The independence numbers and the chromatic numbers of random subgraphs of Kneser’s graphs and their generalizations

Andrei Raigorodskii

Moscow Institute of Physics and Technology, Yandex, Moscow, Russia

Shanghai, China, 26.03.2017
The Erdős–Ko–Rado Theorem

Erdős–Ko–Rado, 1961

Let \([n] = \{1, 2, \ldots, n\}\). Assume that \(\mathcal{F} \subset \binom{[n]}{r}\) with \(r \leq n/2\) is such a collection of \(r\)-subsets that any two of them intersect. Then \(|\mathcal{F}| \leq \binom{n-1}{r-1}\).
The Erdős–Ko–Rado Theorem

Erdős–Ko–Rado, 1961

Let $[n] = \{1, 2, \ldots, n\}$. Assume that $\mathcal{F} \subset \binom{[n]}{r}$ with $r \leq n/2$ is such a collection of r-subsets that any two of them intersect. Then $|\mathcal{F}| \leq \binom{n-1}{r-1}$.

Of course the bound $\binom{n-1}{r-1}$ is attained on a “star”.
The Erdős–Ko–Rado Theorem

Erdős–Ko–Rado, 1961

Let \([n] = \{1, 2, \ldots, n\}\). Assume that \(\mathcal{F} \subset \binom{[n]}{r}\) with \(r \leq n/2\) is such a collection of \(r\)-subsets that any two of them intersect. Then \(|\mathcal{F}| \leq \binom{n-1}{r-1}\).

Of course the bound \(\binom{n-1}{r-1}\) is attained on a “star”.

Hilton–Milner, 1967

Let \([n] = \{1, 2, \ldots, n\}\). Assume that \(\mathcal{F} \subset \binom{[n]}{r}\) with \(r \leq n/2\) is such a collection of \(r\)-subsets that any two of them intersect and \(\mathcal{F}\) is not a star. Then \(|\mathcal{F}| \leq \binom{n-1}{r-1} - \binom{n-r-1}{r-1} + 1\).
The Erdős–Ko–Rado Theorem

Erdős–Ko–Rado, 1961

Let $[n] = \{1, 2, \ldots, n\}$. Assume that $\mathcal{F} \subset \binom{[n]}{r}$ with $r \leq n/2$ is such a collection of r-subsets that any two of them intersect. Then $|\mathcal{F}| \leq \binom{n-1}{r-1}$.

Of course the bound $\binom{n-1}{r-1}$ is attained on a “star”.

Hilton–Milner, 1967

Let $[n] = \{1, 2, \ldots, n\}$. Assume that $\mathcal{F} \subset \binom{[n]}{r}$ with $r \leq n/2$ is such a collection of r-subsets that any two of them intersect and \mathcal{F} is not a star. Then $|\mathcal{F}| \leq \binom{n-1}{r-1} - \binom{n-r-1}{r-1} + 1$.

It’s a famous stability result.
The Erdős–Ko–Rado Theorem

Erdős–Ko–Rado, 1961

Let \([n] = \{1, 2, \ldots, n\}\). Assume that \(\mathcal{F} \subset \binom{[n]}{r}\) with \(r \leq n/2\) is such a collection of \(r\)-subsets that any two of them intersect. Then \(|\mathcal{F}| \leq \binom{n-1}{r-1}\).

Of course the bound \(\binom{n-1}{r-1}\) is attained on a “star”.

Hilton–Milner, 1967

Let \([n] = \{1, 2, \ldots, n\}\). Assume that \(\mathcal{F} \subset \binom{[n]}{r}\) with \(r \leq n/2\) is such a collection of \(r\)-subsets that any two of them intersect and \(\mathcal{F}\) is not a star. Then

\[|\mathcal{F}| \leq \binom{n-1}{r-1} - \binom{n-r-1}{r-1} + 1.\]

It’s a famous stability result.

Other stability results were proposed by Balogh, Bohman, Mubayi et al. using the notion of a random hypergraph.
A graph-theoretic point of view
The \textit{independence number} $\alpha(G)$ of a graph G is the maximum number of pairwise disjoint vertices of G.
A graph-theoretic point of view

The *independence number* \(\alpha(G) \) of a graph \(G \) is the maximum number of pairwise disjoint vertices of \(G \).

Kneser’s graph

\[
KG_{n,r} = (V, E), \text{ where } V = \binom{[n]}{r},
\]

\[
E = \{(A, B): A \cap B = \emptyset\}.
\]
A graph-theoretic point of view

The *independence number* $\alpha(G)$ of a graph G is the maximum number of pairwise disjoint vertices of G.

Kneser’s graph

$$KG_{n,r} = (V, E), \text{ where } V = \binom{[n]}{r},$$

$$E = \{(A, B) : A \cap B = \emptyset\}.$$

Erdős–Ko–Rado

If $r \leq n/2$, then $\alpha(KG_{n,r}) = \binom{n-1}{r-1}$.
A graph-theoretic point of view

The *independence number* $\alpha(G)$ of a graph G is the maximum number of pairwise disjoint vertices of G.

Knéser’s graph

$$KG_{n,r} = (V, E), \text{ where } V = \binom{n}{r},$$

$$E = \{(A, B) : A \cap B = \emptyset\}.$$

Erdős–Ko–Rado

If $r \leq n/2$, then $\alpha(KG_{n,r}) = \binom{n-1}{r-1}$.

The *chromatic number* $\chi(G)$ of a graph is the smallest number of colors needed to color all the vertices so that no two vertices of the same color are joined by an edge.
A graph-theoretic point of view

The *independence number* \(\alpha(G) \) of a graph \(G \) is the maximum number of pairwise disjoint vertices of \(G \).

Kneser’s graph

\[KG_{n,r} = (V, E), \text{ where } V = \binom{[n]}{r}, \]
\[E = \{(A, B) : A \cap B = \emptyset\}. \]

Erdős–Ko–Rado

If \(r \leq n/2 \), then \(\alpha(KG_{n,r}) = \binom{n-1}{r-1} \).

The *chromatic number* \(\chi(G) \) of a graph is the smallest number of colors needed to color all the vertices so that no two vertices of the same color are joined by an edge.

Lovász, 1978

If \(r \leq n/2 \), then \(\chi(KG_{n,r}) = n - 2r + 2 \).
Random subgraphs of Kneser’s graphs
Random subgraphs of Kneser’s graphs

Let \(p \in [0, 1] \). Then \(KG_{n,r,p} \) is obtained from \(KG_{n,r} \) by keeping any of the edges of Kneser’s graph with probability \(p \).
Random subgraphs of Kneser’s graphs

Let \(p \in [0, 1] \). Then \(KG_{n,r,p} \) is obtained from \(KG_{n,r} \) by keeping any of the edges of Kneser’s graph with probability \(p \).

\textbf{Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013}

If \(r \geq 2 \) is fixed and \(n \to \infty \), then w.h.p. \(\alpha(KG_{n,r,1/2}) \sim \binom{n-1}{r-1} \).
Random subgraphs of Kneser’s graphs

Let $p \in [0, 1]$. Then $KG_{n,r,p}$ is obtained from $KG_{n,r}$ by keeping any of the edges of Kneser’s graph with probability p.

Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013

If $r \geq 2$ is fixed and $n \to \infty$, then w.h.p. $\alpha(KG_{n,r,1/2}) \sim \binom{n-1}{r-1}$.

That’s another kind of stability. Moreover
Random subgraphs of Kneser’s graphs

Let \(p \in [0, 1] \). Then \(KG_{n,r,p} \) is obtained from \(KG_{n,r} \) by keeping any of the edges of Kneser’s graph with probability \(p \).

Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013

If \(r \geq 2 \) is fixed and \(n \to \infty \), then w.h.p. \(\alpha(KG_{n,r,1/2}) \sim \binom{n-1}{r-1} \).

That’s another kind of stability. Moreover

Bollobás, Narayanan, A.M., 2016

Fix a real number \(\varepsilon > 0 \) and let \(r = r(n) \) be a natural number such that \(2 \leq r(n) = o(n^{1/3}) \). Let \(p_c(n, r) = ((r + 1) \log n - r \log r)/(\binom{n-1}{r-1}) \). Then as \(n \to \infty \),

\[
\mathbb{P} \left(\alpha(KG_{n,r,p}) = \binom{n-1}{r-1} \right) \to \begin{cases} 1 & \text{if } p \geq (1 + \varepsilon)p_c(n, r) \\ 0 & \text{if } p \leq (1 - \varepsilon)p_c(n, r). \end{cases}
\]
Random subgraphs of Kneser’s graphs

Let \(p \in [0, 1] \). Then \(KG_{n,r,p} \) is obtained from \(KG_{n,r} \) by keeping any of the edges of Kneser’s graph with probability \(p \).

Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013

If \(r \geq 2 \) is fixed and \(n \to \infty \), then w.h.p. \(\alpha(KG_{n,r,1/2}) \sim \binom{n-1}{r-1} \).

That’s another kind of stability. Moreover

Bollobás, Narayananan, A.M., 2016

Fix a real number \(\varepsilon > 0 \) and let \(r = r(n) \) be a natural number such that \(2 \leq r(n) = o(n^{1/3}) \). Let \(p_c(n, r) = ((r + 1) \log n - r \log r)/(\binom{n-1}{r-1}) \). Then as \(n \to \infty \),

\[
P \left(\alpha(KG_{n,r,p}) = \binom{n-1}{r-1} \right) \to \begin{cases} 1 & \text{if } p \geq (1 + \varepsilon) p_c(n, r) \\ 0 & \text{if } p \leq (1 - \varepsilon) p_c(n, r). \end{cases}
\]

Successively improved by Das and Tran.
Random subgraphs of Kneser’s graphs
Random subgraphs of Kneser’s graphs

Very simply the chromatic number of $K_{G_{n,r}}$ is not so stable as the independence number: w.h.p. even

$$\chi(K_{G_{n,r,1/2}}) < n - 2r + 2 = \chi(K_{G_{n,r}}).$$

However
Random subgraphs of Kneser’s graphs

Very simply the chromatic number of $KG_{n,r}$ is not so stable as the independence number: w.h.p. even

$$\chi(KG_{n,r,1/2}) < n - 2r + 2 = \chi(KG_{n,r}).$$

However

Kupavskii, 2016

For many different n, r, p, w.h.p.

$$\chi(KG_{n,r,p}) \sim \chi(KG_{n,r}) = n - 2r + 2.$$
Random subgraphs of Kneser’s graphs

Very simply the chromatic number of $KG_{n,r}$ is not so stable as the independence number: w.h.p. even

$$\chi(KG_{n,r,1/2}) < n - 2r + 2 = \chi(KG_{n,r}).$$

However

Kupavskii, 2016

For many different n, r, p, w.h.p.

$$\chi(KG_{n,r,p}) \sim \chi(KG_{n,r}) = n - 2r + 2.$$

For example, if $g(n)$ is any growing function and r is arbitrary in the range between 2 and $\frac{n}{2} - g(n)$, then for any fixed p,

$$\chi(KG_{n,r,p}) \sim \chi(KG_{n,r}).$$
An important generalization
An important generalization

Let $G(n, r, s)$ be a graph whose vertices are all the r-subsets of $[n]$ and whose edges are all the vertex pairs with intersection exactly equal to s.
An important generalization

Let $G(n, r, s)$ be a graph whose vertices are all the r-subsets of $[n]$ and whose edges are all the vertex pairs with intersection exactly equal to s. For example, $G(n, r, 0) = KG_{n,r}$, and, more specifically, $G(n, 1, 0) = K_n$ — complete graph.
An important generalization

Let $G(n, r, s)$ be a graph whose vertices are all the r-subsets of $[n]$ and whose edges are all the vertex pairs with intersection exactly equal to s. For example, $G(n, r, 0) = KG_{n,r}$, and, more specifically, $G(n, 1, 0) = K_n$ — complete graph. Other $G(n, r, s)$ are well motivated by coding theory, Ramsey theory as well Borsuk’s and Nelson–Hadwiger’s problems in combinatorial geometry.
An important generalization

Let $G(n, r, s)$ be a graph whose vertices are all the r-subsets of $[n]$ and whose edges are all the vertex pairs with intersection exactly equal to s. For example, $G(n, r, 0) = KG_{n,r}$, and, more specifically, $G(n, 1, 0) = K_n$ — complete graph. Other $G(n, r, s)$ are well motivated by coding theory, Ramsey theory as well Borsuk’s and Nelson–Hadwiger’s problems in combinatorial geometry. Many results concerning $\alpha(G(n, r, s))$. The most important ones follow.
An important generalization

Let $G(n, r, s)$ be a graph whose vertices are all the r-subsets of $[n]$ and whose edges are all the vertex pairs with intersection exactly equal to s. For example, $G(n, r, 0) = KG_{n,r}$, and, more specifically, $G(n, 1, 0) = K_n$ — complete graph.

Other $G(n, r, s)$ are well motivated by coding theory, Ramsey theory as well Borsuk’s and Nelson–Hadwiger’s problems in combinatorial geometry. Many results concerning $\alpha(G(n, r, s))$. The most important ones follow.

Frankl, Füredi, 1985

For any fixed r, s, there exist $c(r, s), d(r, s)$ such that

$$c(r, s)n^{\max\{s, r-s-1\}} \leq \alpha(G(n, r, s)) \leq d(r, s)n^{\max\{s, r-s-1\}}.$$
An important generalization

Let $G(n, r, s)$ be a graph whose vertices are all the r-subsets of $[n]$ and whose edges are all the vertex pairs with intersection exactly equal to s. For example, $G(n, r, 0) = KG_{n,r}$, and, more specifically, $G(n, 1, 0) = K_n$ — complete graph.

Other $G(n, r, s)$ are well motivated by coding theory, Ramsey theory as well Borsuk’s and Nelson–Hadwiger’s problems in combinatorial geometry. Many results concerning $\alpha(G(n, r, s))$. The most important ones follow.

Frankl, Füredi, 1985

For any fixed r, s, there exist $c(r, s), d(r, s)$ such that

$$c(r, s)n^{\max\{s, r-s-1\}} \leq \alpha(G(n, r, s)) \leq d(r, s)n^{\max\{s, r-s-1\}}.$$

Frankl, Füredi, 1985

For any fixed r, s such that $r > 2s + 1$,

$$\alpha(G(n, r, s)) = \binom{n-s-1}{r-s-1} = \Theta(n^{r-s-1}).$$
Main result
Main result

We consider $G_p(n, r, s)$ — random subgraphs of the graphs $G(n, r, s)$.
Main result

We consider $G_p(n, r, s)$ — random subgraphs of the graphs $G(n, r, s)$.

Pyaderkin, A.M., 2016

Let r, s be fixed and $\varepsilon > 0$. There exists a $\delta = \delta(r, s, \varepsilon)$ such that w.h.p.

$$\alpha(G_{1/2}(n, r, s)) \leq (1 + \varepsilon)\alpha(G(n, r, s)) + \delta \binom{n}{s} \log_2 n.$$
Main result

We consider $G_p(n, r, s)$ — random subgraphs of the graphs $G(n, r, s)$.

Pyaderkin, A.M., 2016

Let r, s be fixed and $\varepsilon > 0$. There exists a $\delta = \delta(r, s, \varepsilon)$ such that w.h.p.

$$\alpha(G_{1/2}(n, r, s)) \leq (1 + \varepsilon)\alpha(G(n, r, s)) + \delta \binom{n}{s} \log_2 n.$$

Let $r \leq 2s + 1$. Then due to Frankl and Füredi we have $\alpha(G(n, r, s)) = \Theta(n^s)$.
Main result

We consider $G_p(n, r, s)$ — random subgraphs of the graphs $G(n, r, s)$.

Pyaderkin, A.M., 2016

Let r, s be fixed and $\varepsilon > 0$. There exists a $\delta = \delta(r, s, \varepsilon)$ such that w.h.p.

$$\alpha(G_{1/2}(n, r, s)) \leq (1 + \varepsilon)\alpha(G(n, r, s)) + \delta \binom{n}{s} \log_2 n.$$

Let $r \leq 2s + 1$. Then due to Frankl and Füredi we have $\alpha(G(n, r, s)) = \Theta(n^s)$.

At the same time, $\binom{n}{s} = \Theta(n^s)$. Thus, w.h.p. we have $\alpha(G_{1/2}(n, r, s)) = O(n^s \log_2 n)$.
Main result

We consider \(G_p(n, r, s) \) — random subgraphs of the graphs \(G(n, r, s) \).

Pyaderkin, A.M., 2016

Let \(r, s \) be fixed and \(\varepsilon > 0 \). There exists a \(\delta = \delta(r, s, \varepsilon) \) such that w.h.p.

\[
\alpha(G_{1/2}(n, r, s)) \leq (1 + \varepsilon)\alpha(G(n, r, s)) + \delta \binom{n}{s} \log_2 n.
\]

Let \(r \leq 2s + 1 \). Then due to Frankl and Füredi we have \(\alpha(G(n, r, s)) = \Theta(n^s) \).

At the same time, \(\binom{n}{s} = \Theta(n^s) \). Thus, w.h.p. we have

\[
\alpha(G_{1/2}(n, r, s)) = O(n^s \log_2 n).
\]

One can easily show using the first moment method that w.h.p.

\[
\alpha(G_{1/2}(n, r, s)) = \Omega(n^s \log_2 n),
\]

which means that w.h.p.

\[
\alpha(G_{1/2}(n, r, s)) = \Theta(n^s \log_2 n), \quad r \leq 2s + 1.
\]
Main result

We consider $G_p(n, r, s)$ — random subgraphs of the graphs $G(n, r, s)$.

Pyaderkin, A.M., 2016

Let r, s be fixed and $\varepsilon > 0$. There exists a $\delta = \delta(r, s, \varepsilon)$ such that w.h.p.

$$\alpha(G_{1/2}(n, r, s)) \leq (1 + \varepsilon)\alpha(G(n, r, s)) + \delta\binom{n}{s} \log_2 n.$$

Let $r \leq 2s + 1$. Then due to Frankl and Füredi we have $\alpha(G(n, r, s)) = \Theta(n^s)$.

At the same time, $\binom{n}{s} = \Theta(n^s)$. Thus, w.h.p. we have $\alpha(G_{1/2}(n, r, s)) = \mathcal{O}(n^s \log_2 n)$.

One can easily show using the first moment method that w.h.p. $\alpha(G_{1/2}(n, r, s)) = \Omega(n^s \log_2 n)$, which means that w.h.p.

$$\alpha(G_{1/2}(n, r, s)) = \Theta(n^s \log_2 n), \quad r \leq 2s + 1.$$

By the way, this agrees perfectly with the results concerning $G(n, p) = G_p(n, 1, 0)$.

A. Raigorodskii (MIPT, YND)
Main result: continuation
Main result: continuation

Now let $r > 2s + 1$. Once again, Frankl and Füredi tell us that

$$\alpha(G(n, r, s)) = \binom{n - s - 1}{r - s - 1}.$$
Now let $r > 2s + 1$. Once again, Frankl and Füredi tell us that

$$\alpha(G(n, r, s)) = \binom{n-s-1}{r-s-1}. $$

But this time $(\binom{n}{s}) = o\left(\binom{n-s-1}{r-s-1}\right)$, so that we get w.h.p.

$$\alpha(G_{1/2}(n, r, s)) \leq (1 + o(1))\binom{n-s-1}{r-s-1},$$

which means that w.h.p.

$$\alpha(G_{1/2}(n, r, s)) \sim \alpha(G(n, r, s)).$$

Asymptotic stability!
Main result: continuation

Now let $r > 2s + 1$. Once again, Frankl and Füredi tell us that

$$\alpha(G(n, r, s)) = \binom{n-s-1}{r-s-1}.$$

But this time \(\binom{n}{s} = o\left(\binom{n-s-1}{r-s-1}\right)\), so that we get w.h.p.

$$\alpha(G_{1/2}(n, r, s)) \leq (1 + o(1))\binom{n-s-1}{r-s-1},$$

which means that w.h.p.

$$\alpha(G_{1/2}(n, r, s)) \sim \alpha(G(n, r, s)).$$

Asymptotic stability!

Local conclusion

If $r \leq 2s + 1$, then the independence number of the random graph $G_{1/2}(n, r, s)$ behaves like the independence number of the Erdős–Rényi random graph: w.h.p. it increases log times when compared to the initial independence number. Otherwise, it is stable like its analog for Kneser’s graph.
Main result: more stability?
For Kneser’s graphs, we had complete stability. However, for other r, s with $r > 2s + 1$, we got only asymptotic stability. Is it essential or just a technical problem?
Main result: more stability?

For Kneser’s graphs, we had complete stability. However, for other r, s with $r > 2s + 1$, we got only asymptotic stability. Is it essential or just a technical problem?

For $s = 0$, we had Hilton–Milner theorem that roughly told us: “If an independent set is not a star, then it is many times smaller than the stars of maximal sizes.”
Main result: more stability?

For Kneser’s graphs, we had complete stability. However, for other \(r, s \) with \(r > 2s + 1 \), we got only asymptotic stability. Is it essential or just a technical problem?

For \(s = 0 \), we had Hilton–Milner theorem that roughly told us: “If an independent set is not a star, then it is many times smaller than the stars of maximal sizes.”

Now, we don’t have such results. Moreover, they are not true! Let’s take \(G(n, 4, 1) \). The Frankl and Wilson linear algebra method gives the bound

\[
\alpha(G(n, 4, 1)) \leq \binom{n}{2} \sim \frac{n^2}{2}.
\]
Main result: more stability?

For Kneser’s graphs, we had complete stability. However, for other r, s with $r > 2s + 1$, we got only asymptotic stability. Is it essential or just a technical problem?

For $s = 0$, we had Hilton–Milner theorem that roughly told us: “If an independent set is not a star, then it is many times smaller than the stars of maximal sizes.”

Now, we don’t have such results. Moreover, they are not true! Let’s take $G(n, 4, 1)$. The Frankl and Wilson linear algebra method gives the bound

$$\alpha(G(n, 4, 1)) \leq \binom{n}{2} \sim \frac{n^2}{2}.$$

On the other hand, there are two completely different constructions of independent sets with cardinality of order n^2.
Main result: more stability!
Main result: more stability!

Construction 1 is just a kind of a star: fix 2 elements of $[n]$ and take all the 4-tuples that contain them. Here we have $\sim \frac{n^2}{2}$ sets.
Main result: more stability!

Construction 1 is just a kind of a star: fix 2 elements of \([n]\) and take all the 4-tuples that contain them. Here we have \(\sim \frac{n^2}{2}\) sets.

Construction 2 is as follows. Divide \([n]\) into consecutive \(\left\lfloor \frac{n}{2} \right\rfloor\) pairs of elements. Then take all the 4-tuples formed by any two such pairs. This way we get \(\sim \frac{n^2}{8}\) sets.
Main result: more stability!

Construction 1 is just a kind of a star: fix 2 elements of \([n]\) and take all the 4-tuples that contain them. Here we have \(\sim \frac{n^2}{2}\) sets.

Construction 2 is as follows. Divide \([n]\) into consecutive \(\left\lfloor \frac{n}{2} \right\rfloor\) pairs of elements. Then take all the 4-tuples formed by any two such pairs. This way we get \(\sim \frac{n^2}{8}\) sets.

And one can combine the two constructions!
Construction 1 is just a kind of a star: fix 2 elements of \([n]\) and take all the 4-tuples that contain them. Here we have \(\sim \frac{n^2}{2}\) sets.

Construction 2 is as follows. Divide \([n]\) into consecutive \(\left\lfloor \frac{n}{2} \right\rfloor\) pairs of elements. Then take all the 4-tuples formed by any two such pairs. This way we get \(\sim \frac{n^2}{8}\) sets.

And one can combine the two constructions!
Main result: more stability!

Construction 1 is just a kind of a star: fix 2 elements of \([n]\) and take all the 4-tuples that contain them. Here we have \(\sim \frac{n^2}{2}\) sets.

Construction 2 is as follows. Divide \([n]\) into consecutive \(\left\lfloor \frac{n}{2} \right\rfloor\) pairs of elements. Then take all the 4-tuples formed by any two such pairs. This way we get \(\sim \frac{n^2}{8}\) sets.

And one can combine the two constructions!

Nevertheless

Pyaderkin, A.M., 2016

Let \(r > 3\) be fixed. Then w.h.p.

\[
\alpha(G_{1/2}(n, r, 1)) = \alpha(G(n, r, 1)).
\]
Main result: more stability!

Construction 1 is just a kind of a star: fix 2 elements of \([n]\) and take all the 4-tuples that contain them. Here we have \(\sim \frac{n^2}{2}\) sets.

Construction 2 is as follows. Divide \([n]\) into consecutive \(\left\lfloor \frac{n}{2} \right\rfloor\) pairs of elements. Then take all the 4-tuples formed by any two such pairs. This way we get \(\sim \frac{n^2}{8}\) sets.

And one can combine the two constructions!

Nevertheless

Pyaderkin, A.M., 2016

Let \(r > 3\) be fixed. Then w.h.p.

\[
\alpha(G_{1/2}(n, r, 1)) = \alpha(G(n, r, 1)).
\]

It is very important to emphasize here that the exact value of \(\alpha(G(n, r, 1))\) is unknown for all values of \(r\)!
One more graph
One more graph

Theorem (Nagy, 1972).

If $n \equiv 0 \pmod{4}$, then $\alpha(G(n, 3, 1)) = n$. If $n \equiv 1 \pmod{4}$, then $\alpha(G(n, 3, 1)) = n - 1$. If $n \equiv 2, 3 \pmod{4}$, then $\alpha(G(n, 3, 1)) = n - 2$.

A. Raigorodskii (MIPT, YND)
Theorem (Nagy, 1972).

If \(n \equiv 0 \pmod{4} \), then \(\alpha(G(n, 3, 1)) = n \). If \(n \equiv 1 \pmod{4} \), then \(\alpha(G(n, 3, 1)) = n - 1 \). If \(n \equiv 2, 3 \pmod{4} \), then \(\alpha(G(n, 3, 1)) = n - 2 \).

Theorem (Balogh, Kostochka, A.M., 2012).

If \(n = 2^k \), then \(\chi(G(n, 3, 1)) = (n - 1)(n - 2)/6 \).
Theorem (Nagy, 1972).

If \(n \equiv 0 \pmod{4} \), then \(\alpha(G(n, 3, 1)) = n \). If \(n \equiv 1 \pmod{4} \), then \(\alpha(G(n, 3, 1)) = n - 1 \). If \(n \equiv 2, 3 \pmod{4} \), then \(\alpha(G(n, 3, 1)) = n - 2 \).

Theorem (Balogh, Kostochka, A.M., 2012).

If \(n = 2^k \), then \(\chi(G(n, 3, 1)) = (n - 1)(n - 2)/6 \).

Theorem (Pyaderkin, A.M., 2016).

W.h.p.

\[\alpha(G_{1/2}(n, 3, 1)) \sim 2n \log_2 n. \]