Locating pairs of vertices on Hamiltonian cycles

Weihua He
joint work with Hao Li, Qiang Sun

Department of Applied Mathematics, Guangdong University of Technology
Outline

1. The Enomoto conjecture
2. Szemerédi’s Regularity Lemma
3. Sketch of the proof
4. The Faudree-Li conjecture
5. Further works
1. The Enomoto conjecture
2. Szemerédi’s Regularity Lemma
3. Sketch of the proof
4. The Faudree-Li conjecture
5. Further works
Hamiltonian cycle

- **Graph**: $G = (V(G), E(G))$.
- **Hamiltonian cycle**: a cycle visits each vertex exactly once.

- **Hamiltonian problem**: determining whether a Hamiltonian cycle exists in a given graph.
Dirac’s theorem

Theorem (Dirac, 1952)

Let G be a graph with $n \geq 3$ vertices. If $\delta(G) \geq \frac{n}{2}$, then G is Hamiltonian.

Theorem (Ore, 1960)

Let G be a graph with $n \geq 3$ vertices. If $\sigma_2(G) \geq n$ (i.e. $\deg(x) + \deg(y) \geq n$ for any pair of nonadjacent vertices x and y in G), then G is Hamiltonian.
Dirac’s theorem

Theorem (Dirac, 1952)

Let G be a graph with $n \geq 3$ vertices. If $\delta(G) \geq \frac{n}{2}$, then G is Hamiltonian.

Theorem (Ore, 1960)

Let G be a graph with $n \geq 3$ vertices. If $\sigma_2(G) \geq n$ (i.e. $\deg(x) + \deg(y) \geq n$ for any pair of nonadjacent vertices x and y in G), then G is Hamiltonian.
Theorem (Kaneko and Yoshimoto, 2001)

Let G be a graph of order n with $\delta(G) \geq \frac{n}{2}$, and let d be a positive integer such that $d \leq \frac{n}{4}$. Then, for any vertex subset S with $|S| \leq \frac{n}{2d}$, there is a Hamiltonian cycle C such that $\text{dist}_C(u, v) \geq d$ for any $u, v \in S$.
Sárközy and Selkow showed that almost all of the distances between successive pairs of S can be specified almost exactly.

Theorem (Sárközy and Selkow, 2008)

There are $\omega, n_0 > 0$ such that if G is a graph with $\delta(G) \geq \frac{n}{2}$ on $n \geq n_0$ vertices, d is an arbitrary integer with $3 \leq d \leq \frac{\omega n}{2}$ and S is an arbitrary subset of $V(G)$ with $2 \leq |S| = k \leq \frac{\omega n}{2}$, then for every sequence of integers with $3 \leq d_i \leq d$, and $1 \leq i \leq k - 1$, there is a Hamiltonian cycle C of G and an ordering of the vertices of S, $a_1, a_2, ..., a_k$, such that the vertices of S are encountered in this order on C and we have $|\text{dist}_C(a_i, a_{i+1}) - d_i| \leq 1$, for all but one $1 \leq i \leq k - 1$.
Locating pairs of vertices on Hamiltonian cycles

<table>
<thead>
<tr>
<th>Conjecture (Enomoto)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If G is a graph of order $n \geq 3$ and $\delta(G) \geq \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = \lfloor \frac{n}{2} \rfloor$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conjecture (Faudree and Li, 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If G is a graph of order $n \geq 3$ and $\delta(G) \geq \frac{n}{2} + 1$, then for any pair of vertices x, y in G and any integer $2 \leq k \leq \frac{n}{2}$, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = k$.</td>
</tr>
</tbody>
</table>
Conjecture (Enomoto)

If G is a graph of order $n \geq 3$ and $\delta(G) \geq \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = \left\lfloor \frac{n}{2} \right\rfloor$.

Conjecture (Faudree and Li, 2012)

If G is a graph of order $n \geq 3$ and $\delta(G) \geq \frac{n}{2} + 1$, then for any pair of vertices x, y in G and any integer $2 \leq k \leq \frac{n}{2}$, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = k$.
The degree condition is sharp.

Example 1: there is no Hamiltonian cycle such that x and y have distance $\frac{n}{2}$.

Figure: $2K_{\frac{n}{2}-1} + K_2$
The degree condition is sharp.

Example 2: x and y will be at distance $\frac{n}{2}$ in any Hamiltonian cycle of the graph.

Figure: $2K_{\frac{n}{2}-1} + K_2$
Theorem (Faudree and Li, 2012)

If p is a positive integer with $2 \leq p \leq \frac{n}{2}$ and G is a graph of order n with $\delta(G) \geq \frac{n+p}{2}$, then for any pair of vertices x and y in G, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = k$ for any $2 \leq k \leq p$.

Corollary (Faudree and Li, 2012)

If G is a graph of order n with $\delta(G) \geq \lfloor \frac{3n}{4} \rfloor$, then for any pair of vertices x and y of G and any positive integer $2 \leq k \leq \lfloor \frac{n}{2} \rfloor$, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = k$.
Locating pairs of vertices on Hamiltonian cycles

Theorem (Faudree and Li, 2012)

If p is a positive integer with $2 \leq p \leq \frac{n}{2}$ and G is a graph of order n with $\delta(G) \geq \frac{n+p}{2}$, then for any pair of vertices x and y in G, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = k$ for any $2 \leq k \leq p$.

Corollary (Faudree and Li, 2012)

If G is a graph of order n with $\delta(G) \geq \left\lfloor \frac{3n}{4} \right\rfloor$, then for any pair of vertices x and y of G and any positive integer $2 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor$, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = k$.
Our result

Theorem (He, Li and Sun, 2015)

There exists a positive integer n_0 such that for all $n \geq n_0$, if G is a graph of order n with $\delta(G) \geq \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = \left\lfloor \frac{n}{2} \right\rfloor$.
1. The Enomoto conjecture
2. Szemerédi’s Regularity Lemma
3. Sketch of the proof
4. The Faudree-Li conjecture
5. Further works
Density: Let G be a graph, for any two disjoint vertex sets X and Y of G. The density of the pair (X, Y) is the ratio
$$d'(X, Y) := \frac{e(X, Y)}{|X||Y|}.$$

ϵ-regularity: Let $\epsilon > 0$, the pair (X, Y) is called ϵ-regular if for every $A \subseteq X$ and $B \subseteq Y$ such that $|A| > \epsilon |X|$ and $|B| > \epsilon |Y|$ we have $|d(A, B) - d(X, Y)| < \epsilon$.

Super-regularity: Let $\delta > 0$, the pair (X, Y) is called (ϵ, δ)-super-regular if it is ϵ-regular, $\deg_Y(x) > \delta |Y|$ for all $x \in X$ and $\deg_X(y) > \delta |X|$ for all $y \in Y$.

Lemma (Regularity Lemma-Degree Form)

For every $\epsilon > 0$ and every integer m_0 there is an $M_0 = M_0(\epsilon, m_0)$ such that if $G = (V, E)$ is any graph on at least M_0 vertices and $d \in [0, 1]$ is any real number, then there is a partition of the vertex set V into $l + 1$ clusters V_0, V_1, \ldots, V_l, and there is a subgraph $G' = (V, E')$ with the following properties:

1. $m_0 \leq l \leq M_0$;
2. $|V_0| \leq \epsilon|V|$, and V_i ($1 \leq i \leq l$) are of the same size L;
3. $\deg_{G'}(v) > \deg_G(v) - (d + \epsilon)|V|$ for all $v \in V$;
4. $G'[V_i] = \emptyset$ (i.e. V_i is an independant set in G') for all i;
5. each pair (V_i, V_j), $1 \leq i < j \leq l$, is ϵ-regular, each with a density 0 or exceeding d.

Weihua He (GDUT)
Regularity lemma

G → G'
- **Arithmetic progression of length** k: a set of integers of the form

\[\{a, a + d, a + 2d, \ldots, a + (k - 1)d\} \].

Conjecture (Erdős, Turán, 1936)

If the sum of reciprocals of a set A of positive integers diverges (i.e. $\sum_{n \in A} \frac{1}{n} = \infty$), then that A contains arbitrarily long arithmetic progressions.

Theorem (Szemerédi’s Theorem, 1975)

For any integer $k \geq 1$ and $\delta > 0$ there is an integer $N = N(k, \delta)$ such that any subset $S \subseteq \{1, \ldots, N\}$ with $|S| \geq \delta N$ contains an arithmetic progression of length k.
Conjecture (Nash-Williams, 1971)

Let G be a d-regular graph on at most $2d$ vertices. Then G contains $\left\lfloor \frac{d}{2} \right\rfloor$ edge-disjoint Hamiltonian cycles.

Theorem (Christofides, Kühn and Osthus, 2012)

For every $\alpha > 0$ there is an integer n_0 so that every d-regular graph on $n \geq n_0$ vertices with $d \geq \left(\frac{1}{2} + \alpha\right)n$ contains at least $\frac{d-\alpha n}{2}$ edge-disjoint Hamiltonian cycles.
Conjecture (Nash-Williams, 1971)

Let G be a d-regular graph on at most $2d$ vertices. Then G contains $\left\lfloor \frac{d}{2} \right\rfloor$ edge-disjoint Hamiltonian cycles.

Theorem (Christofides, Kühn and Osthus, 2012)

For every $\alpha > 0$ there is an integer n_0 so that every d-regular graph on $n \geq n_0$ vertices with $d \geq \left(\frac{1}{2} + \alpha \right) n$ contains at least $\frac{d-\alpha n}{2}$ edge-disjoint Hamiltonian cycles.
A vertex-transitive graph: a graph G such that, given any two vertices v_1 and v_2 of G, there is some automorphism $f : V(G) \rightarrow V(G)$ such that $f(v_1) = v_2$.

Conjecture (Lovász, 1970)

Every connected vertex-transitive graph has a Hamiltonian path.

Theorem (Christofides, Hladký and Máthé, 2014)

For every $\alpha > 0$ there exists an n_0 such that every connected vertex-transitive graph on $n \geq n_0$ vertices with minimum degree at least αn contains a Hamiltonian cycle.
A vertex-transitive graph: a graph G such that, given any two vertices v_1 and v_2 of G, there is some automorphism $f : V(G) \rightarrow V(G)$ such that $f(v_1) = v_2$.

Conjecture (Lovász, 1970)
Every connected vertex-transitive graph has a Hamiltonian path.

Theorem (Christofides, Hladký and Máthé, 2014)
For every $\alpha > 0$ there exists an n_0 such that every connected vertex-transitive graph on $n \geq n_0$ vertices with minimum degree at least αn contains a Hamiltonian cycle.
Outline

1. The Enomoto conjecture
2. Szemerédi’s Regularity Lemma
3. Sketch of the proof
4. The Faudree-Li conjecture
5. Further works
Preparation of the proof

Theorem (He, Li and Sun, 2015)

There exists a positive integer n_0 such that for all $n \geq n_0$, if G is a graph of order n with $\delta(G) \geq \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = \lfloor \frac{n}{2} \rfloor$.

- Only need to consider the graphs with even order.
- Suppose $0 < \epsilon \ll d \ll \alpha \ll 1$, and n is sufficiently large.
- A balanced partition of $V(G)$ into V_1 and V_2 is a partition of $V(G) = V_1 \cup V_2$ such that $|V_1| = |V_2| = \frac{n}{2}$.
 - **Extremal Case 1**: There exists a balanced partition of $V(G)$ into V_1 and V_2 such that the density $d(V_1, V_2) \geq 1 - \alpha$.
 - **Extremal Case 2**: There exists a balanced partition of $V(G)$ into V_1 and V_2 such that the density $d(V_1, V_2) \leq \alpha$.
Theorem (He, Li and Sun, 2015)

There exists a positive integer n_0 such that for all $n \geq n_0$, if G is a graph of order n with $\delta(G) \geq \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = \left\lfloor \frac{n}{2} \right\rfloor$.

- Only need to consider the graphs with even order.
- Suppose $0 < \epsilon \ll d \ll \alpha \ll 1$, and n is sufficiently large.
- A balanced partition of $V(G)$ into V_1 and V_2 is a partition of $V(G) = V_1 \cup V_2$ such that $|V_1| = |V_2| = \frac{n}{2}$.
 - **Extremal Case 1**: There exists a balanced partition of $V(G)$ into V_1 and V_2 such that the density $d(V_1, V_2) \geq 1 - \alpha$.
 - **Extremal Case 2**: There exists a balanced partition of $V(G)$ into V_1 and V_2 such that the density $d(V_1, V_2) \leq \alpha$.
Preparation of the proof

Theorem (He, Li and Sun, 2015)

There exists a positive integer n_0 such that for all $n \geq n_0$, if G is a graph of order n with $\delta(G) \geq \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x,y) = \lfloor \frac{n}{2} \rfloor$.

- Only need to consider the graphs with even order.
- Suppose $0 < \epsilon \ll d \ll \alpha \ll 1$, and n is sufficiently large.
- A balanced partition of $V(G)$ into V_1 and V_2 is a partition of $V(G) = V_1 \cup V_2$ such that $|V_1| = |V_2| = \frac{n}{2}$.
 - **Extremal Case 1**: There exists a balanced partition of $V(G)$ into V_1 and V_2 such that the density $d(V_1, V_2) \geq 1 - \alpha$.
 - **Extremal Case 2**: There exists a balanced partition of $V(G)$ into V_1 and V_2 such that the density $d(V_1, V_2) \leq \alpha$.
Preparation of the proof

Theorem (He, Li and Sun, 2015)

There exists a positive integer \(n_0 \) such that for all \(n \geq n_0 \), if \(G \) is a graph of order \(n \) with \(\delta(G) \geq \frac{n}{2} + 1 \), then for any pair of vertices \(x, y \) in \(G \), there is a Hamiltonian cycle \(C \) of \(G \) such that \(\text{dist}_C(x, y) = \left\lfloor \frac{n}{2} \right\rfloor \).

- Only need to consider the graphs with even order.
- Suppose \(0 < \epsilon \ll d \ll \alpha \ll 1 \), and \(n \) is sufficiently large.
- A balanced partition of \(V(G) \) into \(V_1 \) and \(V_2 \) is a partition of \(V(G) = V_1 \cup V_2 \) such that \(|V_1| = |V_2| = \frac{n}{2} \).
 - Extremal Case 1: There exists a balanced partition of \(V(G) \) into \(V_1 \) and \(V_2 \) such that the density \(d(V_1, V_2) \geq 1 - \alpha \).
 - Extremal Case 2: There exists a balanced partition of \(V(G) \) into \(V_1 \) and \(V_2 \) such that the density \(d(V_1, V_2) \leq \alpha \).
Theorem (He, Li and Sun, 2015)

There exists a positive integer n_0 such that for all $n \geq n_0$, if G is a graph of order n with $\delta(G) \geq \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = \lfloor \frac{n}{2} \rfloor$.

- Only need to consider the graphs with even order.
- Suppose $0 < \epsilon \ll d \ll \alpha \ll 1$, and n is sufficiently large.
- A balanced partition of $V(G)$ into V_1 and V_2 is a partition of $V(G) = V_1 \cup V_2$ such that $|V_1| = |V_2| = \frac{n}{2}$.
 - **Extremal Case 1**: There exists a balanced partition of $V(G)$ into V_1 and V_2 such that the density $d(V_1, V_2) \geq 1 - \alpha$.
 - **Extremal Case 2**: There exists a balanced partition of $V(G)$ into V_1 and V_2 such that the density $d(V_1, V_2) \leq \alpha$.
Non-extremal case

Step 1: constructing a Hamiltonian cycle in the reduced graph

Let G be a graph not in either of the extremal cases. We apply the Regularity Lemma to G.

Reduced graph R: the vertices of R are $r_1, r_2, ..., r_l$, and there is an edge between r_i and r_j if the pair (V_i, V_j) is ϵ-regular in G' with density exceeding d.

- R inherits the minimum degree condition: $\delta(R) \geq (\frac{1}{2} - 2d)l$.
- R is a Hamiltonian graph.
Non-extremal case

Step 1: constructing a Hamiltonian cycle in the reduced graph

Let G be a graph not in either of the extremal cases. We apply the Regularity Lemma to G.

- **Reduced graph** R: the vertices of R are $r_1, r_2, ..., r_l$, and there is an edge between r_i and r_j if the pair (V_i, V_j) is ϵ-regular in G' with density exceeding d.
 - R inherits the minimum degree condition: $\delta(R) \geq \left(\frac{1}{2} - 2d\right)l$.
 - R is a Hamiltonian graph.
Non-extremal case
Step 2: constructing paths to connect clusters

- By the Hamiltonian cycle in R, we find a perfect matching in R. Denote the clusters by X_i, Y_i according to the matching. (X_i, Y_i) is called a pair of clusters.

- Construct paths P_i’s and Q_i’s to connect different pairs of clusters and to include x, y.
Non-extremal case
Step 2: constructing paths to connect clusters

- By the Hamiltonian cycle in R, we find a perfect matching in R. Denote the clusters by X_i, Y_i according to the matching. (X_i, Y_i) is called a pair of clusters.
- Construct paths P_i's and Q_i's to connect different pairs of clusters and to include x, y.

Figure: Construction of P_i's and Q_i's.
Non-extremal case

Step 3: Extending the paths by all the vertices of V_0

- Deal with the vertices of V_0 pair by pair.

Figure: Insert $u, v \in V_0$ to Q_i's.
Non-extremal case

Step 4: constructing the desired Hamiltonian cycle

Lemma (Blow-up Lemma-Bipartite Version)

For every $\delta, \Delta > 0$, there exists an $\epsilon = \epsilon(\delta, \Delta) > 0$ such that the following holds. Let (X, Y) be an (ϵ, δ)-super-regular pair with $|X| = |Y| = N$. If a bipartite graph H with $\Delta(H) \leq \Delta$ can be embedded in $K_{N,N}$ by a function ϕ, then H can be embedded in (X, Y).

Construct paths W_i^1's and W_i^2's in each pair of clusters by Blow-up lemma and make sure x and y have distance $\frac{n}{2}$ on this cycle.
Extremal Case 1: There exists a balanced partition of $V(G)$ into V_1 and V_2 such that the density $d(V_1, V_2) \geq 1 - \alpha$.

Lemma

If G is in extremal case 1, then G contains a balanced spanning bipartite subgraph G^* with parts U_1, U_2 and G^* has the following properties:

(a) there is a vertex set W such that there exist vertex-disjoint 2-paths (paths of length two) in G^* with the vertices of W as the middle vertices (not the end vertices) in each 2-path and $|W| \leq \alpha_2 n$;

(b) $\deg_{G^*}(v) \geq (1 - \alpha_1 - 2\alpha_2) \frac{n}{2}$ for all $v \notin W$.
Extremal case 1

The proof has some sub-cases discussions depending on the position of x, y and the parity of $\frac{n}{2}$. And the Blow-up lemma is the main tool.

Figure: Extremal case 1.
Extremal Case 2: There exists a balanced partition of $V(G)$ into V_1 and V_2 such that the density $d(V_1, V_2) \leq \alpha$.

Lemma

If G is in extremal case 2, then $V(G)$ can be partitioned into two balanced parts U_1 and U_2 such that

(a) there is a set $W_1 \subseteq U_1$ (resp. $W_2 \subseteq U_2$) such that there exist vertex-disjoint 2-paths in $G[U_1]$ (resp. $G[U_2]$) with the vertices of W_1 (resp. W_2) as the middle vertices in each 2-path and $|W_1| \leq \alpha_2 \frac{n}{2}$ (resp. $|W_2| \leq \alpha_2 \frac{n}{2}$);

(b) $\deg_{G[U_1]}(u) \geq (1 - \alpha_1 - 2\alpha_2) \frac{n}{2}$ for all $u \in U_1 - W_1$ and $\deg_{G[U_2]}(v) \geq (1 - \alpha_1 - 2\alpha_2) \frac{n}{2}$ for all $v \in U_2 - W_2$.
Extremal case 2

The proof has some sub-cases discussions depending on the position of x and y.

Figure: Extremal case 2.
1. The Enomoto conjecture
2. Szemerédi’s Regularity Lemma
3. Sketch of the proof
4. The Faudree-Li conjecture
5. Further works
The Faudree-Li conjecture

Conjecture (Faudree and Li, 2012)

If G is a graph of order $n \geq 3$ and $\delta(G) \geq \frac{n}{2} + 1$, then for any pair of vertices x, y in G and any integer $2 \leq k \leq \frac{n}{2}$, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = k$.

Theorem (Faudree and Li, 2012)

If G is a graph of order $n \geq 3$ and $\delta(G) \geq \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = 2$ and a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = 3$.
The Faudree-Li conjecture

Theorem (Faudree, Lehel and Yoshimoto, 2014)

Let $k \geq 2$ be a fixed positive integer. If G is a graph of order $n \geq 6k$ and $\delta(G) \geq \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $\text{dist}_C(x, y) = k$.
Our approach also works for the Faudree-Li conjecture.

Theorem (He, Li and Sun, 2015)

There exists a positive integer \(n_0 \) such that for all \(n \geq n_0 \), if \(G \) is a graph of order \(n \) with \(\delta(G) \geq \frac{n}{2} + 1 \), then for any pair of vertices \(x, y \) in \(G \) and any integer \(2 \leq k \leq \frac{n}{2} \), there is a Hamiltonian cycle \(C \) of \(G \) such that \(\text{dist}_C(x, y) = k \).
1. The Enomoto conjecture
2. Szemerédi’s Regularity Lemma
3. Sketch of the proof
4. The Faudree-Li conjecture
5. Further works
Further works

- To avoid using Szemerédi’s regularity lemma?
- To locate more vertices (≥ 3) on Hamiltonian cycles with precise distances?
Further works

- To avoid using Szemerédi’s regularity lemma?
- To locate more vertices (≥ 3) on Hamiltonian cycles with precise distances?
Thank you!