsilon_m} \cdots \tilde{B}^{\epsilon_1} \Psi_0 \rangle,$$

where

$$\tilde{A}^\pm = A_\nu^\pm, \quad \tilde{A}^\circ = A_\nu^\circ - \langle A_\nu \rangle_q, \quad \tilde{B}^\pm = \frac{B^\pm}{\sqrt{1 + \gamma \alpha_2}}, \quad \tilde{B}^\circ = \frac{B^\circ - \gamma}{\sqrt{1 + \gamma \alpha_2}}.$$

In particular,

$$\lim_{\kappa \to \infty, q \to 0} \frac{A_\nu - \langle A \rangle_q}{\Sigma_q(A_\nu)}^m_q = \langle \Omega_\gamma, \left(\frac{B^+ + B^- + B^\circ - \gamma}{\sqrt{1 + \gamma \alpha_2}} \right)^m \Psi_0 \rangle.$$

▶ **Challenging Exercise:** Examine the above argument for T_κ as $\kappa \to \infty$ and find the limit distribution (free Poisson distribution \Rightarrow Marchenko–Pastur distribution).
Some concrete examples: Asymptotic spectral distributions

<table>
<thead>
<tr>
<th>graphs</th>
<th>IFS</th>
<th>vacuum state</th>
<th>deformed vacuum state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamming graphs $H(d, N)$</td>
<td>$\omega_n = n$ (Boson)</td>
<td>Gaussian ($N/d \to 0$)</td>
<td>Gaussian or Poisson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poisson ($N/d \to \lambda^{-1} > 0$)</td>
<td></td>
</tr>
<tr>
<td>Johnson graphs $J(v, d)$</td>
<td>$\omega_n = n^2$</td>
<td>exponential ($2d/v \to 1$)</td>
<td>‘Poissonization’ of exponential distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>geometric ($2d/v \to p \in (0, 1)$)</td>
<td></td>
</tr>
<tr>
<td>odd graphs O_k</td>
<td>$\omega_{2n-1} = n$</td>
<td>two-sided Rayleigh</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>$\omega_{2n} = n$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>homogeneous trees T_κ</td>
<td>$\omega_n = 1$ (free)</td>
<td>Wigner semicircle</td>
<td>free Poisson</td>
</tr>
<tr>
<td>integer lattices \mathbb{Z}^N</td>
<td>$\omega_n = n$ (Boson)</td>
<td>Gaussian</td>
<td>Gaussian</td>
</tr>
<tr>
<td>symmetric groups S_n (Coxeter)</td>
<td>$\omega_n = n$ (Boson)</td>
<td>Gaussian</td>
<td>Gaussian</td>
</tr>
<tr>
<td>Coxeter groups (Fendler)</td>
<td>$\omega_n = 1$ (free)</td>
<td>Wigner semicircle</td>
<td>free Poisson</td>
</tr>
<tr>
<td>Spidernets $S(a, b, c)$</td>
<td>$\omega_1 = 1$</td>
<td>free Meixner law</td>
<td>(free Meixner law)</td>
</tr>
<tr>
<td></td>
<td>$\omega_2 = \cdots = q$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. Concepts of Independence and Graph Products
6.1. (Classical) Independence and Central Limit Theorem

X, Y, \ldots: random variables on a classical probability space (Ω, \mathcal{F}, P)

Definition

Two random variables X and Y are called *independent* if

$$P(X \leq a, Y \leq b) = P(X \leq a)P(Y \leq b), \quad a, b \in \mathbb{R}.$$

Theorem (multiplicativity of mean values)

If two random variables X, Y are independent, then

$$E[XY] = E[X]E[Y].$$

Moreover,

$$E[X^mY^n] = E[X^m]E[Y^n]$$

whenever the mean values exist.
6.1. (Classical) Independence and Central Limit Theorem

\(X_1, X_2, \ldots \): sequence of random variables such that

(i) independent

(ii) identically distributed

(iii) normalized, i.e., \(\mathbb{E}[X_n] = 0, \mathbb{V}[X_n] = \mathbb{E}[X_n^2] = 1 \)

- Law of Large Numbers (LLN) says that

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} X_n = 0 \quad \text{almost surely.}
\]

- Central Limit Theorem (CLT) describes the fluctuation of

\[
\lim_{N \to \infty} \frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n
\]
6.1. (Classical) Independence and Central Limit Theorem

Theorem (Central limit theorem (CLT))

Let X_1, X_2, \ldots be a sequence of random variables such that (i) independent, (ii) identically distributed, and (iii) normalized. Then

$$\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n$$

obeys the standard normal distribution $N(0, 1)$ in the limit.

$$\lim_{N \to \infty} P \left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n \leq a \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx,$$

or equivalently, for any $f \in C_b(\mathbb{R})$,

$$\lim_{N \to \infty} \mathbb{E} \left[f \left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n \right) \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-x^2/2} dx.$$
6.1. (Classical) Independence and Central Limit Theorem

Theorem (Algebraic Version of CLT)

Let X_1, X_2, \ldots be a sequence of random variables such that (i) independent, (ii) identically distributed, and (iii) normalized. If X_n has finite moments of all orders, we have

$$\lim_{N \to \infty} E \left[\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n \right)^m \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^m e^{-x^2/2} dx.$$

In other words,

$$\lim_{N \to \infty} E \left[\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n \right)^{2m} \right] = \frac{(2m)!}{2^m m!},$$

$$\lim_{N \to \infty} E \left[\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n \right)^{2m-1} \right] = 0.$$
6.1. (Classical) Independence and Central Limit Theorem

Combinatorial Proof

\[
E\left(\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n \right)^m \right) = \frac{1}{N^{m/2}} \sum_{n_1, \ldots, n_m=1}^{N} E[X_{n_1} X_{n_2} \cdots X_{n_m}]
\]

► We pick up the essential terms \(E[X_{n_1} X_{n_2} \cdots X_{n_m}] \) that contributes to the limit.

1) \(E[X_{n_1} X_{n_2} \cdots X_{n_m}] = E[X_i] E[\cdots \cdots] = 0. \) \(\exists X_i \) appears only once

2) Hence we only need to count the terms

\[
E\left[X_{n_1} X_{n_2} \cdots \cdots X_{n_m} \right] \quad \# \text{ of distinct } X_i \text{'s} \leq \left\lfloor \frac{m}{2} \right\rfloor
\]
6.1. (Classical) Independence and Central Limit Theorem

\[E \left[\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n \right)^m \right] = \frac{1}{N^{m/2}} \sum_{n_1, \ldots, n_m=1}^{N} E[X_{n_1} X_{n_2} \cdots X_{n_m}] \]

Hence we only need to count the terms

\[E \left[\underbrace{X_{n_1} X_{n_2} \cdots \cdots X_{n_m}}_{\# \ of \ distinct \ X_i's \leq \left[\frac{m}{2} \right]} \right] \]

Let \(s \) be the number of distinct \(X_i \)'s. The number of such terms is

\[\binom{N}{s} \times \#\{\text{arrangements of } X_1, \ldots, X_s\} \sim N^s C(s). \]

Thus the terms of \(s < m/2 \) have no contribution in the limit.

Namely, only the terms of \(s = m/2 \) have contribution in the limit.
6.1. (Classical) Independence and Central Limit Theorem

\[
E \left[\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n \right)^m \right] = \frac{1}{N^{m/2}} \sum_{n_1, \ldots, n_m=1}^{N} E[X_{n_1} X_{n_2} \cdots X_{n_m}]
\]

Namely, only the terms of \(s = m/2 \) have contribution in the limit.

If \(m \) is odd,

\[
\lim_{N \to \infty} E \left[\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n \right)^m \right] = 0.
\]

Suppose that \(m = 2s \) is even.

\[
E[X_{n_1} X_{n_2} \cdots X_{n_m}] = E[X_{i_1}^2 X_{i_2}^2 \cdots X_{i_s}^2] = E[X_{i_1}^2]E[X_{i_2}^2] \cdots E[X_{i_s}^2] = 1.
\]

Each distinct \(X_i \)'s appears twice

Consequently,

\[
\lim_{N \to \infty} E \left[\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} X_n \right)^{2s} \right] = \lim_{N \to \infty} \frac{1}{N^s} \left(\begin{array}{c} N \\ s \end{array} \right) \frac{(2s)!}{2^s} = \frac{(2s)!}{2^s s!}.
\]
6.2. Independence in Quantum Probability and Quantum CLT

- Algebraic version of CLT is proved by
 - using factorization rule of mixed moments $E[X_{n_1}X_{n_2} \cdots X_{n_m}]$,
 - picking up the essential terms that contribute to the limit.

Factorization rule

- For classical random variables X and Y, obviously we have
 \[
 \]

- But for $a = a^*$, $b = b^*$ in (A, φ) we wonder
 \[
 \varphi(baa) \neq \varphi(aba) \neq \varphi(aab) = ??? \quad \ldots
 \]
 There are many possibilities arising from non-commutativity.

Our viewpoint

- Independence is formulated as a “good” factorization rule.
- There are four basic concepts of independence in quantum probability.
6.2. Independence in Quantum Probability and Quantum CLT

Suppose we are given a concept of *independence* in \((\mathcal{A}, \varphi)\).

Then we may consider a sequence \(\{a_n\}\) of random variables in \((\mathcal{A}, \varphi)\) such that

1. **real**, i.e., \(a_n = a_n^*\),
2. **independent**,
3. **identically distributed**,
4. **normalized**, i.e., \(\varphi(a_n) = 0\) and \(\varphi(a_n^2) = 1\).

Then we ask for the probability distribution \(\mu\) such that

\[
\lim_{N \to \infty} \varphi\left[\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N} a_n\right)^m\right] = \int_{-\infty}^{+\infty} x^m \mu(dx), \quad m = 1, 2, \ldots
\]

We call \(\mu\) the *central limit distribution*.
6.2. Independence in Quantum Probability and Quantum CLT

Four Concepts of Independence and Quantum CLTs

- Factorization rules are shown only for three mixed moments of low orders.

<table>
<thead>
<tr>
<th></th>
<th>commutative</th>
<th>free</th>
<th>Boolean</th>
<th>monotone</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi(aba))</td>
<td>(\varphi(a^2)\varphi(b))</td>
<td>(\varphi(a^2)\varphi(b))</td>
<td>(\varphi(a)^2\varphi(b))</td>
<td>(\varphi(a^2)\varphi(b))</td>
</tr>
<tr>
<td>(\varphi(bab))</td>
<td>(\varphi(a)\varphi(b^2))</td>
<td>(\varphi(a)\varphi(b^2))</td>
<td>(\varphi(a)\varphi(b)^2)</td>
<td>(\varphi(a)\varphi(b)^2)</td>
</tr>
<tr>
<td>(\varphi(abab))</td>
<td>(\varphi(a^2)\varphi(b^2))</td>
<td>(\varphi(a)^2\varphi(b^2)) + (\varphi(a^2)\varphi(b)^2)</td>
<td>(\varphi(a)^2\varphi(b)^2)</td>
<td>(\varphi(a^2)\varphi(b)^2)</td>
</tr>
<tr>
<td>CLM</td>
<td>Gaussian</td>
<td>Wigner</td>
<td>Bernoulli</td>
<td>arcsine</td>
</tr>
</tbody>
</table>
6.2. Independence in Quantum Probability and Quantum CLT

► One more: \(\varphi(a_2a_1a_4a_3a_4a_3a_6a_6a_4a_4a_3a_5) = \varphi(214343664435) \)

[commutative independence]

\[
\varphi(214343664435) = \varphi(1)\varphi(2)\varphi(3^3)\varphi(4^4)\varphi(5)\varphi(6^2)
\]

[monotone independence]

\[
\varphi(214343664435) = \varphi(2)\varphi(4)\varphi(4)\varphi(66)\varphi(133443)\varphi(5) \\
= \varphi(2)\varphi(4)\varphi(4)\varphi(66)\varphi(44)\varphi(1333)\varphi(5) \\
= \varphi(2)\varphi(4)\varphi(4)\varphi(66)\varphi(44)\varphi(333)\varphi(1)
\]

[Boolean independence]

\[
\varphi(214343664435) = \varphi(2)\varphi(1)\varphi(4)\varphi(3)\varphi(4)\varphi(3)\varphi(66)\varphi(44)\varphi(3)\varphi(5)
\]
6.2. Independence in Quantum Probability and Quantum CLT

Central limit distributions

\[\varphi \left[\left(\frac{1}{\sqrt{n}} \sum_{k=1}^{n} a_k \right)^m \right] \to \int_{-\infty}^{+\infty} x^m \mu(dx). \]

Theorem (QCLT)

[commutative CLT] If \(a_1, a_2, \ldots \) are commutative independent, we have

\[\mu(dx) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx \quad \text{(normal distribution)} \]

[monotone CLT] If \(a_1, a_2, \ldots \) are monotone independent, we have

\[\mu(dx) = \frac{dx}{\pi \sqrt{2 - x^2}} \quad \text{(normalized arcsine law)} \]

[Boolean CLT] If \(a_1, a_2, \ldots \) are Boolean independent, we have

\[\mu = \frac{1}{2} \delta_1 + \frac{1}{2} \delta_{-1} \quad \text{(normalized Bernoulli distribution)} \]
6.2. Independence in Quantum Probability and Quantum CLT

Outline of proof

\[
\varphi\left[\left(\frac{1}{\sqrt{n}} \sum_{k=1}^{n} a_k\right)^m\right] = \frac{1}{n^{m/2}} \sum_{k_1, \ldots, k_m=1}^{n} \varphi[a_{k_1} a_{k_2} \cdots a_{k_m}]
\]

- We pick up the essential terms \(\varphi[a_{k_1} a_{k_2} \cdots a_{k_m}] \) that contributes to the limit.

1. \(\varphi(a_{k_1} a_{k_2} \cdots a_{k_m}) = 0 \) if there is a singleton.

2. \(\varphi(a_{k_1} a_{k_2} \cdots a_{k_m}) \) contributes to the limit only if the number \(s \) of distinct \(a_i \)'s is \(s = \lfloor m/2 \rfloor \).

3. According to the independence evaluate \(\varphi(a_{k_1} a_{k_2} \cdots a_{k_m}) \), where distinct \(a_i \)'s appear exact twice.
6.2. Independence in Quantum Probability and Quantum CLT

Outline of proof

Finally we get

$$\lim_{n \to \infty} \varphi \left[\left(\frac{1}{\sqrt{n}} \sum_{k=1}^{n} a_k \right)^{2m-1} \right] = 0$$

for three cases and

$$\lim_{n \to \infty} \varphi \left[\left(\frac{1}{\sqrt{n}} \sum_{k=1}^{n} a_k \right)^{2m} \right] = \begin{cases}
\frac{(2m)!}{2^m m!}, & \text{commutative independence,} \\
\frac{(2m)!}{2^m m! m!}, & \text{monotone independence,} \\
1, & \text{Boolean independence.}
\end{cases}$$

Cf. free CLT

$$\lim_{n \to \infty} \varphi \left[\left(\frac{1}{\sqrt{n}} \sum_{k=1}^{n} a_k \right)^{2m} \right] = \frac{1}{m + 1} \binom{2m}{m} = \int_{-2}^{2} x^m \frac{1}{2\pi} \sqrt{4 - x^2} \, dx.$$
6.3. Graph Products

A binary operation of graphs

\[(G_1, G_2) \mapsto \Phi(G_1, G_2) = G_1 \# G_2 \]

\[(A_1, A_2) \mapsto \Phi(A_1, A_2) = A[G_1 \# G_2] \]

\[(\mu_1, \mu_2) \mapsto \Phi(\mu_1, \mu_2) = \mu_1 \# \mu_2 \text{ (convolution)} \]
6.3. Graph Products — Cartesian Product

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. The *Cartesian product* or *direct product* of G_1 and G_2, denoted by $G_1 \times G_2$, is a graph on $V = V_1 \times V_2$ with adjacency relation:

$$(x, y) \sim (x', y') \iff \begin{cases} x = x' & \text{or} \quad x \sim x' \\ y \sim y' & \quad y = y'. \end{cases}$$

Example ($C_4 \times C_3$)

![Diagram showing the Cartesian product of C_4 and C_3]
6.3. Graph Products — Comb Product

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. We fix a vertex $o_2 \in V_2$. For $(x, y), (x', y') \in V_1 \times V_2$ we write $(x, y) \sim (x', y')$ if one of the following conditions is satisfied:

(i) $x = x'$ and $y \sim y'$; (ii) $x \sim x'$ and $y = y' = o_2$.

Then $V_1 \times V_2$ becomes a graph, denoted by $G_1 \triangleright_o G_2$, and is called the **comb product** or the **hierarchical product**.

Example ($C_4 \triangleright_o C_3$ with $o_2 = 1'$)

![Diagram of Comb Product]

The diagram illustrates the comb product $C_4 \triangleright C_3$ with $o_2 = 1'$.
6.3. Graph Products — Star Product

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with distinguished vertices $o_1 \in V_1$ and $o_2 \in V_2$. Define a subset of $V_1 \times V_2$ by

$$V_1 \star V_2 = \{(x, o_2) ; x \in V_1\} \cup \{(o_1, y) ; y \in V_2\}$$

The induced subgraph of $G_1 \times G_2$ spanned by $V_1 \star V_2$ is called the star product of G_1 and G_2 (with contact vertices o_1 and o_2), and is denoted by $G_1 \star G_2 = G_1_{o_1} \star_{o_2} G_2$.

Example ($C_4 \star C_3$)

\[
\begin{align*}
C_4 & \quad \quad 3' \\
1' & \quad \quad 2'
\end{align*}
\]

\[
\begin{align*}
(1,1') & \quad (1,3') \\
(1,2') & \quad (4,1') \\
(2,1') & \quad (3,1')
\end{align*}
\]
6.3. Graph Products — Adjacency Matrices

$G_1 = (V_1, E_1), G_2 = (V_2, E_2)$: two graphs

$G = G_1 \# G_2$: a graph product and assume that $V[G] = V_1 \times V_2$

$A_i = A[G_i]$: adjacency matrix of G_i acting on $\ell^2(V_i), (i = 1, 2)$

$\implies A = A[G_1 \# G_2]$ acts on

$$\ell^2(V) = \ell^2(V_1 \times V_2) \cong \ell^2(V_1) \otimes \ell^2(V_2).$$

Theorem

- **[Cartesian product]**

 $$A[G_1 \times G_2] = A_1 \otimes I_2 + I_1 \otimes A_2.$$

- **[comb product]**

 $$A[G_1 \triangleright G_2] = A_1 \otimes P_2 + I_1 \otimes A_2.$$

- **[star product]**

 $$A[G_1 \star G_2] = A_1 \otimes P_2 + P_1 \otimes A_2.$$

Here, P_i is the rank one projection corresponding to o_i.
6.4. Quantum CLT for Graph Products

Let ϕ_i be the vacuum state at o_i and consider the product state $\varphi = \varphi_1 \otimes \varphi_2$.

$\implies A = A[G_1 \# G_2]$ is a random variable in $\langle \mathcal{A}(G_1 \# G_2), \varphi \rangle$.

Theorem

Let $A_i = A[G_i]$ be the adjacency matrix of G_i.

1. **[Cartesian product]**

 $A[G_1 \times G_2] = A_1 \otimes I_2 + I_1 \otimes A_2$

 is a sum of **commutative independent** random variables.

2. **[comb product]**

 $A[G_1 \triangleright G_2] = A_1 \otimes P_2 + I_1 \otimes A_2$

 is a sum of **monotone independent** random variables.

3. **[star product]**

 $A[G_1 \star G_2] = A_1 \otimes P_2 + P_1 \otimes A_2$

 is a sum of **Boolean independent** random variables.
6.4. Quantum CLT for Graph Products

Associativity of graph operations

1. **[Cartesian product]**

\[(G_1 \times G_2) \times G_3 \cong G_1 \times (G_2 \times G_3)\]

2. **[Comb product]**

\[(G_1 \triangleright G_2) \triangleright G_3 \cong G_1 \triangleright (G_2 \triangleright G_3)\]

 To be precise,

\[(G_1 \triangleright_{o_2} G_2) \triangleright_{o_3} G_3 \cong G_1 \triangleright_{(o_2,o_3)} (G_2 \triangleright_{o_3} G_3)\]

3. **[Star product]**

\[(G_1 \star G_2) \star G_3 \cong G_1 \star (G_2 \star G_3)\]

▶ Thus, we have naturally \(n\)-fold powers:

\[G^{\#n} = G \# G \# \cdots \# G \quad (n \text{ times})\]

\[A[G^{\#n}] = B_1 + B_2 + \cdots + B_n\]
6.4. Quantum CLT for Graph Products

Theorem (CLT for Cartesian product graphs)

For the n-fold Cartesian power $G^{(n)} = G \times \cdots \times G$ (n-times),
\[
\lim_{n \to \infty} \left\langle \left(\frac{A^{(n)}}{\sqrt{n} \sqrt{\deg(o)}} \right)^m \right\rangle = \int_{-\infty}^{+\infty} x^m \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx.
\]

Theorem (CLT for comb product graphs)

For the n-fold monotone power $G^{(n)} = G \rhd_o G \rhd_o \cdots \rhd_o G$ (n-times),
\[
\lim_{n \to \infty} \left\langle \left(\frac{A^{(n)}}{\sqrt{n} \sqrt{\deg(o)}} \right)^m \right\rangle = \int_{-\sqrt{2}}^{+\sqrt{2}} x^m \frac{dx}{\pi \sqrt{2 - x^2}}, \quad m = 1, 2, \ldots.
\]

Theorem (CLT for star product graphs)

For the n-fold star power $G^{(n)} = G \ast G \ast \cdots \ast G$ (n-times) we have
\[
\lim_{n \to \infty} \left\langle \left(\frac{A^{(n)}}{\sqrt{n} \sqrt{\deg(o)}} \right)^m \right\rangle = \int_{-\infty}^{+\infty} x^m \frac{1}{2} (\delta_{-1} + \delta_{+1}) (dx), \quad m = 1, 2, \ldots.
\]
More Graph Products

<table>
<thead>
<tr>
<th>products</th>
<th>$G_1 # G_2$</th>
<th>$A[G_1 # G_2]$</th>
<th>spectral distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartesian</td>
<td>$G_1 \times_C G_2$</td>
<td>$A_1 \otimes I_2 + I_1 \otimes A_2$</td>
<td>$\mu_1 \ast \mu_2$</td>
</tr>
<tr>
<td>monotone</td>
<td>$G_1 \triangleright G_2$</td>
<td>$A_1 \otimes P_2 + I_2 \otimes A_2$</td>
<td>$\mu_1 \triangleright \mu_2$</td>
</tr>
<tr>
<td>star</td>
<td>$G_1 \star G_2$</td>
<td>$A_1 \otimes P_2 + P_1 \otimes A_2$</td>
<td>$\mu_1 \uplus \mu_2$</td>
</tr>
<tr>
<td>lexicographic</td>
<td>$G_1 \triangleright_L G_2$</td>
<td>$A_1 \otimes J_2 + P_1 \otimes A_2$</td>
<td>$D(\mu_1) \triangleright \mu_2$</td>
</tr>
<tr>
<td>Kronecker</td>
<td>$G_1 \times_K G_2$</td>
<td>$A_1 \otimes A_2$</td>
<td>$\mu_1 \ast_M \mu_2$</td>
</tr>
<tr>
<td>strong</td>
<td>$G_1 \times_S G_2$</td>
<td>$A_1 \otimes I_2 + I_1 \otimes A_2 + A_1 \otimes A_2$</td>
<td>$S^{-1}(S\mu_1 \ast_M S\mu_2)$</td>
</tr>
<tr>
<td>free</td>
<td>$G_1 \star G_2$</td>
<td>$A_1 \ast A_2$</td>
<td>$\mu_1 \uplus \mu_2$</td>
</tr>
</tbody>
</table>

1. Every product except the free product is a graph on $V_1 \times V_2$.
2. There is a classification of graph products realized on $V_1 \times V_2$, see e.g., R. Hammack et al.: “Handbook of Product Graphs,” CRC Press, 2011.
Exercise 12 Let G_n be the graph obtained by joining n triangles ($K_3 \cong C_3$ at the origin o, also called the n-fold star product of K_3. (The following figure shows G_6.) Calculate explicitly the spectral distribution of G_n at o and study its asymptotic behavior as $n \to \infty$.

![Graph Image]

7.1. Counting Walks and Spectral Distributions

$G = (V, E)$: a (finite or infinite) graph

$o \in V$: a fixed origin

$W_m(o; G) = |\{o \to o : m\text{-step walk}\}|$

Theorem

Let A be the adjacency matrix of G and μ the vacuum spectral distribution at $o \in V$. Then we have

$$W_m(o; G) = \langle e_o, A^m e_o \rangle = \int_{-\infty}^{+\infty} x^m \mu(dx), \quad m = 0, 1, 2, \ldots.$$

טרים wir are interested in the correspondence

$$G \rightarrow \mu$$

from the point of view of counting walks.
7.1. Counting Walks and Spectral Distributions

Basic result (1) \mathbb{Z}

$$W_{2m}(0; \mathbb{Z}) = \binom{2m}{m} = \int_{-2}^{2} x^{2m} \alpha(dx), \quad \alpha(x) = \frac{1}{\pi \sqrt{4 - x^2}}.$$

Basic result (2) $\mathbb{Z}_+ = \{0, 1, 2, \ldots \}$

$$W_{2m}(0; \mathbb{Z}_+) = \frac{1}{m + 1} \binom{2m}{m} = \int_{-2}^{2} x^{2m} w(dx), \quad w = \frac{1}{2\pi} \sqrt{4 - x^2}.$$

Catalan number
7.2. Cartesian Product: \(W((o_1, o_2); G_1 \times C G_2) \)

The adjacency matrix of \(G_1 \times C G_2 \) is
\[
A = A_1 \otimes I + I \otimes A_2,
\]
where two matrices in RHD are commutative.

We then have
\[
\langle e_{(o_1, o_2)}, A^m e_{(o_1, o_2)} \rangle = \langle e_{o_1} \otimes e_{o_2}, (A_1 \otimes I + I \otimes A_2)^m e_{o_1} \otimes e_{o_2} \rangle = \sum_{k=0}^{m} {m \choose k} \langle e_{o_1} \otimes e_{o_2}, A_1^k \otimes A_2^{m-k} e_{o_1} \otimes e_{o_2} \rangle = \sum_{k=0}^{m} {m \choose k} \langle e_{o_1}, A_1^k e_{o_1} \rangle \langle e_{o_2} \otimes A_2^{m-k} e_{o_2} \rangle
\]

Consequently,
\[
W((o_1, o_2); G_1 \times C G_2) = \sum_{k=0}^{m} {m \choose k} W_k(o_1; G_1) W_{m-k}(o_2; G_2)
\]
7.2. Cartesian Product: \(W((o_1, o_2); G_1 \times_C G_2) \)

\(\mu_i \): Spectral distribution of \(G_i \) at \(o_i \)

\(\mu \): Spectral distribution of \(G = G_1 \times_C G_2 \) at \((o_1, o_2) \)

\(W_m(o_i; G_i) = \int_{-\infty}^{+\infty} x^m \mu_i(dx), \quad W_m((o_1, o_2); G_1 \times_C G_2) = \int_{-\infty}^{+\infty} x^m \mu(dx). \)

Then the identity

\[
W((o_1, o_2); G_1 \times_C G_2) = \sum_{k=0}^{m} \binom{m}{k} W_k(o_1; G_1) W_{m-k}(o_2; G_2)
\]

implies that

\[
\int_{-\infty}^{+\infty} x^m \mu(dx) = \sum_{k=0}^{m} \binom{m}{k} \int_{-\infty}^{+\infty} x^k \mu_1(dx) \int_{-\infty}^{+\infty} x^{m-k} \mu_2(dx)
\]

\[
= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x_1 + x_2)^m \mu_1(dx_1) \mu_2(dx_2).
\]

Thus, \(\mu = \mu_1 \ast \mu_2 \) (classical) convolution.
7.3. Graph Products and Convolution of Distributions

<table>
<thead>
<tr>
<th>products</th>
<th>$G_1 # G_2$</th>
<th>$A[G_1 # G_2]$</th>
<th>spectral distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartesian comb</td>
<td>$G_1 \times_C G_2$</td>
<td>$A_1 \otimes I_2 + I_1 \otimes A_2$</td>
<td>$\mu_1 \ast \mu_2$</td>
</tr>
<tr>
<td>star</td>
<td>$G_1 \triangleright G_2$</td>
<td>$A_1 \otimes P_2 + I_2 \otimes A_2$</td>
<td>$\mu_1 \triangleright \mu_2$</td>
</tr>
<tr>
<td>lexicographic</td>
<td>$G_1 \triangleright_L G_2$</td>
<td>$A_1 \otimes J_2 + P_1 \otimes A_2$</td>
<td>$\mu_1 \uplus \mu_2$</td>
</tr>
<tr>
<td>Kronecker</td>
<td>$G_1 \times_K G_2$</td>
<td>$A_1 \otimes A_2$</td>
<td>$D(\mu_1) \triangleright \mu_2$</td>
</tr>
<tr>
<td>strong</td>
<td>$G_1 \times_S G_2$</td>
<td>$A_1 \otimes I_2 + I_1 \otimes A_2$</td>
<td>$\mu_1 \ast_M \mu_2$</td>
</tr>
<tr>
<td>free</td>
<td>$G_1 \ast G_2$</td>
<td>$A_1 \ast A_2$</td>
<td>$S^{-1}(S\mu_1 \ast_M S\mu_2)$</td>
</tr>
</tbody>
</table>

1. Every product except the free product is a graph on $V_1 \times V_2$.
2. There is a classification of graph products realized on $V_1 \times V_2$, see e.g., R. Hammack et al.: “Handbook of Product Graphs,” CRC Press, 2011.
7.3. Graph Products and Convolution of Distributions

- Monotone convolution $\mu = \mu_1 \triangleright \mu_2$ is characterized by

$$H_\mu(z) = H_{\mu_1}(H_{\mu_2}(z)),$$

where

$$H_\mu(z) = \frac{1}{G_\mu(z)}, \quad G_\mu(z) = \int_{-\infty}^{+\infty} \frac{\mu(dx)}{z-x}.$$

- Boolean convolution $\mu = \mu_1 \oplus \mu_2$ is characterized by

$$\frac{1}{G_\mu(z)} = \frac{1}{G_{\mu_1}(z)} + \frac{1}{G_{\mu_2}(z)} - z.$$
7.4. Kronecker Product

Definition (Kronecker product)

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs. The Kronecker product $G_1 \times_K G_2$ is a graph on $V = V_1 \times V_2$ with the adjacency relation:

$$(x, y) \sim_K (x', y') \iff x \sim x', \ y \sim y'.$$

In other words, the adjacency matrix $A = A[G_1 \times_K G_2]$ is given by

$$A = A_1 \otimes A_2.$$

1. $G_1 \times_K G_2 \cong G_2 \times_K G_1$.

2. $(G_1 \times_K G_2) \times_K G_3 \cong G_1 \times_K (G_2 \times_K G_3)$.

3. (trivial case) For any graph $G = (V, E)$ the Kronecker product $K_1 \times_K G$ is a graph on V with no edges (i.e., an empty graph on V).
7.4. Kronecker Product

Lemma (exercise)

If $|V_1| \geq 2$ and $|V_2| \geq 2$, then $G_1 \times_K G_2$ has at most two connected components.

Lemma (exercise)

$G_1 \times_K G_2$ is a subgraph of the distance-2 graph of $G_1 \times_C G_2$. (But not necessarily induced subgraph.)
7.5. Counting Walks in Kronecker Product

\(G_i = (V_i, E_i) \): a connected graph with fixed origin \(o_i \in V_i \)

\(G = G_1 \times_K G_2 \): Kronecker product with origin \((o_1, o_2)\)

\(G^o = (G_1 \times_K G_2)^o \): the connected component containing \((o_1, o_2)\)

\[
W_m((o_1, o_2); G) = W_m((o_1, o_2); G^o) \\
= \langle e_{(o_1, o_2)}, A^m e_{(o_1, o_2)} \rangle \\
= \langle e_{o_1} \otimes e_{o_2}, (A_1 \otimes A_2)^m e_{o_1} \otimes e_{o_2} \rangle \\
= \langle e_{o_1}, A_1^m e_{o_1} \rangle \langle e_{o_2}, A_2^m e_{o_2} \rangle \\
= W_m(o_1; G_1) W_m(o_2; G_2)
\]
7.5. Counting Walks in Kronecker Product

\(G_i = (V_i, E_i) \): a connected graph with fixed origin \(o_i \in V_i \)

\(G = G_1 \times_K G_2 \): Kronecker product with origin \((o_1, o_2)\)

\(G^o = (G_1 \times_K G_2)^o \): the connected component containing \((o_1, o_2)\)

Thus,

\[
W_m((o_1, o_2); G) = W_m(o_1; G_1)W_m(o_1; G_2).
\]

\(\mu_i \): spectral distribution of the adjacency matrix \(A_i \) at \(o_i \)

\(\mu \): spectral distribution of the adjacency matrix \(A = A[G] \) at \((o_1, o_2)\)

\[
\int_{-\infty}^{+\infty} x^m \mu(dx) = \int_{-\infty}^{+\infty} x_1^m \mu_1(dx_1) \int_{-\infty}^{+\infty} x_2^m \mu_2(dx_2)
\]

\[
= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x_1 x_2)^m \mu_1(dx_1) \mu_2(dx_2)
\]

This \(\mu \) is called the Mellin convolution and denoted by \(\mu = \mu_1 *_M \mu_2 \).
7.5. Counting Walks in Kronecker Product

Theorem

For $i = 1, 2$ let $G_i = (V_i, E_i)$ be a graph with a distinguished vertex o_i. Let μ_i be the spectral distribution of the adjacency matrix $A_i = A[G_i]$ at o_i. Then the spectral distribution of $G = G_1 \times_K G_2$ at (o_1, o_2) is given by the Mellin convolution:

$$\mu(G_1 \times_K G_2) = \mu_1 *_M \mu_2.$$

- $\delta_a *_M \delta_b = \delta_{ab}$ for $a, b \in \mathbb{R}$.

 [cf. $\delta_a * \delta_b = \delta_{a+b}$.]

- If $\mu_i(dx) = f_i(x)dx$ and $f_i(-x) = f_i(x)$, then $\mu_1 *_M \mu_2$ admits a symmetric density function $2f_1 * f_2(x)$, where

$$f_1 * f_2(x) = \int_0^\infty f_1(y) f_2\left(\frac{x}{y}\right) \frac{dy}{y} = \int_0^\infty f_1\left(\frac{x}{y}\right) f_2(y) \frac{dy}{y}, \quad x > 0.$$

In fact, this is the standard convolution of the multiplicative group $\mathbb{R}_{>0}$.

Nobuaki Obata (Tohoku University)
Asymptotic Spectral Analysis
Yichang, China, 2019.08.20–24
62 / 96
Exercises

Exercise 13 Observe that $(K_2 \times K_2)\circ \cong K_2$ and examine the identity:

$$
\left(\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1\right) * M \left(\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1\right) = \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1.
$$

Exercise 14 Using $K_3 \times K_2 \cong C_6$, derive the spectral distribution of C_6 at a fixed origin (which in fact coincides with the eigenvalue distribution):

$$
\frac{1}{6}\delta_{-2} + \frac{1}{3}\delta_{-1} + \frac{1}{3}\delta_1 + \frac{1}{6}\delta_2.
$$

Exercise 15 Using $K_4 \times K_2 \cong K_2 \times C K_2 \times C K_2 = H(3, 2)$, derive the spectral distribution of $H(3, 2)$ at a fixed origin (which in fact coincides with the eigenvalue distribution):

$$
\frac{1}{8}\delta_{-3} + \frac{3}{8}\delta_{-1} + \frac{3}{8}\delta_1 + \frac{1}{8}\delta_3.
$$

Also examine the identity:

$$
\left(\frac{3}{4}\delta_{-1} + \frac{1}{4}\delta_3\right) * M \left(\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1\right) = \left(\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1\right)^3.
$$
7.6. Restricted Lattices

- \(\mathbb{Z} \times_C \mathbb{Z} \) (2d integer lattice): a graph on \(\mathbb{Z}^2 \) with adjacency relation:
 \[
 (x, y) \sim (x', y') \iff \begin{cases}
 x' = x \pm 1, & \text{or} \\
 y' = y,
 \end{cases}
 \]

- \(\mathbb{Z} \times_K \mathbb{Z} \): a graph on \(\mathbb{Z}^2 = \{(u, v) \); \(u, v \in \mathbb{Z} \} \) with adjacency relation:
 \[
 (u, v) \sim_K (u', v') \iff u' = u \pm 1 \quad \text{and} \quad v' = v \pm 1.
 \]

\(\mathbb{Z} \times_K \mathbb{Z} \) has two connected components, each of which is isomorphic to \(\mathbb{Z} \times_C \mathbb{Z} \).

Let \((\mathbb{Z} \times_K \mathbb{Z})^O \) denote the connected component of \(\mathbb{Z} \times_K \mathbb{Z} \) containing \(O = (0, 0) \). Then
 \[
 (\mathbb{Z} \times_K \mathbb{Z})^O \cong \mathbb{Z} \times_C \mathbb{Z}.
 \]
7.6. Restricted Lattices

\(\mathbb{Z} \times_K \mathbb{Z} \) has two connected components, each of which is isomorphic to \(\mathbb{Z} \times_C \mathbb{Z} \).

Let \((\mathbb{Z} \times_K \mathbb{Z})^O \) denote the connected component of \(\mathbb{Z} \times_K \mathbb{Z} \) containing \(O = (0, 0) \). Then

\[
(\mathbb{Z} \times_K \mathbb{Z})^O \cong \mathbb{Z} \times_C \mathbb{Z}.
\]

Since the spectral distribution of \(\mathbb{Z} \) at \(0 \) is the arcsine law \(\alpha \), we have

Theorem

The spectral distribution of 2d lattice \(\mathbb{Z}^2 \) at \((0, 0) \) is given by

\[
\alpha *_M \alpha = \alpha * \alpha
\]
7.6. Restricted Lattices

Let $L\{x \geq y\}$ denote the induced subgraph of $\mathbb{Z} \times_{C} \mathbb{Z}$ spanned by the vertices

$$\{(x, y) \in \mathbb{Z}^2; x \geq y\}.$$

Theorem

We have $L\{x \geq y\} \cong (\mathbb{Z}_+ \times K \mathbb{Z})^O$ and its spectral distribution at $(0, 0)$ is given by

$$\mathbf{w} \ast_M \alpha.$$
7.6. Restricted Lattices

Let $L\{x \geq y \geq -x\}$ denote the induced subgraph of $\mathbb{Z} \times \mathbb{C} \mathbb{Z}$ spanned by the vertices

$$\{(x, y) \in \mathbb{Z}^2; x \geq y \geq -x\}.$$

Theorem

We have $L\{x \geq y \geq -x\} \cong (\mathbb{Z}_+ \times \mathbb{Z})^O$ and its spectral distribution at $(0, 0)$ is given by

$$\mathbf{w} * \mathbf{M} * \mathbf{w}$$
7.6. Restricted Lattices

<table>
<thead>
<tr>
<th>Domain D</th>
<th>$W_{2m}(L[D], O)$</th>
<th>spectral distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}</td>
<td>$\binom{2m}{m}$</td>
<td>α</td>
</tr>
<tr>
<td>\mathbb{Z}_+</td>
<td>$C_m = \frac{1}{m+1}\binom{2m}{m}$</td>
<td>ω</td>
</tr>
<tr>
<td>\mathbb{Z}^2</td>
<td>$\binom{2m}{m}^2$</td>
<td>$\alpha \ast \alpha = \alpha \ast_M \alpha$</td>
</tr>
<tr>
<td>${x \geq y}$</td>
<td>$C_m(\binom{2m}{m})$</td>
<td>$\omega \ast_M \alpha$</td>
</tr>
<tr>
<td>${x \geq y \geq -x}$</td>
<td>C_m^2</td>
<td>$\omega \ast \omega$</td>
</tr>
<tr>
<td>${x \geq 0, y \geq 0}$</td>
<td>(A)</td>
<td>$\pi_n \ast_M \alpha$</td>
</tr>
<tr>
<td>${x \geq y \geq x - (n - 1)}$</td>
<td>(B)</td>
<td>$\pi_k \ast_M \pi_l$</td>
</tr>
<tr>
<td>$\left{\begin{array}{l}0 \leq x + y \leq k - 1, \0 \leq x - y \leq l - 1\end{array}\right.$</td>
<td>(C)</td>
<td></td>
</tr>
</tbody>
</table>

(A) \[= \sum_{k=0}^{m} \binom{2m}{2k} C_k C_{m-k},\]

(B) \[= W_{2m}(P_n, 0)\binom{2m}{m},\]

(C) \[= W_{2m}(P_k, 0) W_{2m}(P_l, 0).\]
7.6. Restricted Lattices — Density Functions

Elliptic integrals For $k^2 < 1$, the elliptic integrals are defined by

\[
K(k) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} = \int_0^1 \frac{dx}{\sqrt{(1 - x^2)(1 - k^2 x^2)}},
\]

\[
E(k) = \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta} d\theta = \int_0^1 \frac{1 - k^2 x^2}{\sqrt{1 - x^2}} dx.
\]

The density function of $w *_M \alpha$ is given by

\[
\frac{1}{\pi^2} \{K(\xi(x)) - E(\xi(x))\}, \quad \xi(x) = \sqrt{1 - \frac{x^2}{16}}, \quad -4 \leq x \leq 4.
\]

The density function of $\alpha *_M \alpha = \alpha * \alpha$ is given by

\[
\frac{1}{2\pi^2} K(\xi(x)), \quad -4 \leq x \leq 4.
\]

The density function of $w *_M w$ is given by

\[
\frac{2}{\pi^2} \left\{ \left(1 + \frac{x^2}{16}\right) K(\xi(x)) - 2E(\xi(x)) \right\}, \quad -4 \leq x \leq 4.
\]
7.6. Restricted Lattices — Density Functions

\[w * M \alpha \]

\[\alpha * M \alpha \]

\[w * M w \]
An Example in 3-Dimension: $\mathbb{Z} \times K \mathbb{Z} \times K \mathbb{Z}$

$\mathbb{Z} \times K \mathbb{Z} \times K \mathbb{Z}$ has 4 connected components, which are mutually isomorphic. The connected component containing $O(0, 0, 0)$ looks like an octahedra honeycomb, built up by gluing octahedra or body-centered cubes.

We have

$$W_{2m}(\mathbb{Z} \times K \mathbb{Z} \times K \mathbb{Z}, (0, 0, 0)) = \binom{2m}{m}^3, \quad m = 0, 1, 2, \ldots,$$

and the spectral distribution is given by $\mu = \alpha *_M \alpha *_M \alpha$.

Nobuaki Obata (Tohoku University)
8. Bivariate Extension: An Example

Motivation

(I) Quantum CLT: $A_\nu \xrightarrow{m} B$

⇒ The limit spectral distribution is a probability distribution on \mathbb{R}^1

⇒ Multi-variate extension: $(A_\nu^{(1)}, \ldots, A_\nu^{(p)}) \xrightarrow{m} (Z_1, \ldots, Z_p)$?

See e.g., T. Espinasse and P. Rochet (2019), arXiv:1904.10720

— An extension of Boolean CLT

(II) Method of quantum decomposition $A = A^+ + A^\circ + A^-$

⇒ Orthogonal polynomials in one variable:

\[xP_n(x) = P_{n+1}(x) + \alpha_{n+1}P_n(x) + \omega_nP_{n-1}(x) \]

⇒ Multi-variate extension?

potentially very interesting in connection to multi-variate orthogonal polynomials
8.1. Hamming Graphs $H(n, v)$

- $n \geq 1$, $v \geq 1$: natural numbers
- Alphabets $K = \{1, 2, \ldots, v\}$
- Words of length n:

$$V = \{x = (\xi_1, \xi_2, \ldots, \xi_n) \mid \xi_i \in K\} = K^n$$

- Hamming distance between two words x and y:

$$\partial(x, y) = |\{1 \leq i \leq n \mid \xi_i \neq \eta_i\}|.$$

- A graph is defined with vertex set V and adjacency relation

$$x \sim y \iff \partial(x, y) = 1$$

\Rightarrow This is the Hamming graph $H(n, v)$.
8.1. Hamming Graphs

- **Product structure**

\[H(n, v) = K_v \times \cdots \times K_v \quad (n\text{-fold Cartesian power}) \]

where \(K_v \) is the complete graph on \(v \) vertices.

- **The adjacency matrix of** \(H(n, v) \) **is given by**

\[
A_{n,v} = \sum_{i=1}^{n} I \otimes \cdots \otimes I \otimes A \otimes I \otimes \cdots \otimes I,
\]

where \(A = A[K_v] \) is the adjacency matrix of \(K_v \).

- **The eigenvalue distribution** \(\mu_{n,v} \) **is specified by**

\[
\frac{1}{vn} \text{Tr}(A_{n,v}^m) = \int_{-\infty}^{+\infty} x^m \mu_{n,v}(dx), \quad m = 0, 1, 2, \ldots.
\]

Question [CLT for Hamming graphs]

\[\mu_{n,v} \rightarrow ?? \quad \text{as} \quad n \rightarrow \infty \quad \text{and} \quad v \rightarrow \infty \]
8.1. Hamming Graphs

Review of Hora’s argument (1998). This is before quantum decomposition

The adjacency matrix of K_v is given by $A = J - I$ (J: all-one matrix)

Then $C(K_v) = \mathbb{C}^v = U_{v-1} \oplus U_{-1}$ and

$$A \upharpoonright U_{v-1} = v - 1, \quad \dim U_{v-1} = 1, \quad A \upharpoonright U_{-1} = -1, \quad \dim U_{-1} = v - 1.$$

$A_{n,v} = \sum I \otimes \cdots \otimes A \otimes \cdots \otimes I$ acts on

$$(\mathbb{C}^v)^{\otimes n} = (U_{v-1} \oplus U_{-1}) \otimes \cdots \otimes (U_{v-1} \oplus U_{-1})$$

The eigenvalues of $A_{n,v}$ are $(v - 1)(n - j) + (-1)^j = -n + (n - j)v$

with multiplicity $\binom{n}{j} 1^{n-j} (v - 1)^{n-j}$, where $0 \leq j \leq n$.

Hence

$$\mu_{n,v} = \frac{1}{v^n} \sum_{j=0}^{n} \binom{n}{j} 1^{n-j} (v - 1)^{n-j} \delta_{-n+(n-j)v}$$

$$= \sum_{j=0}^{n} \binom{n}{j} \left(\frac{1}{v}\right)^k \left(1 - \frac{1}{v}\right)^{n-k} \delta_{-n+vk}$$
8.1. Hamming Graphs

\[\mu_{n,v} \text{ is essentially the binomial distribution:} \]

\[\mu_{n,v} = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{v} \right)^k \left(1 - \frac{1}{v} \right)^{n-k} \delta_{n+v+k} \]

By classical theory we know

\[B(n, p) \approx N(np, np(1 - p)), \quad B(n, p) \approx Po(np) \]

mean(\(\mu_{n,v}\)) = 0, var(\(\mu_{n,v}\)) = \(n(v - 1)\) ⇒ normalized distribution \(\tilde{\mu}_{n,v}\)

Under the proper scaling \(n \to \infty, v \to \infty\) and \(\frac{v}{n} \to \tau \geq 0\),

\[\tilde{\mu}_{n,v} \to \begin{cases} N(0, 1), & \tau = 0, \\ \text{affine transform of } Po(\tau^{-1}), & \tau > 0 \end{cases} \]

▶ Actual proof is based on characteristic functions (Laplace transform).
8.2. Strongly Regular Graphs

In general, \bar{G} denotes the complementary graph of $G = (V, E)$, i.e., a graph on V with edge set $\bar{E} = \{\{x, y\}; x, y \in V, x \neq y, \{x, y\} \notin E\}$.

Or equivalently, the adjacency matrix of \bar{G} is defined by

$$\bar{A} = J - I - A.$$ \hspace{1cm} (J: all-one matrix)

Lemma

For a finite graph G with adjacency matrix A we have

G is a regular graph $\iff A\bar{A} = \bar{A}A \iff AJ = JA.$

Definition

For a finite regular graph G the commutative $*$-algebra generated by I, A, \bar{A}, denoted by $\mathcal{A}(G, \bar{G})$, is called the “extended adjacency algebra.”
8.2. Strongly Regular Graphs

Definition

\(G = (V, E) \) is a strongly regular graph with parameter \((v, k, \lambda, \mu) \) if

1. \(|V| = v \);
2. \(G \) is \(k \)-regular;
3. every two adjacent \(x, y \in V \) has \(\lambda \) common adjacent vertices;
4. every two non-adjacent \(x, y \in V \) has \(\mu \) common adjacent vertices;
5. (avoiding trivial cases) \(G \) is neither complete nor empty, that is, \(0 < k < v - 1 \).

Note: A strongly regular graph is a distance-regular graph with diameter 2.
8.2. Strongly Regular Graphs

Lemma

If G is a strongly regular graph with parameter (v, k, λ, μ), so is \overline{G} with parameter $(v, \overline{k} = v - k - 1, \overline{\lambda} = v - 2k + \mu - 2, \overline{\mu} = v - 2k + \lambda)$.

Lemma

Let G be a finite regular graph with degree $0 < \kappa < v - 1$. Then the following conditions are equivalent:

1. G is a strongly regular graph;
2. $\mathcal{A}(G, \overline{G})$ is the three-dimensional linear space spanned by I, A, \overline{A}.

For the proof we need only to note that

$$A^2 = kI + \lambda A + \mu \overline{A} = kI + \lambda A + \mu (J - I - A).$$
8.2. Strongly Regular Graphs

Lemma

Let G be a strongly regular graph with (v, k, λ, μ). Then the spectrum of G are given by

$$s < r < k$$

with multiplicities $g, f, 1$,

where

$$s, r = \frac{(\lambda - \mu) \pm \sqrt{\lambda^2 + 4(k - \mu)}}{2},$$

and

$$f = \frac{(v - 1)s + k}{s - r}, \quad g = \frac{(v - 1)r + k}{r - s}.$$

The spectrum of \bar{G} are given by

$$\bar{s} = -r - 1 < \bar{r} = -s - 1 \leq \bar{k}$$

with multiplicities $f, g, 1$.

There are many relations among these constants. For example,

$$1 + k + \bar{k} = 1 + f + g = v, \quad k^2 + fr^2 + gs^2 = kv.$$
Let G be a strongly regular graph and \bar{G} the complement.

Consider the pair (G^n, \bar{G}^n), where

$$G^n = G \times \cdots \times G \quad (\text{n-fold Cartesian power}), \quad \bar{G}^n = \bar{G} \times \cdots \times \bar{G} \quad \text{(similar)}.$$

Adjacency matrices:

$$A_{n,G} = \sum_{k=1}^{n} \left(I \boxtimes \cdots \boxtimes I \boxtimes A \boxtimes I \boxtimes \cdots \boxtimes I \right), \quad \bar{A}_{n,G} = (\text{similar}).$$

Let $\nu_{n,G}(dxdy)$ be the joint spectral distribution of $(A_{n,G}, \bar{A}_{n,G})$ specified by

$$\frac{1}{\nu^n} \text{Tr}(A_{n,G}^s \bar{A}_{n,G}^t) = \int_{\mathbb{R}^2} x^s y^t \nu_{n,G}(dxdy), \quad s, t = 0, 1, 2, \ldots.$$

Question (Asymptotic spectral distribution)

$$\nu_{n,G} \rightarrow ?? \quad \text{as} \quad n \rightarrow \infty \quad \text{and} \quad |G| \rightarrow \infty$$
8.3. Cartesian Product of Strongly Regular Graphs

How we generalized the case of Hamming graphs?

► Outline of our procedure:

1. Consider a strongly regular graph G and its complement \bar{G}.
2. Consider a pair of Cartesian powers (G^n, \bar{G}^n) and their adjacency matrices $(A_{n,G}, \bar{A}_{n,G})$.
3. The joint spectral distribution of $(A_{n,G}, \bar{A}_{n,G})$ is a probability distribution on \mathbb{R}^2 specified by

$$\frac{1}{v^n} \text{Tr}(A_{n,G}^s \bar{A}_{n,G}^t) = \int_{\mathbb{R}^2} x^s y^t \nu_{n,G}(dxdy), \quad s, t = 0, 1, 2, \ldots.$$

► Case of Hamming graphs:

Take $G = K_v$. Then \bar{G} is an empty graph,

$$G^n = K_v \times \cdots \times K_v = H(n, v) \quad \text{(Hamming graph)},$$

$$\begin{align*}
(A_{n,G}, \bar{A}_{n,G}) &= (A_{n,v}, 0).
\end{align*}$$

Thus, the spectral distribution is reduced to one-dimension.
8.4. Joint spectral distribution of \((G^n, \bar{G}^n)\)

Theorem

The joint spectral distribution of \((G^n, \bar{G}^n)\) is given by

\[
\nu_{n,G} = \sum_{0 \leq j + h \leq n} \pi(j, h) \delta(\theta_{j,h}, \bar{\theta}_{j,h}), \\
\pi(j, h) = \binom{n}{j, h} \left(\frac{f}{v} \right)^j \left(\frac{g}{v} \right)^h \left(\frac{1}{v} \right)^{n-j-h},
\]

\[
\theta_{j,h} = (n - j - h)k + jr + hs, \\
\bar{\theta}_{j,h} = (n - j - h)\bar{k} + j\bar{s} + h\bar{r},
\]

\[
f = \frac{(v-1)s+k}{s-r}, \\
g = \frac{(v-1)r+k}{r-s}.
\]

Proof: According to \(\text{ev}(A_{n,G}) = \{s, r, k\}\) and \(\text{ev}(\bar{A}_{n,G}) = \{\bar{s}, \bar{s}, \bar{k}\}\) we have

\[
C(G) = \mathbb{C}^v = U_r \oplus U_s \oplus U_k, \\
\dim U_r = f, \\
\dim U_s = g, \\
\dim U_k = 1.
\]

Then look at

\[
A_{n,G} = \sum I \otimes \cdots \otimes A \otimes \cdots \otimes I,
\]

\[
C(G^n) = (U_r \oplus U_s \oplus U_k) \otimes \cdots \otimes (U_r \oplus U_s \oplus U_k).
\]
8.4. Joint spectral distribution of \((G^n, \bar{G}^n)\)

\[
\nu_{n,G} = \sum_{0 \leq j + h \leq n} \pi(j, h) \delta(\theta_{j,h}, \bar{\theta}_{j,h})
\]

\[
\pi(j, h) = \binom{n}{j, h} \left(\frac{f}{v}\right)^j \left(\frac{g}{v}\right)^h \left(\frac{1}{v}\right)^{n-j-h}
\]

\[
\nu_n, G = X_0 \leq j + h \leq n \pi(j, h) \delta(\theta_{j,h}, \bar{\theta}_{j,h})
\]

\[
\pi(j, h) = \binom{n}{j, h} \left(\frac{f}{v}\right)^j \left(\frac{g}{v}\right)^h \left(\frac{1}{v}\right)^{n-j-h}
\]

\[
ev(G) = \{s, r, k\}
\]

\[
ev(\bar{G}) = \{\bar{s}, \bar{r}, \bar{k}\}
\]
8.5. Asymptotic Joint Spectral Distributions

$n \to \infty, v \to \infty$ and some balance conditions

- **Hamming graphs:** $H(n, v) = K_v \times \cdots \times K_v$ (n-fold Cartesian power)

 \[
 \frac{v}{n} \to \tau \quad \text{and automatically} \quad \frac{-1}{n} \to 0, \quad \frac{v - 1}{n} \to \tau.
 \]

 these are conditions for eigenvalues!

- **Growing pair of strongly regular graphs:** (G^n, \bar{G}^n)

 Recall: $\text{ev}(G) = \{s, r, k\}$, $\text{ev}(\bar{G}) = \{\bar{r}, \bar{s}, \bar{k}\}$

 \[
 1 + k + \bar{k} = v, \quad \bar{s} = -r - 1, \quad \bar{r} = -s - 1.
 \]

 The proper scaling is given by

 \[
 \frac{k}{n} \to \kappa, \quad \frac{\bar{k}}{n} \to \bar{\kappa}, \quad \frac{r}{n} \to \rho, \quad \frac{s}{n} \to \sigma, \quad \frac{v}{n} \to \kappa + \bar{\kappa} \equiv \omega.
 \]

- **Note:** $\rho = 0$ or $\sigma = 0$ follows.
8.5. Asymptotic Joint Spectral Distributions

Theorem (Morales-Obata-Tanaka (2019+))

Let \(\nu \) be the limit of the joint spectral distribution of \(\left(\frac{A_{n,G}}{\sqrt{n}k}, \frac{\bar{A}_{n,G}}{\sqrt{n}k} \right) \). Then,

1. If \(\kappa > 0, \bar{\kappa} = -\sigma > 0, \rho = 0 \), then \(\nu \) is an affine transformation of the bivariate Poisson distribution:

\[
\nu \left(\left(\frac{\kappa j - \bar{\kappa} h}{\sqrt{\kappa}}, \frac{\bar{\kappa} j + \kappa h - 1}{\sqrt{\bar{\kappa}}} \right) \right) = e^{-1/\bar{\kappa}} \left(\frac{1}{\omega} \right)^j \left(\frac{\kappa}{\omega \bar{\kappa}} \right)^h \frac{1}{j! h!}
\]

2. If \(\kappa = \rho > 0, \bar{\kappa} > 0, \sigma = 0 \), then similar as above.

3. If \(\kappa > 0 \) or \(\bar{\kappa} > 0 \), and if \(\rho = \sigma = 0 \), then \(\nu \) is an affine transformation of the product of Gaussian and Poisson distributions:

\[
\int_{\mathbb{R}^2} f(x) \nu(dx) = \sqrt{\frac{\omega}{2\pi}} e^{-1/\omega} \sum_{h=0}^{\infty} \left(\frac{1}{\omega} \right)^h \frac{1}{h!} \int_{-\infty}^{+\infty} f(x_{h,t}) e^{-\omega t^2/2} dt
\]

\[
x_{h,t} = \left(\sqrt{\kappa} h + \sqrt{\bar{\kappa}} t - \frac{\sqrt{\kappa}}{\omega}, \sqrt{\bar{\kappa}} h - \sqrt{\kappa} t - \frac{\sqrt{\bar{\kappa}}}{\omega} \right)
\]

4. If \(\kappa = \bar{\kappa} = \rho = \sigma = 0 \), \(\nu \) is the bivariate Gaussian distribution.
8.5. Asymptotic Joint Spectral Distributions

Bivariate Poisson distribution

\[\nu \left(\left(\frac{\kappa j - \bar{\kappa}h}{\sqrt{\kappa}}, \frac{\bar{\kappa}j + \bar{\kappa}h - 1}{\sqrt{\kappa}} \right) \right) = e^{-1/\bar{\kappa}} \left(\frac{1}{\omega} \right)^j \left(\frac{\kappa}{\omega \bar{\kappa}} \right)^h \frac{1}{j! h!} \]
8.5. Asymptotic Joint Spectral Distributions

Gauss × Poisson distribution

\[
\int_{\mathbb{R}^2} f(x) \nu(dx) = \sqrt{\frac{\omega}{2\pi}} e^{-1/\omega} \sum_{h=0}^{\infty} \left(\frac{1}{\omega} \right)^h \frac{1}{h!} \int_{-\infty}^{+\infty} f(x_{h,t}) e^{-\omega t^2 / 2} dt
\]

\[
x_{h,t} = \left(\sqrt{\kappa} h + \sqrt{\bar{\kappa}} t - \frac{\sqrt{\kappa}}{\omega} , \sqrt{\bar{\kappa}} h - \sqrt{\bar{\kappa}} t - \frac{\sqrt{\bar{\kappa}}}{\omega} \right)
\]
8.6. Bivariate Orthogonal Polynomials

Extended Adjacency Algebra $\mathcal{A}(G^n, \bar{G}^n)$

For $0 \leq \alpha + \beta \leq n$ we put

$$A_{\alpha,\beta} = \sum I \otimes \cdots \otimes A \otimes \cdots \otimes \bar{A} \otimes \cdots \otimes I,$$

A appears α times and \bar{A} appears β times

In particular, the adjacency matrices of (G^n, \bar{G}^n) are

$$A[G^n] = A_{n,G} = A_{1,0}, \quad A[\bar{G}^n] = \bar{A}_{n,G} = \bar{A}_{0,1}.$$

$\mathcal{A}(G^n, \bar{G}^n)$: unital $*$-algebra generated by $A_{n,G}$ and $\bar{A}_{n,G}$.

Lemma

$\mathcal{A}(G^n, \bar{G}^n)$ is a linear span of $\{A_{\alpha,\beta} ; 0 \leq \alpha + \beta \leq n\}$.

Lemma (Orthogonal relation)

$$\frac{1}{vn} \text{Tr}(A_{\alpha,\beta} A_{\alpha',\beta'}) = k_{\alpha,\alpha'} \delta_{\alpha,\alpha'} \delta_{\beta,\beta'}, \quad k_{\alpha,\beta} = \binom{n}{\alpha, \beta} k^\alpha \bar{k}^\beta.$$
8.6. Bivariate Orthogonal Polynomials

Lemma (Mizukawa–Tanaka (PAMS 2004))

The eigenvalues of $A_{\alpha, \beta}$ are given in the form:

$$k_{\alpha, \beta} P_{\alpha, \beta}(j, h) \quad \text{with multiplicity} \quad \binom{n}{j, h} f^j g^h,$$

Bivariate Krawtchouk Polynomials

$$P_{\alpha, \beta}(j, h) = \sum_{0 \leq \nu_1 + \cdots + \nu_4 \leq n} \frac{(-\alpha)_{\nu_1 + \nu_3} (-\beta)_{\nu_2 + \nu_4} (-j)_{\nu_1 + \nu_2} (-h)_{\nu_3 + \nu_4}}{(-n)_{\nu_1 + \nu_2 + \nu_3 + \nu_4}} t_1^{\nu_1} t_2^{\nu_2} t_3^{\nu_3} t_4^{\nu_4} \frac{\nu_1! \nu_2! \nu_3! \nu_4!}{\nu_1! \nu_2! \nu_3! \nu_4!},$$

where

$$t_1 = 1 - \frac{r}{k}, \quad t_2 = 1 - \frac{s}{k}, \quad t_2 = 1 - \frac{s}{k}, \quad t_4 = 1 - \frac{r}{k}.$$

- This is a particular case of Aomoto-Gelfand hypergeometric function of $(3, 6)$-type.
- Pochhammer symbol: $(a)_n = a(a + 1)(a + 2) \cdots (a + n - 1)$
8.6. Bivariate Orthogonal Polynomials

Then the orthogonal relation becomes

\[\sum_{0 \leq j + h \leq n} \sqrt{k_{\alpha,\beta}} P_{\alpha,\beta}(j, h) \sqrt{k_{\alpha',\beta'}} P_{\alpha',\beta'}(j, h) \pi(j, h) = \delta_{\alpha,\alpha'} \delta_{\beta,\beta'}. \]

Using integral form and applying variable change:

\[\nu_{n,G} = \sum_{0 \leq j + h \leq n} \binom{n}{j, h} \pi(j, h) \delta(\theta_{j,h}, \bar{\theta}_{j,h}), \]

\[\theta_{j,h} = (n - j - h)k + jr + hs, \quad \bar{\theta}_{j,h} = (n - j - h)\bar{k} + j\bar{s} + h\bar{r}, \]

\[x = \frac{\theta_{j,h}}{\sqrt{nk}}, \quad y = \frac{\bar{\theta}_{j,h}}{\sqrt{nk}}, \]

we obtain polynomials \(\{ \tilde{P}_{\alpha,\beta}(x, y) \} \) such that

\[\int_{\mathbb{R}^2} \tilde{P}_{\alpha,\beta}(x, y) \tilde{P}_{\alpha',\beta'}(x, y) \nu_{G,n}(dx dy) = \delta_{\alpha,\alpha'} \delta_{\beta,\beta'}. \]
8.7. Bivariate Orthogonal Polynomials in the Limit

▶ We consider the Gauss × Poisson case

Let

\[R_{\alpha, \beta}(x, y) = \lim \tilde{P}_{\alpha, \beta}(x, y) \]

under the scaling

\[\frac{k}{n} \to \kappa > 0 \lor \frac{\bar{k}}{n} \to \bar{\kappa} > 0, \quad \frac{r}{n} \to \rho = 0, \quad \frac{s}{n} \to \sigma = 0, \]

Then we have

\[\int_{\mathbb{R}^2} R_{\alpha, \beta}(x, y) R_{\alpha', \beta'}(x, y) \nu(dx \, dy) = \delta_{\alpha, \alpha'} \delta_{\beta, \beta'} \]

Theorem (Morales-Obata-Tanaka (2019+))

\[\{R_{\alpha, \beta}(x, y)\} \text{ are the orthogonal polynomials with respect to the Gauss × Poisson distribution } \nu. \]
8.7. Bivariate Orthogonal Polynomials in the Limit

Explicit form

1. We start with the generating function:

 \[\sum_{0 \leq \alpha + \beta \leq n} k_{\alpha,\beta} P_{\alpha,\beta}(j, h) \xi_1^\alpha \xi_2^\beta \]

 \[= (1 + k_1 \xi_1 + \bar{k}_2 \xi_2)^{n-j-h} (1 + r \xi_1 + s \xi_2)^j (1 + s \xi_1 + \bar{r} \xi_2)^h \]

2. Changing variables and taking the limit, we have

 \[\sum_{\alpha, \beta = 0}^\infty \frac{R_{\alpha,\beta}(x, y)}{\sqrt{\alpha!\beta!}} \xi_1^\alpha \xi_2^\beta \]

 \[= (1 + \sqrt{\kappa} \xi_1 + \sqrt{\kappa} \xi_2)^{(\sqrt{\kappa} x + \sqrt{\kappa} y + 1)/\omega} \]

 \[\times \exp \left\{ - \frac{\sqrt{\kappa} \xi_1 + \sqrt{\kappa} \xi_2}{\omega} - \frac{(\sqrt{\kappa} \xi_1 - \sqrt{\kappa} \xi_2)^2}{2\omega} \right. \]

 \[\left. + \frac{(\sqrt{\kappa} x - \sqrt{\kappa} y)(\sqrt{\kappa} \xi_1 - \sqrt{\kappa} \xi_2)}{\omega} \right\} \]
8.7. Bivariate Orthogonal Polynomials in the Limit

Five-term recurrence relation

1. We start with

\[AA_{\alpha,\beta} = (\alpha + 1)A_{\alpha+1,\beta} + (\alpha + 1)(\bar{k} - \bar{\mu})A_{\alpha+1,\beta-1} \]
\[+ (\alpha \lambda + \beta (k - \mu))A_{\alpha,\beta} + (\beta + 1)\mu A_{\alpha-1,\beta+1} \]
\[+ (n - \alpha - \beta + 1)k A_{\alpha-1,\beta}, \]

\[\bar{A}A_{\alpha,\beta} = (\beta + 1)A_{\alpha,\beta+1} + (\alpha + 1)\bar{\mu} A_{\alpha+1,\beta-1} \]
\[+ (\alpha(\bar{k} - \bar{\mu}) + \beta \bar{\lambda})A_{\alpha,\beta} + (\beta + 1)(k - \lambda)A_{\alpha-1,\beta+1} \]
\[+ (n - \alpha - \beta + 1)\bar{k} A_{\alpha,\beta-1}. \]

2. Use the correspondence:

\[\frac{A_{\alpha,\beta}}{\sqrt{k_{\alpha,\beta}}} \leftrightarrow \sqrt{k_{\alpha,\beta}} P_{\alpha,\beta}(j, h) \]

we obtain the five-term recurrence relation for \(\{ P_{\alpha,\beta}(j, h) \} \).

3. Changing variables and taking the limit, we have
8.7. Bivariate Orthogonal Polynomials in the Limit

Theorem (Five-term recurrence relation)

\[x R_{\alpha,\beta} = \sqrt{\alpha + 1} R_{\alpha+1,\beta} + \sqrt{(\alpha + 1)\beta} \frac{\kappa \sqrt{\kappa}}{\omega} R_{\alpha+1,\beta-1} \]
\[+ (\alpha \kappa + \beta \bar{\kappa}) \frac{\sqrt{\kappa}}{\omega} R_{\alpha,\beta} + \sqrt{\alpha(\beta + 1)} \frac{\kappa \sqrt{\kappa}}{\omega} R_{\alpha-1,\beta+1} + \sqrt{\alpha} R_{\alpha-1,\beta}, \]

\[y R_{\alpha,\beta} = \sqrt{\beta + 1} R_{\alpha,\beta+1} + \sqrt{(\alpha + 1)\beta} \frac{\kappa \sqrt{\kappa}}{\omega} R_{\alpha+1,\beta-1} \]
\[+ (\alpha \kappa + \beta \bar{\kappa}) \frac{\sqrt{\kappa}}{\omega} R_{\alpha,\beta} + \sqrt{\alpha(\beta + 1)} \frac{\bar{\kappa} \sqrt{\kappa}}{\omega} R_{\alpha-1,\beta+1} + \sqrt{\beta} R_{\alpha,\beta-1}. \]

- This would be a good example for a bivariate spectral analysis of growing graphs.
- The next step is to derive a bivariate extension of quantum decomposition.
- *Life is short, but there is always time enough for mathematics!*

Nobuaki Obata (Tohoku University)
Asymptotic Spectral Analysis
Yichang, China, 2019.08.20–24