Permutation groups

For any set Ω, $\text{Sym}(\Omega)$ denotes the symmetric group of all permutations of Ω, with the operation of composition.
For any set Ω, $\text{Sym}(\Omega)$ denotes the \textbf{symmetric group} of all permutations of Ω, with the operation of composition. If $|\Omega| = n$, we write $\text{Sym}(\Omega)$ as S_n.
Permutation groups

For any set Ω, $\text{Sym}(\Omega)$ denotes the symmetric group of all permutations of Ω, with the operation of composition. If $|\Omega| = n$, we write $\text{Sym}(\Omega)$ as S_n. We write permutations to the right of their argument, and compose from left to right: that is, αg is the image of $\alpha \in \Omega$ under the permutation $g \in \text{Sym}(\Omega)$, and

$$\alpha(g_1g_2) = (\alpha g_1)g_2.$$
Permutation groups

For any set Ω, $\text{Sym}(\Omega)$ denotes the symmetric group of all permutations of Ω, with the operation of composition. If $|\Omega| = n$, we write $\text{Sym}(\Omega)$ as S_n. We write permutations to the right of their argument, and compose from left to right: that is, αg is the image of $\alpha \in \Omega$ under the permutation $g \in \text{Sym}(\Omega)$, and

$$\alpha(g_1g_2) = (\alpha g_1)g_2.$$

A permutation group on Ω is a subgroup of $\text{Sym}(\Omega)$.
Permutation groups

For any set \(\Omega \), \(\text{Sym}(\Omega) \) denotes the symmetric group of all permutations of \(\Omega \), with the operation of composition. If \(|\Omega| = n \), we write \(\text{Sym}(\Omega) \) as \(S_n \).

We write permutations to the right of their argument, and compose from left to right: that is, \(\alpha g \) is the image of \(\alpha \in \Omega \) under the permutation \(g \in \text{Sym}(\Omega) \), and

\[
\alpha(g_1 g_2) = (\alpha g_1) g_2.
\]

A permutation group on \(\Omega \) is a subgroup of \(\text{Sym}(\Omega) \).

An action of a group \(G \) on \(\Omega \) is a homomorphism from \(G \) to \(\text{Sym}(\Omega) \); its image is a permutation group on \(\Omega \). Whenever we define a property of a permutation group, we use the name for a property of the group action.
An example

Let \(G \) be the group of automorphisms of the cube, acting on the set \(\Omega \) of vertices, edges and faces of the cube: \(|\Omega| = 26\). The action is faithful, so \(G \) is a permutation group.
Let G be the group of automorphisms of the cube, acting on the set Ω of vertices, edges and faces of the cube: $|\Omega| = 26$. The action is faithful, so G is a permutation group. Automorphism groups of mathematical objects provide a rich supply of permutation groups. These objects can be of almost any kind.
Orbits and transitivity

Let G be a permutation group on Ω. Define a relation \sim on Ω by the rule

$$\alpha \sim \beta \text{ if and only if there exists } g \in G \text{ such that } \alpha g = \beta.$$
Orbits and transitivity

Let G be a permutation group on Ω. Define a relation \sim on Ω by the rule

$$\alpha \sim \beta \text{ if and only if there exists } g \in G \text{ such that } \alpha g = \beta.$$

\sim is an equivalence relation on Ω. (The reflexive, symmetric and transitive laws correspond to the identity, inverse, and closure properties of G.)
Orbits and transitivity

Let G be a permutation group on Ω. Define a relation \sim on Ω by the rule

$$\alpha \sim \beta \text{ if and only if there exists } g \in G \text{ such that } \alpha g = \beta.$$

\sim is an equivalence relation on Ω. (The reflexive, symmetric and transitive laws correspond to the identity, inverse, and closure properties of G.) The equivalence classes are called orbits; the group G is transitive if there is just one orbit. Thus, a permutation group has a transitive action on each of its orbits.
Orbits and transitivity

Let G be a permutation group on Ω. Define a relation \sim on Ω by the rule

$$\alpha \sim \beta \text{ if and only if there exists } g \in G \text{ such that } \alpha g = \beta.$$

\sim is an equivalence relation on Ω. (The reflexive, symmetric and transitive laws correspond to the identity, inverse, and closure properties of G.)

The equivalence classes are called orbits; the group G is transitive if there is just one orbit. Thus, a permutation group has a transitive action on each of its orbits.

In the example, there are three orbits: the 8 vertices, the 12 edges, and the 6 faces.
Another way to say this

There is another way to describe transitivity, which will be useful for further properties.
Another way to say this

There is another way to describe transitivity, which will be useful for further properties. We say that a mathematical structure built on the set Ω is trivial if it is invariant under $\text{Sym}(\Omega)$, and non-trivial otherwise. Thus,
Another way to say this

There is another way to describe transitivity, which will be useful for further properties. We say that a mathematical structure built on the set Ω is trivial if it is invariant under $\text{Sym}(\Omega)$, and non-trivial otherwise. Thus,

- a subset of Ω is trivial if and only if it is either Ω or the empty set;
Another way to say this

There is another way to describe transitivity, which will be useful for further properties. We say that a mathematical structure built on the set Ω is **trivial** if it is invariant under $\text{Sym}(\Omega)$, and **non-trivial** otherwise. Thus,

- a subset of Ω is trivial if and only if it is either Ω or the empty set;
- a partition of Ω is trivial if and only if either it has a single part, or all parts are singletons (sets of size 1);
Another way to say this

There is another way to describe transitivity, which will be useful for further properties. We say that a mathematical structure built on the set Ω is trivial if it is invariant under $\text{Sym}(\Omega)$, and non-trivial otherwise. Thus,

- a subset of Ω is trivial if and only if it is either Ω or the empty set;
- a partition of Ω is trivial if and only if either it has a single part, or all parts are singletons (sets of size 1);
- a simple graph on Ω is trivial if and only if it is either the complete graph or the null graph.
Another way to say this

There is another way to describe transitivity, which will be useful for further properties. We say that a mathematical structure built on the set Ω is **trivial** if it is invariant under $\text{Sym}(\Omega)$, and **non-trivial** otherwise. Thus,

- a subset of Ω is trivial if and only if it is either Ω or the empty set;
- a partition of Ω is trivial if and only if either it has a single part, or all parts are singletons (sets of size 1);
- a simple graph on Ω is trivial if and only if it is either the complete graph or the null graph.

So we can say:

A permutation group G on Ω is transitive if and only if there are no non-trivial G-invariant subsets.
Transitive actions

Let G act on Ω, and take $\alpha \in \Omega$. The stabiliser of α in G is the set
\[\{ g \in G : \alpha g = \alpha \} . \]

It is a subgroup of G.

If H is any subgroup of G, the (right) coset space of H in G is the set $G : H$ of right cosets Hx of H in G.

Now there is a notion of isomorphism of group actions, and the following theorem holds:

Theorem

Any transitive action of G on Ω is isomorphic to the action of G on the coset space $G : \alpha$, for $\alpha \in \Omega$.

The actions of G on coset spaces $G : H$ and $G : K$ are isomorphic if and only if H and K are conjugate subgroups of G.
Transitive actions

Let G act on Ω, and take $\alpha \in \Omega$. The **stabiliser** of α in G is the set

$$\{g \in G : \alpha g = \alpha\}.$$

It is a subgroup of G.

If H is any subgroup of G, the (right) **coset space** of H in G is the set $G : H$ of right cosets Hx of H in G. There is a transitive action of G on $G : H$, given by the rule

$$(Hx)g = H(xg).$$
Transitive actions

Let G act on Ω, and take $\alpha \in \Omega$. The stabiliser of α in G is the set
\[\{ g \in G : \alpha g = \alpha \}. \]

It is a subgroup of G.
If H is any subgroup of G, the (right) coset space of H in G is the set $G : H$ of right cosets Hx of H in G. There is a transitive action of G on $G : H$, given by the rule
\[(Hx)g = H(xg). \]

Now there is a notion of isomorphism of group actions, and the following theorem holds:

Theorem

- Any transitive action of G on Ω is isomorphic to the action of G on the coset space $G : G_\alpha$, for $\alpha \in \Omega$.
Transitive actions

Let G act on Ω, and take $\alpha \in \Omega$. The stabiliser of α in G is the set

$$\{g \in G : \alpha g = \alpha\}.$$

It is a subgroup of G.

If H is any subgroup of G, the (right) coset space of H in G is the set $G : H$ of right cosets Hx of H in G. There is a transitive action of G on $G : H$, given by the rule

$$(Hx)g = H(xg).$$

Now there is a notion of isomorphism of group actions, and the following theorem holds:

Theorem

- Any transitive action of G on Ω is isomorphic to the action of G on the coset space $G : G_\alpha$, for $\alpha \in \Omega$.
- The actions of G on coset spaces $G : H$ and $G : K$ are isomorphic if and only if H and K are conjugate subgroups of G.
A permutation group G is regular on Ω if it is transitive and the stabiliser of a point is the identity subgroup.
A permutation group G is regular on Ω if it is transitive and the stabiliser of a point is the identity subgroup. The right cosets of the identity are naturally in bijection with the elements of G. So we can identify Ω with G so that the action of G is on itself by right multiplication. Thus we have Cayley’s Theorem:
Regular permutation groups and Cayley’s Theorem

A permutation group G is regular on Ω if it is transitive and the stabiliser of a point is the identity subgroup. The right cosets of the identity are naturally in bijection with the elements of G. So we can identify Ω with G so that the action of G is on itself by right multiplication. Thus we have Cayley’s Theorem:

Theorem

Every group of order n is isomorphic to a subgroup of S_n.

In particular we see that asking a group G to be a transitive permutation group is no restriction on the abstract structure of G.
Primitivity

A transitive permutation group G on Ω is primitive if the only non-trivial G-invariant partitions are the trivial ones (the partition with one part and the partition into singletons).
Primitivity

A transitive permutation group G on Ω is **primitive** if the only non-trivial G-invariant partitions are the trivial ones (the partition with one part and the partition into singletons). This can be said another way. A **block of imprimitivity** is a subset B of Ω with the property that, for all $g \in G$, either $Bg = B$ or $Bg \cap B = \emptyset$. Then G is primitive if and only if the only blocks of imprimitivity are Ω, singletons, and the empty set.
Primitivity

A transitive permutation group G on Ω is **primitive** if the only non-trivial G-invariant partitions are the trivial ones (the partition with one part and the partition into singletons). This can be said another way. A **block of imprimitivity** is a subset B of Ω with the property that, for all $g \in G$, either $Bg = B$ or $Bg \cap B = \emptyset$. Then G is primitive if and only if the only blocks of imprimitivity are Ω, singletons, and the empty set.

Consider our example G, in its transitive action on the vertices of the cube. We see that G is imprimitive; indeed it preserves two non-trivial partitions:

- the partition into pairs of **antipodal** points (opposite ends of long diagonals);
Primitivity

A transitive permutation group G on Ω is **primitive** if the only non-trivial G-invariant partitions are the trivial ones (the partition with one part and the partition into singletons). This can be said another way. A **block of imprimitivity** is a subset B of Ω with the property that, for all $g \in G$, either $Bg = B$ or $Bg \cap B = \emptyset$. Then G is primitive if and only if the only blocks of imprimitivity are Ω, singletons, and the empty set.

Consider our example G, in its transitive action on the vertices of the cube. We see that G is imprimitive; indeed it preserves two non-trivial partitions:

- the partition into pairs of **antipodal** points (opposite ends of long diagonals);
- the partition into the vertex sets of two interlocking tetrahedra.
Let G be a transitive permutation group on Ω, where $|\Omega| > 1$. Then G is primitive if and only if the stabiliser of a point of Ω is a maximal proper subgroup of G.

Let G be primitive on Ω. Then every non-trivial normal subgroup of G is transitive.

Let G be primitive on Ω. Then G has at most two minimal normal subgroups; if there are two, then they are isomorphic and non-abelian, and each of them acts regularly.

The last part shows that, unlike for transitivity, not every group is isomorphic to a primitive permutation group.
Theorem

Let G be a transitive permutation group on Ω, where $|\Omega| > 1$. Then G is primitive if and only if the stabiliser of a point of Ω is a maximal proper subgroup of G.

Let G be primitive on Ω. Then every non-trivial normal subgroup of G is transitive.
Primitive groups

Theorem

- Let G be a transitive permutation group on Ω, where $|\Omega| > 1$. Then G is primitive if and only if the stabiliser of a point of Ω is a maximal proper subgroup of G.

- Let G be primitive on Ω. Then every non-trivial normal subgroup of G is transitive.

- Let G be primitive on Ω. Then G has at most two minimal normal subgroups; if there are two, then they are isomorphic and non-abelian, and each of them acts regularly.
Theorem

- Let G be a transitive permutation group on Ω, where $|\Omega| > 1$. Then G is primitive if and only if the stabiliser of a point of Ω is a maximal proper subgroup of G.

- Let G be primitive on Ω. Then every non-trivial normal subgroup of G is transitive.

- Let G be primitive on Ω. Then G has at most two minimal normal subgroups; if there are two, then they are isomorphic and non-abelian, and each of them acts regularly.

The last part shows that, unlike for transitivity, not every group is isomorphic to a primitive permutation group.
Basic groups

A **Cartesian structure** on Ω is an identification of Ω with A^d, where A is some set. We can regard A as an “alphabet”, and A^d as the set of all words of length d over the alphabet A. Then A^d is a metric space, with the **Hamming metric** (used in the theory of error-correcting codes): the distance between two words is the number of positions in which they differ.

A Cartesian structure is non-trivial if $|A| > 1$ and $d > 1$.

A Cartesian structure on Ω is an identification of Ω with A^d, where A is some set. We can regard A as an “alphabet”, and A^d as the set of all words of length d over the alphabet A. Then A^d is a metric space, with the Hamming metric (used in the theory of error-correcting codes): the distance between two words is the number of positions in which they differ.

A Cartesian structure is non-trivial if $|A| > 1$ and $d > 1$.

Let G be a primitive permutation group on Ω. We say that G is basic if it preserves no non-trivial Cartesian structure on Ω.

Basic groups
Basic groups

A Cartesian structure on Ω is an identification of Ω with A^d, where A is some set. We can regard A as an “alphabet”, and A^d as the set of all words of length d over the alphabet A. Then A^d is a metric space, with the Hamming metric (used in the theory of error-correcting codes): the distance between two words is the number of positions in which they differ.

A Cartesian structure is non-trivial if $|A| > 1$ and $d > 1$. Let G be a primitive permutation group on Ω. We say that G is basic if it preserves no non-trivial Cartesian structure on Ω. Although this concept is only defined for primitive groups, we see that the imprimitive group we met earlier, the symmetry group of the cube acting on the vertices, does preserve a Cartesian structure. The automorphism group of a Cartesian structure over an alphabet of size 2 is necessarily imprimitive – generalise our argument for the cube to see this.
The O’Nan–Scott Theorem

A permutation group G is called
- **affine** if it acts on a vector space V and its elements are products of translations and invertible linear transformations of V, so that G contains all the translations;

Theorem

Let G be a finite basic primitive permutation group. Then G is affine, diagonal, or almost simple.
The O’Nan–Scott Theorem

A permutation group G is called

- **affine** if it acts on a vector space V and its elements are products of translations and invertible linear transformations of V, so that G contains all the translations;

- **almost simple** if $T \leq G \leq \text{Aut}(T)$, where T is a non-abelian finite simple group, and $\text{Aut}(T)$ its automorphism group (where T embeds into $\text{Aut}(T)$ as the group of inner automorphisms or conjugations).
The O’Nan–Scott Theorem

A permutation group G is called

- **affine** if it acts on a vector space V and its elements are products of translations and invertible linear transformations of V, so that G contains all the translations;

- **almost simple** if $T \leq G \leq \text{Aut}(T)$, where T is a non-abelian finite simple group, and $\text{Aut}(T)$ its automorphism group (where T embeds into $\text{Aut}(T)$ as the group of inner automorphisms or conjugations).

I won’t define **diagonal** groups; here’s an example. Let T be a finite simple group. Then $T \times T$, acting on T by the rule

$$x(g,h) = g^{-1}xh$$

for all $x, g, h \in G$,

is a diagonal group. (The stabiliser of the identity is the diagonal subgroup $\{(g,g) : g \in G\}$ of $G \times G$.)
The O’Nan–Scott Theorem

A permutation group G is called

- **affine** if it acts on a vector space V and its elements are products of translations and invertible linear transformations of V, so that G contains all the translations;
- **almost simple** if $T \leq G \leq \text{Aut}(T)$, where T is a non-abelian finite simple group, and $\text{Aut}(T)$ its automorphism group (where T embeds into $\text{Aut}(T)$ as the group of inner automorphisms or conjugations).

I won’t define **diagonal** groups; here’s an example. Let T be a finite simple group. Then $T \times T$, acting on T by the rule

$$x(g,h) = g^{-1}xh$$

for all $x, g, h \in G$,

is a diagonal group. (The stabiliser of the identity is the diagonal subgroup $\{(g,g) : g \in G\}$ of $G \times G$.)

Theorem

Let G be a finite basic primitive permutation group. Then G is affine, diagonal, or almost simple.
Multiple transitivity

If G acts on Ω, then it has induced actions on the set of t-element subsets of Ω, or the set of t-tuples of distinct elements of Ω, where $t \leq |\Omega|$.
Multiple transitivity

If \(G \) acts on \(\Omega \), then it has induced actions on the set of \(t \)-element subsets of \(\Omega \), or the set of \(t \)-tuples of distinct elements of \(\Omega \), where \(t \leq |\Omega| \).

We say that \(G \) is \(t \)-homogeneous if the first action above is transitive, and \(t \)-transitive if the second is.
Multiple transitivity

If G acts on Ω, then it has induced actions on the set of t-element subsets of Ω, or the set of t-tuples of distinct elements of Ω, where $t \leq |\Omega|$.
We say that G is t-homogeneous if the first action above is transitive, and t-transitive if the second is.
A t-transitive group is t-homogeneous. The symmetric group S_n is t-transitive for all $t \leq n$, while the alternating group A_n is t-transitive for $t \leq n - 2$.
Multiple transitivity

If G acts on Ω, then it has induced actions on the set of t-element subsets of Ω, or the set of t-tuples of distinct elements of Ω, where $t \leq |\Omega|$.

We say that G is t-homogeneous if the first action above is transitive, and t-transitive if the second is.

A t-transitive group is t-homogeneous. The symmetric group S_n is t-transitive for all $t \leq n$, while the alternating group A_n is t-transitive for $t \leq n - 2$.

A 2-homogeneous group is primitive. (Exercise; proof later.)
Multiple transitivity

If G acts on Ω, then it has induced actions on the set of t-element subsets of Ω, or the set of t-tuples of distinct elements of Ω, where $t \leq |\Omega|$.

We say that G is t-homogeneous if the first action above is transitive, and t-transitive if the second is.

A t-transitive group is t-homogeneous. The symmetric group S_n is t-transitive for all $t \leq n$, while the alternating group A_n is t-transitive for $t \leq n - 2$.

A 2-homogeneous group is primitive. (Exercise; proof later.)

For $t = 2$, these properties have graph-theoretic interpretations:
Multiple transitivity

If G acts on Ω, then it has induced actions on the set of t-element subsets of Ω, or the set of t-tuples of distinct elements of Ω, where $t \leq |\Omega|$.

We say that G is t-homogeneous if the first action above is transitive, and t-transitive if the second is.

A t-transitive group is t-homogeneous. The symmetric group S_n is t-transitive for all $t \leq n$, while the alternating group A_n is t-transitive for $t \leq n - 2$.

A 2-homogeneous group is primitive. (Exercise; proof later.)

For $t = 2$, these properties have graph-theoretic interpretations:

- G is 2-homogeneous if there are no non-trivial G-invariant undirected graphs on Ω;
Multiple transitivity

If G acts on Ω, then it has induced actions on the set of t-element subsets of Ω, or the set of t-tuples of distinct elements of Ω, where $t \leq |\Omega|$.

We say that G is t-homogeneous if the first action above is transitive, and t-transitive if the second is.

A t-transitive group is t-homogeneous. The symmetric group S_n is t-transitive for all $t \leq n$, while the alternating group A_n is t-transitive for $t \leq n - 2$.

A 2-homogeneous group is primitive. (Exercise; proof later.)

For $t = 2$, these properties have graph-theoretic interpretations:

- G is 2-homogeneous if there are no non-trivial G-invariant undirected graphs on Ω;
- G is 2-transitive if and only if there are no non-trivial G-invariant directed graphs on Ω.
A non-identity group is **simple** if its only normal subgroups are itself and the identity subgroup.
The Classification of Finite Simple Groups

A non-identity group is **simple** if its only normal subgroups are itself and the identity subgroup.

The **Classification of Finite Simple Groups**, or CFSG, does what its name suggests:
A non-identity group is simple if its only normal subgroups are itself and the identity subgroup. The **Classification of Finite Simple Groups**, or CFSG, does what its name suggests:

Theorem

A finite simple group is one of the following:

- a cyclic group of prime order;
A non-identity group is **simple** if its only normal subgroups are itself and the identity subgroup.

The **Classification of Finite Simple Groups**, or CFSG, does what its name suggests:

Theorem

A finite simple group is one of the following:

- a cyclic group of prime order;
- an alternating group A_n, for $n \geq 5$;
A non-identity group is simple if its only normal subgroups are itself and the identity subgroup.
The Classification of Finite Simple Groups, or CFSG, does what its name suggests:

Theorem

A finite simple group is one of the following:
- a cyclic group of prime order;
- an alternating group A_n, for $n \geq 5$;
- a group of Lie type;
A non-identity group is simple if its only normal subgroups are itself and the identity subgroup. The **Classification of Finite Simple Groups**, or CFSG, does what its name suggests:

Theorem

A finite simple group is one of the following:

- a cyclic group of prime order;
- an alternating group A_n, for $n \geq 5$;
- a group of Lie type;
- one of 26 sporadic groups.
The Classification of Finite Simple Groups

A non-identity group is **simple** if its only normal subgroups are itself and the identity subgroup. The **Classification of Finite Simple Groups**, or CFSG, does what its name suggests:

Theorem

A finite simple group is one of the following:

- a cyclic group of prime order;
- an alternating group A_n, for $n \geq 5$;
- a group of Lie type;
- one of 26 sporadic groups.

This theorem has revolutionised finite permutation group theory. I will end with one of its consequences.
Theorem (CFSG)

All finite 2-transitive groups are explicitly known.
Multiply transitive groups

Theorem (CFSG)
All finite 2-transitive groups are explicitly known.

Corollary (CFSG)
The only finite 6-transitive groups are the symmetric and alternating groups.
Multiply transitive groups

Theorem (CFSG)
All finite 2-transitive groups are explicitly known.

Corollary (CFSG)
The only finite 6-transitive groups are the symmetric and alternating groups.
Indeed, there are only two 5-transitive groups which are not symmetric or alternating, the Mathieu groups M_{12} and M_{24}; and only two further 4-transitive groups, the Mathieu groups M_{11} and M_{23}.
Transformation semigroups

We recall the definitions.

▶ A semigroup is a set S with a binary operation \circ satisfying the \textit{associative law}:

$$a \circ (b \circ c) = (a \circ b) \circ c$$

for all $a, b, c \in S$.

▶ A monoid is a semigroup with an identity 1, an element satisfying $a \circ 1 = 1 \circ a = a$ for all $a \in S$.

▶ A group is a monoid with inverses, that is, for all $a \in S$ there exists $b \in S$ such that $a \circ b = b \circ a = 1$.

From now on we will write the operation as \textit{juxtaposition}, that is, write ab instead of $a \circ b$, and a^{-1} for the inverse of a.
Transformation semigroups

We recall the definitions.

- A **semigroup** is a set S with a binary operation \circ satisfying the **associative law**:

 \[a \circ (b \circ c) = (a \circ b) \circ c \]

 for all $a, b, c \in S$.

- A **monoid** is a semigroup with an **identity** 1, an element satisfying

 \[a \circ 1 = 1 \circ a = a \]

 for all $a \in S$.

From now on we will write the operation as **juxtaposition**, that is, write ab instead of $a \circ b$, and a^{-1} for the inverse of a.

Transformation semigroups

We recall the definitions.

- A **semigroup** is a set S with a binary operation \circ satisfying the *associative law*:

$$a \circ (b \circ c) = (a \circ b) \circ c$$

for all $a, b, c \in S$.

- A **monoid** is a semigroup with an *identity* 1, an element satisfying

$$a \circ 1 = 1 \circ a = a$$

for all $a \in S$.

- A **group** is a monoid with *inverses*, that is, for all $a \in S$ there exists $b \in S$ such that

$$a \circ b = b \circ a = 1.$$
Transformation semigroups

We recall the definitions.

- **A semigroup** is a set S with a binary operation \circ satisfying the associative law:

 $$a \circ (b \circ c) = (a \circ b) \circ c$$

 for all $a, b, c \in S$.

- **A monoid** is a semigroup with an *identity* 1, an element satisfying

 $$a \circ 1 = 1 \circ a = a$$

 for all $a \in S$.

- **A group** is a monoid with *inverses*, that is, for all $a \in S$ there exists $b \in S$ such that

 $$a \circ b = b \circ a = 1.$$
Mind the gap between semigroups and groups!

To any semigroup we can add an identity to produce a monoid of size one larger. Nothing like this is possible for groups!

<table>
<thead>
<tr>
<th>Order</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Monoids</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>35</td>
<td>228</td>
<td>2237</td>
<td>31559</td>
<td>1668997</td>
</tr>
<tr>
<td>Semigroups</td>
<td>1</td>
<td>5</td>
<td>24</td>
<td>188</td>
<td>1915</td>
<td>28634</td>
<td>1627672</td>
<td>3684030417</td>
</tr>
</tbody>
</table>
Mind the gap between semigroups and groups!

To any semigroup we can add an identity to produce a monoid of size one larger. Nothing like this is possible for groups!

<table>
<thead>
<tr>
<th>Order</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Monoids</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>35</td>
<td>228</td>
<td>2237</td>
<td>31559</td>
<td>1668997</td>
</tr>
<tr>
<td>Semigroups</td>
<td>1</td>
<td>5</td>
<td>24</td>
<td>188</td>
<td>1915</td>
<td>28634</td>
<td>1627672</td>
<td>3684030417</td>
</tr>
</tbody>
</table>

Note that the numbers of n-element semigroups and $(n+1)$-element monoids are fairly close; this is because we can add an identity to an n-element semigroup to form an $(n+1)$-element monoid. But numbers of groups are much smaller; the group axioms are much tighter!
Two analogues of Sym(Ω)

For a set Ω, let $T(\Omega)$ be the set of all the maps from Ω to itself, with the operation of composition. If $|\Omega| = n$, we write $T(\Omega)$ as T_n. Note that $T(\Omega)$ is a monoid; it contains Sym(Ω), and $T(\Omega) \setminus \text{Sym}(\Omega)$ is a semigroup. $T(\Omega)$ is the full transformation semigroup on Ω.
Two analogues of $\text{Sym}(\Omega)$

For a set Ω, let $T(\Omega)$ be the set of all the maps from Ω to itself, with the operation of composition. If $|\Omega| = n$, we write $T(\Omega)$ as T_n. Note that $T(\Omega)$ is a monoid; it contains $\text{Sym}(\Omega)$, and $T(\Omega) \setminus \text{Sym}(\Omega)$ is a semigroup. $T(\Omega)$ is the full transformation semigroup on Ω.

The order of T_n is n^n.
Two analogues of Sym(Ω)

For a set Ω, let $T(Ω)$ be the set of all the maps from Ω to itself, with the operation of composition. If $|Ω| = n$, we write $T(Ω)$ as T_n. Note that $T(Ω)$ is a monoid; it contains Sym(Ω), and $T(Ω) \setminus \text{Sym}(Ω)$ is a semigroup. $T(Ω)$ is the full transformation semigroup on Ω.

The order of T_n is n^n.

Also let $I(Ω)$ denote the set of all partial bijections on Ω (bijections between subsets of Ω), with composition ‘where possible’: if f_i has domain A_i for $i = 1, 2$, then f_1f_2 has domain $(A_1f_1 \cap A_2)f_1^{-1}$ and range $(A_1f_1 \cap A_2)f_2$. Again, if $|Ω| = n$, we write I_n. This is the symmetric inverse semigroup.
Two analogues of $\text{Sym}(\Omega)$

For a set Ω, let $T(\Omega)$ be the set of all the maps from Ω to itself, with the operation of composition. If $|\Omega| = n$, we write $T(\Omega)$ as T_n. Note that $T(\Omega)$ is a monoid; it contains $\text{Sym}(\Omega)$, and $T(\Omega) \setminus \text{Sym}(\Omega)$ is a semigroup. $T(\Omega)$ is the \textbf{full transformation semigroup} on Ω.

The order of T_n is n^n.

Also let $I(\Omega)$ denote the set of all partial bijections on Ω (bijections between subsets of Ω), with composition `where possible’: if f_i has domain A_i for $i = 1, 2$, then f_1f_2 has domain $(A_1f_1 \cap A_2)f_1^{-1}$ and range $(A_1f_1 \cap A_2)f_2$. Again, if $|\Omega| = n$, we write I_n. This is the \textbf{symmetric inverse semigroup}.

The order of I_n is $\sum_{k=0}^{n} \binom{n}{k}^2 k!$; there is no closed form for this expression.
Regularity

An element a of a semigroup S is regular if there exists $x \in S$ such that $axa = a$. The semigroup S is regular if all its elements are regular. Note that a group is regular, since we may choose $x = a^{-1}$. The semigroup T_n is regular (exercise).
Regularity

An element a of a semigroup S is regular if there exists $x \in S$ such that $axa = a$. The semigroup S is regular if all its elements are regular. Note that a group is regular, since we may choose $x = a^{-1}$. The semigroup T_n is regular (exercise).

Regularity is equivalent to a condition which appears formally to be stronger:

[Proposition]

If $a \in S$ is regular, then there exists $b \in S$ such that $aba = a$ and $bab = b$.

[Proof]

Choose x such that $axa = a$, and set $b = xax$. Then $aba = axaxa = axa = a$, $bab = xaxaxax = xaxax = xax = b$.

Regularity

An element a of a semigroup S is **regular** if there exists $x \in S$ such that $axa = a$. The semigroup S is **regular** if all its elements are regular. Note that a group is regular, since we may choose $x = a^{-1}$. The semigroup T_n is regular (exercise).

Regularity is equivalent to a condition which appears formally to be stronger:

Proposition

*If $a \in S$ is regular, then there exists $b \in S$ such that $aba = a$ and $bab = b$.***
Regularity

An element a of a semigroup S is regular if there exists $x \in S$ such that $axa = a$. The semigroup S is regular if all its elements are regular. Note that a group is regular, since we may choose $x = a^{-1}$. The semigroup T_n is regular (exercise).

Regularity is equivalent to a condition which appears formally to be stronger:

Proposition

If $a \in S$ is regular, then there exists $b \in S$ such that $aba = a$ and $bab = b$.

Proof.
Choose x such that $axa = a$, and set $b = xax$. Then
Regularity

An element a of a semigroup S is regular if there exists $x \in S$ such that $axa = a$. The semigroup S is regular if all its elements are regular. Note that a group is regular, since we may choose $x = a^{-1}$. The semigroup T_n is regular (exercise).

Regularity is equivalent to a condition which appears formally to be stronger:

Proposition

If $a \in S$ is regular, then there exists $b \in S$ such that $aba = a$ and $bab = b$.

Proof.

Choose x such that $axa = a$, and set $b = xax$. Then

$$aba = axaxa = axa = a,$$
Regularity

An element a of a semigroup S is regular if there exists $x \in S$ such that $axa = a$. The semigroup S is regular if all its elements are regular. Note that a group is regular, since we may choose $x = a^{-1}$. The semigroup T_n is regular (exercise).

Regularity is equivalent to a condition which appears formally to be stronger:

Proposition

If $a \in S$ is regular, then there exists $b \in S$ such that $aba = a$ and $bab = b$.

Proof.

Choose x such that $axa = a$, and set $b = xax$. Then

$$aba = axaxa = axa = a,$$

$$bab = xaxaxax = xaxax = xax = b.$$
An **idempotent** in a semigroup S is an element e such that $e^2 = e$. Note that, if $axa = a$, then ax and xa are idempotents. In a group, there is a unique idempotent, the identity. By contrast, it is possible for a non-trivial semigroup to be generated by its idempotents.
Idempotents

An **idempotent** in a semigroup S is an element e such that $e^2 = e$. Note that, if $axa = a$, then ax and xa are idempotents. In a group, there is a unique idempotent, the identity. By contrast, it is possible for a non-trivial semigroup to be generated by its idempotents.

Proposition

Let S be a finite semigroup, and $a \in S$. Then some power of a is an idempotent.
An idempotent in a semigroup S is an element e such that $e^2 = e$. Note that, if $axa = a$, then ax and xa are idempotents. In a group, there is a unique idempotent, the identity. By contrast, it is possible for a non-trivial semigroup to be generated by its idempotents.

Proposition

Let S be a finite semigroup, and $a \in S$. Then some power of a is an idempotent.

Proof.

Since S is finite, the powers of a are not all distinct: suppose that $a^m = a^{m+r}$ for some $m, r > 0$. Then $a^i = a^{i+tr}$ for all $i \geq m$ and $t \geq 1$; choosing i to be a multiple of r which is at least m, we see that $a^i = a^{2i}$, so a^i is an idempotent.
Idempotents

An idempotent in a semigroup S is an element e such that $e^2 = e$. Note that, if $axa = a$, then ax and xa are idempotents. In a group, there is a unique idempotent, the identity. By contrast, it is possible for a non-trivial semigroup to be generated by its idempotents.

Proposition

Let S be a finite semigroup, and $a \in S$. Then some power of a is an idempotent.

Proof.

Since S is finite, the powers of a are not all distinct: suppose that $a^m = a^{m+r}$ for some $m, r > 0$. Then $a^i = a^{i+tr}$ for all $i \geq m$ and $t \geq 1$; choosing i to be a multiple of r which is at least m, we see that $a^i = a^{2i}$, so a^i is an idempotent.

It follows that a finite monoid with a unique idempotent is a group. For the unique idempotent is the identity; and, if $a^i = 1$, then a has an inverse, namely a^{i-1}.
The semigroup S is an **inverse semigroup** if for each $a \in S$ there exists a unique $b \in S$ such that $aba = a$ and $bab = b$. We say that b is the (von Neumann) inverse of a.

Inverse semigroups
The semigroup S is an inverse semigroup if for each $a \in S$ there exists a unique $b \in S$ such that $aba = a$ and $bab = b$. We say that b is the (von Neumann) inverse of a.

The symmetric inverse semigroup $I(\Omega)$ is an inverse semigroup.
Inverse semigroups

The semigroup S is an inverse semigroup if for each $a \in S$ there exists a unique $b \in S$ such that $aba = a$ and $bab = b$. We say that b is the (von Neumann) inverse of a. The symmetric inverse semigroup $I(\Omega)$ is an inverse semigroup. In an inverse semigroup, the idempotents commute, and they form a semilattice under the order relation $e \leq f$ if $ef = fe = f$. In $I(\Omega)$, the semilattice of idempotents is isomorphic to the Boolean lattice of all subsets of Ω.
Analogues of Cayley’s Theorem

Theorem

An n-element semigroup is isomorphic to a sub-semigroup of T_{n+1}.
Analogues of Cayley’s Theorem

Theorem
An n-element semigroup is isomorphic to a sub-semigroup of T_{n+1}.

In Cayley’s theorem, we let the group act as the group of right multiplications of itself. For a semigroup, this action may not be faithful. So first we add an identity e to form a monoid. Now $ea = eb$ implies $a = b$ and all is well.
Theorem

An n-element semigroup is isomorphic to a sub-semigroup of T_{n+1}. In Cayley’s theorem, we let the group act as the group of right multiplications of itself. For a semigroup, this action may not be faithful. So first we add an identity e to form a monoid. Now $ea = eb$ implies $a = b$ and all is well.

A similar but slightly harder theorem holds for inverse semigroups:
Analogues of Cayley’s Theorem

Theorem
An n-element semigroup is isomorphic to a sub-semigroup of T_{n+1}. In Cayley’s theorem, we let the group act as the group of right multiplications of itself. For a semigroup, this action may not be faithful. So first we add an identity e to form a monoid. Now $ea = eb$ implies $a = b$ and all is well.

A similar but slightly harder theorem holds for inverse semigroups:

Theorem (Vagner–Preston Theorem)
An n-element inverse semigroup is isomorphic to a sub-semigroup of I_n.
Basics of transformation semigroups

Any map \(f : \Omega \rightarrow \Omega \) has an image

\[\text{Im}(f) = \{ xf : x \in \Omega \}, \]

and a kernel, the equivalence relation \(\equiv_f \) defined by

\[x \equiv_f y \iff xf = yf, \]

or the corresponding partition of \(\Omega \). (We usually refer to the partition when we speak about the kernel of \(f \), which is denoted \(\text{Ker}(f) \).) The rank \(\text{rank}(f) \) of \(f \) is the cardinality of the image, or the number of parts of the kernel.
Basics of transformation semigroups

Any map \(f : \Omega \rightarrow \Omega \) has an image

\[
\text{Im}(f) = \{xf : x \in \Omega\},
\]

and a kernel, the equivalence relation \(\equiv_f \) defined by

\[
x \equiv_f y \iff xf = yf,
\]

or the corresponding partition of \(\Omega \). (We usually refer to the partition when we speak about the kernel of \(f \), which is denoted \(\text{Ker}(f) \).) The \textbf{rank} \(\text{rank}(f) \) of \(f \) is the cardinality of the image, or the number of parts of the kernel.

Under composition, we clearly have

\[
\text{rank}(f_1f_2) \leq \min\{\text{rank}(f_1), \text{rank}(f_2)\},
\]

and so the set \(S_m = \{f \in S : \text{rank}(f) \leq m\} \) of elements of a transformation semigroup which have rank at most \(m \) is itself a transformation semigroup.
Suppose that f_1 and f_2 are transformations of rank r. The rank of $f_1 f_2$ is at most r. Equality holds if and only if Im(f_1) is a transversal for Ker(f_2), in the sense that it contains exactly one point from each part of the partition Ker(f_2). This combinatorial relation between subsets and partitions is crucial for what follows. Here is one simple consequence.
Idempotents in transformation semigroups

Suppose that f_1 and f_2 are transformations of rank r. The rank of f_1f_2 is at most r. Equality holds if and only if $\text{Im}(f_1)$ is a transversal for $\text{Ker}(f_2)$, in the sense that it contains exactly one point from each part of the partition $\text{Ker}(f_2)$. This combinatorial relation between subsets and partitions is crucial for what follows. Here is one simple consequence.

Proposition

Let f be a transformation of Ω, and suppose that $\text{Im}(f)$ is a transversal for $\text{Ker}(f)$. Then some power of f is an idempotent with rank equal to that of f.

For the restriction of f to its image is a permutation, and some power of this permutation is the identity.
Permutation groups and transformation semigroups

Let S be a transformation semigroup whose intersection with the symmetric group is a permutation group G. How do properties of G influence properties of S. In particular, what can we say if $S = \langle G, a \rangle$ for some non-permutation a?
Permutation groups and transformation semigroups

Let S be a transformation semigroup whose intersection with the symmetric group is a permutation group G. How do properties of G influence properties of S. In particular, what can we say if $S = \langle G, a \rangle$ for some non-permutation a?

Here is a sample theorem due to Araújo, Mitchell and Schneider.
Permutation groups and transformation semigroups

Let S be a transformation semigroup whose intersection with the symmetric group is a permutation group G. How do properties of G influence properties of S. In particular, what can we say if $S = \langle G, a \rangle$ for some non-permutation a?

Here is a sample theorem due to Araújo, Mitchell and Schneider.

Theorem

Let G be a permutation group on Ω, with $|\Omega| = n$. Suppose that, for any map f on Ω which is not a permutation, the semigroup $\langle G, f \rangle$ is regular. Then either G is the symmetric or alternating group on Ω, or one of the following occurs:

- $n = 5$, $G = C_5$, $C_5 \rtimes C_2$, or $C_5 \rtimes C_4$;
- $n = 6$, $G = PSL(2, 5)$ or $PGL(2, 5)$;
- $n = 7$, $G = AGL(1, 7)$;
- $n = 8$, $G = PGL(2, 7)$;
- $n = 9$, $G = PGL(2, 8)$ or $P\Gamma L(2, 8)$.