On Pronormal Subgroups of Finite Groups

Natalia V. Maslova

Krasovskii Institute of Mathematics and Mechanics UB RAS
and
Ural Federal University

This talk is based on joint papers with
Wenbin Guo, Anatoly Kondrat’ev, and Danila Revin

Shanghai Jiao Tong University, Shanghai, China

February 14, 2018
Agreement. Further we consider finite groups only.

Definition (Ph. Hall).

A subgroup H of a group G is *pronormal* in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Theorem* (Ph. Hall, 1960s). Let G be a group and $H \leq G$. The following conditions are equivalent:

1. H is pronormal in G;
2. In any transitive permutation representation of G, the subgroup $N_G(H)$ acts transitively on the set $\text{fix}(H)$.

Examples. The following subgroups are pronormal in finite groups:

- Normal subgroups;
- Maximal subgroups;
- Sylow subgroups.
Definitions and Examples

H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Let a group G acts transitively on a set Ω.

Define an equivalence relation ρ on Ω by the following way: $x \rho y$ if and only if $G_x = G_y$.

Let $\Omega = \bigcup_{x \in \Omega} \Delta(x)$ be a partition of Ω.

Proposition. Let $x \in \Omega$. The following conditions are equivalent:
(1) G_x is pronormal in G;
(2) for each $y \in \Omega$ there exists $t \in \langle G_x, G_y \rangle$ s. t. that $\Delta(x)^t = \Delta(y)$.
Pronormality works...

H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Definition (L. Babai). A group G is called a *CI-group* if between every two isomorphic relational structures on G (as underlying set) which are invariant under the group $G_R = \{ g_R \mid g \in G \}$ of right multiplications

$$g_R : x \mapsto xg,$$

there exists an isomorphism which is at the same time an automorphism of G.

Theorem (L. Babai, 1977). G is a CI-group if and only if G_R is pronormal in $\text{Sym}(G)$.

Corollary. If G is a CI-group then G is abelian.

Theorem (P. Pálfy, 1987). G is a CI-group if and only if $|G| = 4$ or G is cyclic of order n such that $(n, \varphi(n)) = 1$.
H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

General Problem. Given a group G and $H \leq G$. Is H pronormal in G?
Properties of Pronormal Subgroups

H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Proposition (The Frattini Argument). Let $A \unlhd G$ and $H \leq A$. The following statements are equivalent:

1. H is pronormal in G;
2. H is pronormal in A and $G = AN_G(H)$.

Proposition. Let $A \trianglelefteq G$ and $H \leq G$. The following statements are equivalent:

1. H is pronormal in G;
2. HA/A is pronormal in G/A and H is pronormal in $N_G(HA)$.

General Problem: Reductions

H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

General Problem. Given a group G and $H \leq G$. Is H pronormal in G?

Assume that G is not simple and A is a minimal normal subgroup of G. Then A is a direct product of simple groups and one of the following cases arises:

(1) If $A \leq H$, then H is pronormal in G if and only if HA/A is pronormal in G/A. Note that $|G/A| < |G|$.

(2) If $H \leq A$, then H is pronormal in G if and only if H is pronormal in A and $G = AN_G(H)$. We need to know pronormal subgroups in direct products of simple groups.

(3) If $H \not\leq A$ and $A \not\leq H$, then H is pronormal in G if and only if $N_G(HA) = AN_{N_G(HA)}(H)$ and H is pronormal in HA. We need to find good restrictions to G and H.
Overgroups of Pronormal Subgroups

H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Theorem (Ch. Praeger, 1984). Let G be a transitive permutation group on a set Ω of n points, and let K be a nontrivial pronormal subgroup of G. Then

(a) $|\text{fix}(K)| \leq \frac{1}{2}(n - 1)$, and

(b) if $|\text{fix}(K)| = \frac{1}{2}(n - 1)$ then K is transitive on its support in Ω, and either $G \geq A_n$, or $G = GL(d, 2)$ acting on the $n = 2^d - 1$ nonzero vectors, and K is the pointwise stabilizer of a hyperplane.

Remark. It is interesting to check the pronormality of overgroups of pronormal (in particular, Sylow) subgroups.
Theorem* (Ph. Hall, 1960s). Let G be a group and $H \leq G$. The following conditions are equivalent:

(1) H is pronormal in G;
(2) In any transitive permutation representation of G, the subgroup $N_G(H)$ acts transitively on the set $fix(H)$.

Corollary*. Let G be a group, $S \leq H \leq G$ and S be a pronormal (for example, Sylow) subgroup of G. Then the following conditions are equivalent:

(1) H is pronormal in G;
(2) H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in N_G(S)$.

Lemma 1 (A. Kondrat’ev, 2005). Let G be a nonabelian simple group and $S \in Syl_2(G)$. Then either $N_G(S) = S$ or $(G, N_G(S))$ is known.

Conjecture (E. Vdovin and D. Revin, 2012). The subgroups of odd index (= the overgroups of Sylow 2-subgroups) are pronormal in simple groups.
Subgroups of Odd Index

H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Let $G = AH$, where A is a minimal normal subgroup of G and H is a subgroup of odd index in G. If A is of odd order, then A is abelian and we can use the following assertion.

Theorem 1 (A. Kondrat’ev, N.M., and D. Revin, 2016). Let H and V be subgroups of a group G such that V is an abelian normal subgroup of G and $G = HV$. Then the following statements are equivalent:

(1) H is pronormal in G;
(2) $U = N_U(H)[H,U]$ for any H-invariant subgroup $U \leq V$.

If A is a minimal normal subgroup, then H is pronormal in $G = AH$.
Subgroups of Odd Index

H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Let $G = AH$, where A is a minimal normal subgroup of G and H is a subgroup of odd index in G.

If A is of even order, then A is a nonabelian simple group and in some cases we can use the following assertion.

Theorem 2 (A. Kondrat’ev, N.M., and D. Revin, 2017). Let G be a group, $A \leq G$, the overgroups of Sylow p-subgroups are pronormal in A, and $T \in Syl_p(A)$. Then the following statements are equivalent:

1. the overgroups of Sylow p-subgroups are pronormal in G;
2. the overgroups of Sylow p-subgroups are pronormal in $N_G(T)/T$ and for each $H \leq G$ if the index $|G : H|$ is not divisible by p, then $N_G(H)A/A = N_{G/A}(HA/A)$.

We need to know pronormality of subgroups of odd index in simple groups and in direct products of simple groups.
H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Conjecture (E. Vdovin and D. Revin, 2012). The subgroups of odd index (= the overgroups of Sylow 2-subgroups) are pronormal in simple groups.

Corollary*. Let G be a group, $S \leq H \leq G$ and S be a pronormal (for example, Sylow) subgroup of G. Then the following conditions are equivalent:
(1) H is pronormal in G;
(2) H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in N_G(S)$.

Remark. Let G be a group, $H \leq G$ and S be a pronormal subgroup of G. If $N_G(S) \leq H$ then H is pronormal in G.
A group \(G \) is simple if \(G \) does not contain proper normal subgroups.

With respect to the *Classification of Finite Simple Groups*, finite simple groups are:

- Cyclic groups \(C_p \), where \(p \) is a prime;
- Alternating groups \(Alt(n) \) for \(n \geq 5 \);
- Classical groups: \(PSL_n(q) = L_n(q) \), \(PSU_n(q) = U_n(q) = PSL_n^-(q) = L_n^-(q) \), \(PSp_{2n}(q) = S_{2n}(q) \), \(P\Omega_n(q) = O_n(q) \) (\(n \) is odd), \(P\Omega_n^+(q) = O_n^+(q) \) (\(n \) is even), \(P\Omega_n^-(q) = O_n^-(q) \) (\(n \) is even);
- Exceptional groups of Lie type:
 - \(E_8(q) \), \(E_7(q) \),
 - \(E_6(q) \), \(2E_6(q) = E_6^-(q) \),
 - \(3D_4(q) \), \(F_4(q) \), \(2F_4(q) \),
 - \(G_2(q) \), \(2G_2(q) = Re(q) \) (\(q \) is a power of 3),
 - \(2B_2(q) = Sz(q) \) (\(q \) is a power of 2);
- 26 sporadic groups.
Normalizers of Sylow 2-subgroups

H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

If G is a group, S is a Sylow subgroup of G, and $N_G(S) \leq H$, then H is pronormal in G.

Lemma 1 (A. Kondrat’ev, 2005). Let G be a nonabelian simple group and $S \in Syl_2(G)$. Then $N_G(S) = S$ excluding the following cases:

1. $G \cong J_2$, J_3, Suz or HN;
2. $G \cong 2G_2(3^{2n+1})$ or J_1;
3. G is a group of Lie type over field of characteristic 2;
4. $G \cong PSL_2(q)$, where $3 < q \equiv \pm 3 \pmod{8}$;
5. $G \cong PSp_{2n}(q)$, where $n \geq 2$ and $q \equiv \pm 3 \pmod{8}$;
6. $G \cong PSL^n_\eta(q)$, where $n \geq 3$, $\eta = \pm$, q is odd, and n is not a power of 2;
7. $G \cong E^n_6(q)$ where $\eta = \pm$ and q is odd.
H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

If G is a group, S is a Sylow subgroup of G, and $N_G(S) \leq H$, then H is pronormal in G.

Lemma 1 (A. Kondrat’ev, 2005). Let G be a nonabelian simple group and $S \in Syl_2(G)$. Then $N_G(S) = S$ excluding the following cases:

1. $G \cong J_2$, J_3, Suz or HN;
2. $G \cong 2G_2(3^{2n+1})$ or J_1;
3. G is a group of Lie type over field of characteristic 2;
4. $G \cong PSL_2(q)$, where $3 < q \equiv \pm 3 \pmod 8$;
5. $G \cong PSp_{2n}(q)$, where $n \geq 2$ and $q \equiv \pm 3 \pmod 8$;
6. $G \cong PSL^n_{\eta}(q)$, where $n \geq 3$, $\eta = \pm$, q is odd, and n is not a power of 2;
7. $G \cong E_6^\eta(q)$ where $\eta = \pm$ and q is odd.
H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Theorem 3 (A. Kondrat’ev, N.M., D. Revin, 2015). All subgroups of odd index are pronormal in the following simple groups:

1. $\text{Alt}(n)$, where $n \geq 5$;
2. sporadic groups;
3. groups of Lie type over fields of characteristic 2;
4. $\text{PSL}_{2n}(q)$;
5. $\text{PSU}_{2n}(q)$;
6. $\text{PSp}_{2n}(q)$, where $q \not\equiv \pm 3 \pmod{8}$;
7. $\text{PO}^\varepsilon_n(q)$, where $\varepsilon \in \{+, -, \text{empty symbol}\}$;
8. exceptional groups of Lie type not isomorphic to $E_6(q)$ or $^2E_6(q)$.
H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

If G is a group, S is a Sylow subgroup of G, and $N_G(S) \leq H$, then H is pronormal in G.

Lemma 1 (A. Kondrat’ev, 2005). Let G be a nonabelian simple group and $S \in Syl_2(G)$. Then $N_G(S) = S$ excluding the following cases:

1. $G \cong J_2, J_3, Suz$ or HN;
2. $G \cong 2G_2(3^{2n+1})$ or J_1;
3. G is a group of Lie type over field of characteristic 2;
4. $G \cong PSL_2(q)$, where $3 < q \equiv \pm 3 \pmod{8}$;
5. $G \cong PSp_{2n}(q)$, where $n \geq 2$ and $q \equiv \pm 3 \pmod{8}$;
6. $G \cong PSL^n_\eta(q)$, where $n \geq 3$, $\eta = \pm$, q is odd, and n is not a power of 2;
7. $G \cong E_6^\eta(q)$ where $\eta = \pm$ and q is odd.
Classification Problem

H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Theorem 4 (A. Kondrat’ev, N.M., D. Revin, 2016). Let $G = PSp_n(q)$, where $q \equiv \pm 3 \pmod{8}$ and $n \not\in \{2^m, 2^m(2^{2k} + 1) \mid m, k \in \mathbb{N}\}$. Then G contains a nonpronormal subgroup of odd index.

Problem. Classify simple groups in which all subgroups of odd index are pronormal.

Theorem 5 (A. Kondrat’ev, N.M., D. Revin, 2017)**. Let G be a nonabelian simple group, $S \in Syl_2(G)$, and $C_G(S) \leq S$. Then exactly one of the following statements holds:

1. The subgroups of odd index are pronormal in G;
2. $G \cong PSp_{2n}(q)$, where $q \equiv \pm 3 \pmod{8}$ and n is not of the form 2^w or $2^w(2^{2k} + 1)$.

**Proof was based on joint results by W. Guo, N.M., and D. Revin.
Classification Problem

H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Theorem 4 (A. Kondrat’ev, N.M., D. Revin, 2016). Let $G = PSp_n(q)$, where $q \equiv \pm 3 \pmod{8}$ and $n \not\in \{2^m, 2^m(2^{2k} + 1) \mid m, k \in \mathbb{N}\}$. Then G contains a nonpronormal subgroup of odd index.

Problem. Classify simple groups in which all subgroups of odd index are pronormal.

Theorem 5 (A. Kondrat’ev, N.M., D. Revin, 2017)**. Let G be a nonabelian simple group, $S \in Syl_2(G)$, and $C_G(S) \leq S$. Then exactly one of the following statements holds:

1. The subgroups of odd index are pronormal in G;
2. $G \cong PSp_{2n}(q)$, where $q \equiv \pm 3 \pmod{8}$ and n is not of the form 2^w or $2^w(2^{2k} + 1)$.

**Proof was based on joint results by W. Guo, N.M., and D. Revin.
Sketch of Proof

$G = PSp_n(q)$, where $q \equiv \pm 3 \pmod{8}$ and $n \in \{2^m, 2^m(2^{2k} + 1) \mid m, k \in \mathbb{N}\}$;

$H \leq G$ and $|G : H|$ is odd;

$S \in Syl_2(G)$ such that $S \leq H$;

$g \in N_G(S)$ and $K = \langle H, H^g \rangle$;

$K = G \Rightarrow H$ and H^g are conjugate in $\langle H, H^g \rangle$;

$K \neq G \Rightarrow \exists M: K \leq M$ and M is maximal in G;

Do we know M?
Classification of Maximal Subgroups of Odd Index in Finite Simple Groups

M. Liebeck and J. Saxl (1985) and W. Kantor (1987)

Let \(m = \sum_{i=0}^{\infty} a_i \cdot 2^i \) and \(n = \sum_{i=0}^{\infty} b_i \cdot 2^i \), where \(a_i, b_i \in \{0, 1\} \).

We write \(m \preceq n \) if \(a_i \leq b_i \) for every \(i \) and \(m \prec n \) if, in addition, \(m \neq n \).

Theorem (N.M., 2008). Maximal subgroups of odd index in \(Sp_{2n}(q) = Sp(V) \), where \(n > 1 \) and \(q \) is odd are the following:

(1) \(Sp_{2n}(q_0) \), where \(q = q_0^r \) and \(r \) is an odd prime;
(2) \(Sp_{2m}(q) \times Sp_{2(n-m)}(q) \), where \(m \prec n \);
(3) \(Sp_{2m}(q) \wr Sym(t) \), where \(n = mt \) and \(m = 2^k \);
(4) \(2^{1+4^{4}}.Alt(5) \), where \(n = 2 \) and \(q \equiv \pm 3 \pmod{8} \) is a prime.
H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Let X_2 be the class of all simple groups with self-normalized Sylow 2-subgroups,
Y_2 be the class of all groups in which the subgroups of odd index are pronormal.

Let G and K be groups, $H \leq G$ and $A \leq G$. Then

(1) $G \in Y_2 \Rightarrow G/A \in Y_2$
(2) $G \in Y_2 \nRightarrow H \in Y_2$
(3) $G \in Y_2 \nRightarrow A \in Y_2$
(4) $G, K \in Y_2 \nRightarrow G \times K \in Y_2$

even for simple groups!
H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

\mathbb{X}_2 is the class of all simple groups with self-normalized Sylow 2-subgroups,

\mathbb{Y}_2 is the class of all groups in which the subgroups of odd index are pronormal.

Theorem 6 (W. Guo, N.M., D. Revin, 2016-2017). Let G be a group, $A \trianglelefteq G$, $A \in \mathbb{Y}_2$, and $G/A \in \mathbb{X}_2$. Let T be a Sylow 2-subgroup of A. Then the following conditions are equivalent:

1. $G \in \mathbb{Y}_2$;
2. $N_G(T)/T \in \mathbb{Y}_2$.
H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$. If $m = \sum_{i=0}^{\infty} a_i \cdot 2^i$ and $n = \sum_{i=0}^{\infty} b_i \cdot 2^i$, where $a_i, b_i \in \{0, 1\}$.

We write $m \preceq n$ if $a_i \leq b_i$ for every i and $m \prec n$ if, in addition, $m \neq n$.

Theorem 7 (W. Guo, N.M., D. Revin, 2016-2017). Let A be an abelian group and $G = \prod_{i=1}^{t} (A \wr Sym(n_i))$, where all the wreath products are natural permutation. Then all subgroups of odd index are pronormal in G if and only if for any positive integer m, if $m \prec n_i$ for some i, then $\text{h.c.f.}(|A|, m)$ is a power of 2.

Theorem 8 (W. Guo, N.M., D. Revin, 2016-2017). Let $G = \prod_{i=1}^{t} PSp_{n_i}(q_i)$, where $n_i = 2^{w_i}$ and q_i is odd for each i. Then the subgroups of odd index are pronormal in G.
Classification Problem

\(H \) is pronormal in \(G \) if \(H \) and \(H^g \) are conjugate in \(\langle H, H^g \rangle \) for every \(g \in G \).

Problem. Classify all the nonabelian simple groups \(G \) such that \(C_G(S) \not\leq S \), where \(S \in Syl_2(G) \), and all the subgroups of index are pronormal in \(G \).

Theorem 9 (A. Kondrat’ev, N.M., D. Revin, 2017+).
Let \(G \) be an exceptional group of Lie type \(E_6^\varepsilon(q) \), where \(q \) is odd and \(\varepsilon \in \{+,-\} \). Then every subgroup of odd index is pronormal in \(G \) if and only if \(9 \) does not divide \(q - \varepsilon 1 \).

Theorem 10 (A. Kondrat’ev, N.M., D. Revin, 2017+).
Let \(G = PSU_n(q) = L^-_n(q) \), where \(q \) is odd. All subgroups of odd index are pronormal in \(G \) if and only if for any positive integer \(m \), if \(m \prec n \), then \(h.c.f.(m, (q + 1)) \) is a power of \(2 \).

Conjecture.
Let \(G = PSL_n(q) = L^+_n(q) \), where \(q \) is odd. All subgroups of odd index are pronormal in \(G \) if and only if for any positive integer \(m \), if \(m \prec n \), then \(h.c.f.(m, q(q - 1)) \) is a power of \(2 \).
Problems

H is pronormal in G if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

Problem A. Complete the classification of simple groups in which the subgroup of odd index are pronormal.

Problem B. Describe direct products of simple groups in which the subgroup of odd index are pronormal.

Problem C. Classify non-pronormal subgroup of odd index in simple groups.

Problem D. Classify non-pronormal subgroup of odd index in direct products of simple groups.
Thank you for your attention!