Perfect sets and \(f \)-ideals

Author Jin Guo

(This is a joint work with professor Tongsuo Wu)

Department of Mathematics, Shanghai Jiaotong University

November 2, 2013
Perfect sets and f-ideals

Jin Guo

Outline

1 Introduction

2 Perfect sets and f-ideals of degree d

3 $(n, 2)^{th}$ perfect number

4 Structure of $V(n, 2)$

5 Further works

6 References
A bridge between algebra and combinatorics

Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals of degree d

$(n, 2)^{th}$ perfect number

Structure of $V(n, 2)$

Further works

References
A bridge between algebra and combinatorics

Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals of degree d

$(n, 2)^{th}$ perfect number

Structure of $V(n, 2)$

Further works

References

From simplicial complex to ideals

Simplicial complex $\Delta \longrightarrow$

1. Stanley-Reisner ideal I_Δ; 2. Facet ideal $I(\Delta)$.
A bridge between algebra and combinatorics

From simplicial complex to ideals

Simplicial complex $\Delta \rightarrow$
1. Stanley-Reisner ideal I_Δ; 2. Facet ideal $I(\Delta)$.

From ideal to simplicial complexes

Square-free monomial ideal $I \rightarrow$
1. Stanley-Reisner complex $\delta_N(I)$; 2. Facet complex $\delta_F(I)$.
Two simplicial complexes

Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals of degree d

$(n, 2)^{th}$ perfect number

Structure of $V(n, 2)$

Further works

References
Two simplicial complexes

Simplicial complex

A simplicial complex Δ on $[n] = \{1, 2, \ldots, n\}$ is a collection of subsets of $[n]$, satisfying:

- $\{i\} \in \Delta$ for all $i \in [n]$;
- If $F \in \Delta$, and $G \subseteq F$, then $G \in \Delta$ (including \emptyset).
A simplicial complex Δ on $[n] = \{1, 2, \ldots, n\}$ is a collection of subsets of $[n]$, satisfying:

- $\{i\} \in \Delta$ for all $i \in [n]$;
Two simplicial complexes

Simplicial complex
A simplicial complex Δ on $[n] = \{1, 2, \ldots, n\}$ is a collection of subsets of $[n]$, satisfying:

- $\{i\} \in \Delta$ for all $i \in [n]$;
- If $F \in \Delta$, and $G \subseteq F$, then $G \in \Delta$ (including \emptyset).
Two simplicial complexes

Simplicial complex

- **Face**: element of Δ;
Two simplicial complexes

Simplicial complex

- **Face**: element of \(\Delta \);
- **Facet**: maximal face of \(\Delta \);
Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals

of degree d

$(n, 2)^{th}$

perfect number

Structure of

$V(n, 2)$

Further works

References

Two simplicial complexes

Simplicial complex

- Face: element of Δ;
- Facet: maximal face of Δ;
- $\Delta = \langle F_1, \ldots, F_k \rangle$, where F_1, \ldots, F_k are the facets of Δ;

Simplicial complex

- Face: element of Δ;
- Facet: maximal face of Δ;
- $\Delta = \langle F_1, \ldots, F_k \rangle$, where F_1, \ldots, F_k are the facets of Δ;
Two simplicial complexes

Simplicial complex

- Face: element of Δ;
- Facet: maximal face of Δ;
- $\Delta = \langle F_1, \ldots, F_k \rangle$, where F_1, \ldots, F_k are the facets of Δ;
- dimension of a face F: $|F| - 1$, where $|F|$ is the number of vertices of F;
Simplicial complex

- **Face:** element of Δ;

- **Facet:** maximal face of Δ;

- $\Delta = \langle F_1, \ldots, F_k \rangle$, where F_1, \ldots, F_k are the facets of Δ;

- **Dimension of a face F:** $|F| - 1$, where $|F|$ is the number of vertices of F;

- **f-vector of Δ:** $f(\Delta) = (f_0, f_1, \ldots, f_d)$, where f_i is the number of faces of dimension i of Δ.
Two simplicial complexes

Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals of degree d

$(n, 2)^{th}$ perfect number

Structure of $V(n, 2)$

Further works

References
Two simplicial complexes

Let $S = K[x_1, \ldots, x_n]$. Denote by $sm(S)$ and $sm(I)$ the set of square-free monomials in S and I respectively. Denote by $sm(S)_d$ the set of square-free monomials of degree d in S.
Let $S = K[x_1, \ldots, x_n]$. Denote by $sm(S)$ and $sm(I)$ the set of square-free monomials in S and I respectively. Denote by $sm(S)_d$ the set of square-free monomials of degree d in S.

A bijection between $sm(S)$ and $2^{[n]}$

$$\sigma : x_{i_1}x_{i_2}\cdots x_{i_k} \mapsto \{i_1, i_2, \ldots, i_k\}.$$
Let $S = K[x_1, \ldots, x_n]$. Denote by $sm(S)$ and $sm(I)$ the set of square-free monomials in S and I respectively. Denote by $sm(S)_d$ the set of square-free monomials of degree d in S.

A bijection between $sm(S)$ and 2^n

$$\sigma : x_{i_1}x_{i_2} \cdots x_{i_k} \mapsto \{i_1, i_2, \ldots, i_k\}.$$

Facet complex

$$\delta_{\mathcal{F}}(I) = \langle \sigma(G(I)) \rangle = \langle \{\sigma(g) \mid g \in G(I)\} \rangle.$$
Let $S = K[x_1, \ldots, x_n]$. Denote by $sm(S)$ and $sm(I)$ the set of square-free monomials in S and I respectively. Denote by $sm(S)_d$ the set of square-free monomials of degree d in S.

A bijection between $sm(S)$ and 2^n

$$\sigma : x_{i_1}x_{i_2}\cdots x_{i_k} \mapsto \{i_1, i_2, \ldots, i_k\}.$$

Facet complex

$$\delta_{\mathcal{F}}(I) = \langle \sigma(G(I)) \rangle = \langle \{\sigma(g) \mid g \in G(I)\} \rangle.$$

Stanley-Reisner complex

$$\delta_{\mathcal{N}}(I) = \{\sigma(g) \mid g \in sm(S) \setminus sm(I)\}.$$

In other words, the Stanley-Reisner ideal of $\delta_{\mathcal{N}}(I)$ is I.

Perfect sets and f-ideals

Outline

Introduction

Perfect sets and f-ideals of degree d

$(n, 2)^{th}$ perfect number

Structure of $V(n, 2)$

Further works

References
Let $S = K[x_1, \ldots, x_n]$. Denote by $sm(S)$ and $sm(I)$ the set of square-free monomials in S and I respectively. Denote by $sm(S)_d$ the set of square-free monomials of degree d in S.

A bijection between $sm(S)$ and 2^n

$$\sigma : x_{i_1}x_{i_2} \cdots x_{i_k} \mapsto \{i_1, i_2, \ldots, i_k\}.$$

Facet complex

$$\delta_{\mathcal{F}}(I) = \langle \sigma(G(I)) \rangle = \langle \{\sigma(g) \mid g \in G(I)\} \rangle.$$

Stanley-Reisner complex

$$\delta_{\mathcal{N}}(I) = \{\sigma(g) \mid g \in sm(S) \setminus sm(I)\}.$$

In other words, the Stanley-Reisner ideal of $\delta_{\mathcal{N}}(I)$ is I.

Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals of degree d

$(n, 2)^{th}$ perfect number

Structure of $V(n, 2)$

Further works

References

f-ideal

A square-free monomial ideal I is called an f-ideal, if both
$\delta F(I)$ and $\delta N(I)$ have the same f-vector.

Background of f-ideal

Defined by G. Q. ABBASI, S. AHMAD, I. ANWAR and W. A. BAIG in [1];
The authors in [1] studied the properties of f-ideals of degree 2, and presented an interesting characterization of such ideals;
In [2], the authors generalized the characterization for f-ideals of degree d ($d \geq 2$), though their main result seems to be a little bit inaccurate. See the following example.
A square-free monomial ideal I is called an f-ideal, if both $\delta_F(I)$ and $\delta_N(I)$ have the same f-vector.
f-ideal

A square-free monomial ideal I is called an f-ideal, if both $\delta_F(I)$ and $\delta_N(I)$ have the same f-vector.

Background of f-ideal

- Defined by G. Q. ABBASI, S. AHMAD, I. ANWAR and W. A. BAIG in [1];
A square-free monomial ideal I is called an f-ideal, if both $\delta_F(I)$ and $\delta_N(I)$ have the same f-vector.

Background of f-ideal

- Defined by G. Q. ABBASI, S. AHMAD, I. ANWAR and W. A. BAIG in [1];
- The authors in [1] studied the properties of f-ideals of degree 2, and presented an interesting characterization of such ideals;
A square-free monomial ideal I is called an f-ideal, if both $\delta_F(I)$ and $\delta_N(I)$ have the same f-vector.

Background of f-ideal

- Defined by G. Q. ABBASI, S. AHMAD, I. ANWAR and W. A. BAIG in [1];
- The authors in [1] studied the properties of f-ideals of degree 2, and presented an interesting characterization of such ideals;
- In [2], the authors generalized the characterization for f-ideals of degree d ($d \geq 2$),
A square-free monomial ideal I is called an f-ideal, if both $\delta_F(I)$ and $\delta_N(I)$ have the same f-vector.

Background of f-ideal

- Defined by G. Q. ABBASI, S. AHMAD, I. ANWAR and W. A. BAIG in [1];
- The authors in [1] studied the properties of f-ideals of degree 2, and presented an interesting characterization of such ideals;
- In [2], the authors generalized the characterization for f-ideals of degree d $(d \geq 2)$, though their main result seems to be a little bit inaccurate. See the following example.
Background of f-ideal

Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals of degree d

$(n, 2)^{th}$ perfect number

Structure of $V(n, 2)$

Further works

References

Background of f-ideal

Let $S = K[x_1, x_2, x_3, x_4, x_5]$, and let $I = \langle x_1 x_2 x_3, x_1 x_2 x_4, x_1 x_2 x_5, x_3 x_4 x_5, x_2 x_3 x_4 \rangle$. It is not hard to check that I is an f-ideal. But the standard primary decomposition of I is

$I = \langle x_2, x_5 \rangle \cap \langle x_2, x_3 \rangle \cap \langle x_2, x_4 \rangle \cap \langle x_1, x_4 \rangle \cap \langle x_1, x_3 \rangle \cap \langle x_3, x_4, x_5 \rangle$,

which shows that I is not unmixed.
An example of f-ideal

Let $S = K[x_1, x_2, x_3, x_4, x_5]$, and let $I = \langle x_1 x_2 x_3, x_1 x_2 x_4, x_1 x_2 x_5, x_3 x_4 x_5, x_2 x_3 x_4 \rangle$. It is not hard to check that I is an f-ideal. But the standard primary decomposition of I is $I = \langle x_2, x_5 \rangle \cap \langle x_2, x_3 \rangle \cap \langle x_2, x_4 \rangle \cap \langle x_1, x_4 \rangle \cap \langle x_1, x_3 \rangle \cap \langle x_3, x_4, x_5 \rangle$, which shows that I is not unmixed.
An example of f-ideal

Let $S = K[x_1, x_2, x_3, x_4, x_5]$, and let

$$I = \langle x_1 x_2 x_3, x_1 x_2 x_4, x_1 x_2 x_5, x_3 x_4 x_5, x_2 x_3 x_4 \rangle.$$

It is not hard to check that I is an f-ideal. But the standard primary decomposition of I is

$$I = \langle x_2, x_5 \rangle \cap \langle x_2, x_3 \rangle \cap \langle x_2, x_4 \rangle \cap \langle x_1, x_4 \rangle \cap \langle x_1, x_3 \rangle \cap \langle x_3, x_4, x_5 \rangle,$$

which shows that I is not unmixed.
Four questions

Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals of degree d

$(n, 2)^{th}$ perfect number

Structure of $V(n, 2)$

Further works

References

Four questions

How to characterize f-ideals of degree d directly?

How many f-ideals of degree d are there in the polynomial ring $S = K[x_1, ..., x_n]$?

Is there any f-ideal which is not unmixed?

What can one say about f-ideals in general case?
Four questions

How to characterize \(f \)-ideals of degree \(d \) directly?

How many \(f \)-ideals of degree \(d \) are there in the polynomial ring \(S = K[x_1,...,x_n] \)?

Is there any \(f \)-ideal which is not unmixed?

What can one say about \(f \)-ideals in general case?
Four questions

- How to characterize f-ideals of degree d directly?
Four questions

- How to characterize f-ideals of degree d directly?
- How many f-ideals of degree d are there in the polynomial ring $S = K[x_1, \ldots, x_n]$?
Four questions

- How to characterize f-ideals of degree d directly?
- How many f-ideals of degree d are there in the polynomial ring $S = K[x_1, \ldots, x_n]$?
- Is there any f-ideal which is not unmixed?
Four questions

- How to characterize f-ideals of degree d directly?
- How many f-ideals of degree d are there in the polynomial ring $S = K[x_1, \ldots, x_n]$?
- Is there any f-ideal which is not unmixed?
- What can one say about f-ideals in general case?
Four questions

- How to characterize f-ideals of degree d directly?
- How many f-ideals of degree d are there in the polynomial ring $S = K[x_1, \ldots, x_n]$?
- Is there any f-ideal which is not unmixed?
- What can one say about f-ideals in general case?
Our work

Answer question (1);
Answer question (2) completely in the case $d = 2$;
Give a positive answer to question (3) in general case, and a negative answer in the case $d = 2$;
Give a preliminary answer to question (4).
Our work

Answer question (1);
Our work

- Answer question (1);
- Answer question (2) completely in the case $d = 2$;
Our work

- Answer question (1);
- Answer question (2) completely in the case $d = 2$;
- Give a positive answer to question (3) in general case, and a negative answer in the case $d = 2$;
Our work

- Answer question (1);
- Answer question (2) completely in the case $d = 2$;
- Give a positive answer to question (3) in general case, and a negative answer in the case $d = 2$;
- Give a preliminary answer to question (4).
Our work

- Answer question (1);
- Answer question (2) completely in the case $d = 2$;
- Give a positive answer to question (3) in general case, and a negative answer in the case $d = 2$;
- Give a preliminary answer to question (4).
Some definitions

Perfect sets
and f-ideals

Jin Guo

Outline

Introduction

Perfect sets
and f-ideals
of degree d

$(n, 2)^{th}$
perfect
number

Structure of
$V(n, 2)$

Further
works

References

Some definitions

Upper generated and lower cover set

For a subset $A \subseteq \mathbb{S}(S)$, the upper generated set $\sqcup(A)$ of A is defined by

\[\sqcup(A) = \{ gx_i | g \in A, x_i \nmid g, 1 \leq i \leq n \} . \]

Dually, the lower cover set $\sqcap(A)$ of A is defined by

\[\sqcap(A) = \{ h | 1 \neq h, h = g/x_i \text{ for some } g \in A \text{ and some } x_i \text{ with } x_i \mid g \} . \]

Similarly, we define $\sqcup_2(A) = \sqcup(\sqcup(A))$, and $\sqcup_\infty(A) = \bigcup_{i=1}^{\infty} \sqcup_i(A)$, $\sqcap_\infty(A) = \bigcup_{i=1}^{\infty} \sqcap_i(A)$.
Some definitions

Upper generated and lower cover set

For a subset $A \subseteq sm(S)$, the upper generated set $\sqcup(A)$ of A is defined by

$$\sqcup(A) = \{gx_i \mid g \in A, x_i \nmid g, 1 \leq i \leq n\}.$$

Dually, the lower cover set $\sqcap(A)$ of A is defined by

$$\sqcap(A) = \{h \mid 1 \neq h, h = g/x_i \text{ for some } g \in A \text{ and some } x_i \text{ with } x_i \mid g\}.$$

Similarly, we define $\sqcup^2(A) = \sqcup(\sqcup(A))$, and

$$\sqcup^\infty(A) = \bigcup_{i=1}^\infty \sqcup^i(A), \quad \sqcap^\infty(A) = \bigcup_{i=1}^\infty \sqcap^i(A).$$
Some definitions

Perfect set

$A \subseteq sm(S)_d$ is called
Some definitions

Perfect set

$A \subseteq sm(S)_d$ is called

- upper perfect: If $\sqcup(A) = sm(S)_{d+1}$ holds;
Some definitions

Perfect set

A ⊆ sm(S)_d is called

- upper perfect: If ⊔(A) = sm(S)_{d+1} holds;
- lower perfect: If ⊓(A) = sm(S)_{d-1} holds;
Some definitions

Perfect set

\(A \subseteq sm(S)_d \) is called

- upper perfect: If \(\uplus(A) = sm(S)_{d+1} \) holds;
- lower perfect: If \(\cap(A) = sm(S)_{d-1} \) holds;
- perfect: If \(A \) is both upper perfect and lower perfect.
Some definitions

Perfect set

\[A \subseteq sm(S)_d \] is called

- **upper perfect**: If \(\sqcup(A) = sm(S)_{d+1} \) holds;
- **lower perfect**: If \(\sqcap(A) = sm(S)_{d-1} \) holds;
- **perfect**: If \(A \) is both upper perfect and lower perfect.
Some definitions

Homogeneous of degree d

A monomial ideal I is called of degree d (or alternatively, homogeneous of degree d), if all monomials in $G(I)$ have the same degree d.
Homogeneous of degree d

A monomial ideal I is called of degree d (or alternatively, homogeneous of degree d), if all monomials in $G(I)$ have the same degree d.

If I is an f-ideal of $S = K[x_1, \ldots, x_n]$, and homogeneous of degree d, we also call I an $(n, d)^{th}$ f-ideal. Correspondingly, we can define an $(n, d)^{th}$ perfect sets.
Some definitions

Examples

Let $S = K[x_1, x_2, x_3, x_4]$. Consider the following three subsets of $sm(S)_2$: $A = \{x_1 x_2, x_1 x_3, x_1 x_4\}$, $B = \{x_1 x_2, x_1 x_3, x_2 x_3\}$, $C = \{x_1 x_2, x_3 x_4\}$.

A is lower perfect but not upper perfect, since $x_2 x_3 x_4 \notin \bigcup A$; B is upper perfect but not lower perfect, since $x_4 \notin \bigcap B$; C is perfect.
Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals of degree d

$(n, 2)^{th}$ perfect number

Structure of $V(n, 2)$

Further works

References

Some definitions

Examples

Let $S = K[x_1, x_2, x_3, x_4]$. Consider the following three subsets of $sm(S)_2$: $A = \{x_1x_2, x_1x_3, x_1x_4\}$, $B = \{x_1x_2, x_1x_3, x_2x_3\}$, $C = \{x_1x_2, x_3x_4\}$.

- A is lower perfect but not upper perfect, since $x_2x_3x_4 \notin \sqcup(A)$;
Some definitions

Examples

Let $S = K[x_1, x_2, x_3, x_4]$. Consider the following three subsets of $sm(S)_2$: $A = \{x_1x_2, x_1x_3, x_1x_4\}$, $B = \{x_1x_2, x_1x_3, x_2x_3\}$, $C = \{x_1x_2, x_3x_4\}$.

- A is lower perfect but not upper perfect, since $x_2x_3x_4 \notin \sqcup(A)$;
- B is upper perfect but not lower perfect, since $x_4 \notin \cap(B)$;
Some definitions

Examples

Let $S = K[x_1, x_2, x_3, x_4]$. Consider the following three subsets of $sm(S)_2$: $A = \{x_1 x_2, x_1 x_3, x_1 x_4\}$, $B = \{x_1 x_2, x_1 x_3, x_2 x_3\}$, $C = \{x_1 x_2, x_3 x_4\}$.

- A is lower perfect but not upper perfect, since $x_2 x_3 x_4 \notin \sqcup(A)$;

- B is upper perfect but not lower perfect, since $x_4 \notin \sqcap(B)$;

- C is perfect.
Some definitions

Examples

Let $S = K[x_1, x_2, x_3, x_4]$. Consider the following three subsets of $sm(S)_2$: $A = \{x_1x_2, x_1x_3, x_1x_4\}$, $B = \{x_1x_2, x_1x_3, x_2x_3\}$, $C = \{x_1x_2, x_3x_4\}$.

- A is lower perfect but not upper perfect, since $x_2x_3x_4 \notin \sqcup(A)$;
- B is upper perfect but not lower perfect, since $x_4 \notin \sqcap(B)$;
- C is perfect.
Main result of this part

Characterization of \((n, d)^{th}\) \(f\)-ideals

Let \(S = K[x_1, \ldots, x_n]\), and let \(I\) be a square-free monomial ideal of \(S\) of degree \(d\) with the minimal generating set \(G(I)\). Then \(I\) is an \(f\)-ideal if and only if the followings hold:
Main result of this part

Characterization of \((n, d)^{th}\) \(f\)-ideals

Let \(S = K[x_1, \ldots, x_n]\), and let \(I\) be a square-free monomial ideal of \(S\) of degree \(d\) with the minimal generating set \(G(I)\). Then \(I\) is an \(f\)-ideal if and only if the followings hold:

- \(|G(I)| = \frac{1}{2} C_n^d;\)
Main result of this part

Characterization of \((n, d)^{th}\) \(f\)-ideals

Let \(S = K[x_1, \ldots, x_n]\), and let \(I\) be a square-free monomial ideal of \(S\) of degree \(d\) with the minimal generating set \(G(I)\). Then \(I\) is an \(f\)-ideal if and only if the followings hold:

- \(|G(I)| = \frac{1}{2}C_n^d\);
- \(G(I)\) is an \((n, d)^{th}\) perfect set.
Characterization of \((n, d)^{th}\) \(f\)-ideals

Let \(S = K[x_1, \ldots, x_n]\), and let \(I\) be a square-free monomial ideal of \(S\) of degree \(d\) with the minimal generating set \(G(I)\). Then \(I\) is an \(f\)-ideal if and only if the followings hold:

- \(|G(I)| = \frac{1}{2} C_{n}^{d};\)

- \(G(I)\) is an \((n, d)^{th}\) perfect set.
How to construct an \((n, d)^{th}\) \(f\)-ideal

1. Find an \((n, d)\)th perfect set \(A\), such that \(|A| \leq \frac{1}{2} C d^n\);
2. Choose \(D \subseteq \text{sm}(S) d \setminus A\) randomly, such that \(|D| = \frac{1}{2} C d^n - |A|\);
3. Let \(I\) be the ideal generated by \(A \cup D\);
 \(I\) is an \((n, d)^{th}\) \(f\)-ideal.
How to construct an \((n, d)^{th}\) \(f\)-ideal

- Find an \((n, d)^{th}\) perfect set \(A\), such that \(|A| \leq \frac{1}{2} C_n^d;\)
idea

How to construct an \((n, d)^{th}\) \(f\)-ideal

- Find an \((n, d)^{th}\) perfect set \(A\), such that \(|A| \leq \frac{1}{2}C_n^d\);
- Choose \(D \subseteq sm(S)_d \setminus A\) randomly, such that \(|D| = \frac{1}{2}C_n^d - |A|\);
How to construct an $$(n, d)^{th} f$$-ideal

- Find an $$(n, d)^{th}$$ perfect set $$A$$, such that \(|A| \leq \frac{1}{2} C_n^d$$;
- Choose $$D \subseteq sm(S)_d \setminus A$$ randomly, such that $$|D| = \frac{1}{2} C_n^d - |A|$$;
- Let $$I$$ be the ideal generated by $$A \cup D$$;
How to construct an \((n, d)^{th}\) \(f\)-ideal

1. Find an \((n, d)^{th}\) perfect set \(A\), such that \(|A| \leq \frac{1}{2} C_n^d\);

2. Choose \(D \subseteq sm(S)_d \setminus A\) randomly, such that \(|D| = \frac{1}{2} C_n^d - |A|\);

3. Let \(I\) be the ideal generated by \(A \cup D\);

4. \(I\) is an \((n, d)^{th}\) \(f\)-ideal.
Perfect sets and f-ideals

Jin Guo

Outline
Introduction
Perfect sets and f-ideals of degree d
$(n,2)^{th}$ perfect number
Structure of $V(n,2)$
Further works
References

How to construct an $(n, d)^{th}$ f-ideal

- Find an $(n, d)^{th}$ perfect set A, such that $|A| \leq \frac{1}{2} C_n^d$;

- Choose $D \subseteq sm(S)_d \setminus A$ randomly, such that $|D| = \frac{1}{2} C_n^d - |A|$;

- Let I be the ideal generated by $A \cup D$;

- I is an $(n, d)^{th}$ f-ideal.
How to find an \((n, d)^{th}\) perfect set

For a general \(d \geq 2\), it is not easy to find an \((n, d)^{th}\) perfect set, but it is not hard when \(d = 2\).
How to find an \((n, d)^{th}\) perfect set

For a general \(d \geq 2\), it is not easy to find an \((n, d)^{th}\) perfect set, but it is not hard when \(d = 2\).
How to find an \((n, d)^{th}\) perfect set

For a general \(d \geq 2\), it is not easy to find an \((n, d)^{th}\) perfect set, but it is not hard when \(d = 2\).

How to find an \((n, 2)^{th}\) perfect set

- Divide \([n]\) into two part \(B\) and \(C\) (Actually, \(C = \overline{B}\)):
How to find an \((n, d)^{th}\) perfect set

For a general \(d \geq 2\), it is not easy to find an \((n, d)^{th}\) perfect set, but it is not hard when \(d = 2\).

How to find an \((n, 2)^{th}\) perfect set

- Divide \([n]\) into two part \(B\) and \(C\) (Actually, \(C = \overline{B}\));
- Let \(A = \{x_ix_j \mid i, j \in B, \text{ or } i, j \in C\}\);
For a general $d \geq 2$, it is not easy to find an $(n, d)^{th}$ perfect set, but it is not hard when $d = 2$.

How to find an $(n, 2)^{th}$ perfect set

- Divide $[n]$ into two part B and C (Actually, $C = \overline{B}$);
- Let $A = \{x_i x_j | i, j \in B, \text{ or } i, j \in C\}$;
- A is an $(n, 2)^{th}$ perfect set.
How to find an \((n, d)^{th}\) perfect set

For a general \(d \geq 2\), it is not easy to find an \((n, d)^{th}\) perfect set, but it is not hard when \(d = 2\).

How to find an \((n, 2)^{th}\) perfect set

- Divide \([n]\) into two part \(B\) and \(C\) (Actually, \(C = \overline{B}\));
- Let \(A = \{x_i x_j \mid i, j \in B, \text{ or } i, j \in C\}\);
- \(A\) is an \((n, 2)^{th}\) perfect set.
- Actually, this is almost the unique method to construct a perfect set with a small cardinality.
How to find an \((n, d)^{th}\) perfect set

For a general \(d \geq 2\), it is not easy to find an \((n, d)^{th}\) perfect set, but it is not hard when \(d = 2\).

How to find an \((n, 2)^{th}\) perfect set

1. Divide \([n]\) into two part \(B\) and \(C\) (Actually, \(C = \bar{B}\));
2. Let \(A = \{x_i x_j \mid i, j \in B, \text{ or } i, j \in C\}\);
3. \(A\) is an \((n, 2)^{th}\) perfect set.
4. Actually, this is almost the unique method to construct a perfect set with a small cardinality.
(n, d)th perfect number

Definition

The least number among cardinalities of (n, d)th perfect sets, denoted by $N_{(n,d)}$.
(n, d)th perfect number

Definition
The least number among cardinalities of (n, d)th perfect sets, denoted by \(N_{(n,d)} \).

(n, 2)th perfect number
Let \(k \) be a positive integer, and let \(n \geq 4 \). Then the perfect number \(N_{(n,2)} \) is given by the following rules:
(n, d)th perfect number

Definition
The least number among cardinalities of (n, d)th perfect sets, denoted by $N_{(n,d)}$.

(n, 2)th perfect number
Let k be a positive integer, and let $n \geq 4$. Then the perfect number $N_{(n,2)}$ is given by the following rules:

- If $n = 2k$, then $N_{(n,2)} = C_k^2 + C_k^2 = k^2 - k$;
(n, d)th perfect number

Definition
The least number among cardinalities of (n, d)th perfect sets, denoted by N_{(n,d)}.

(n, 2)th perfect number
Let k be a positive integer, and let n ≥ 4. Then the perfect number N_{(n,2)} is given by the following rules:

- If n = 2k, then N_{(n,2)} = \binom{2k}{k} + \binom{2k}{k} = k^2 - k;
- If n = 2k + 1, then N_{(n,2)} = \binom{2k}{k} + \binom{2k}{k+1} = k^2.
Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals of degree d

$(n, 2)^{th}$ perfect number

Definition

The least number among cardinalities of $(n, d)^{th}$ perfect sets, denoted by $N(n, d)$.

$(n, 2)^{th}$ perfect number

Let k be a positive integer, and let $n \geq 4$. Then the perfect number $N(n, 2)$ is given by the following rules:

- If $n = 2k$, then $N(n, 2) = C_k^2 + C_k^2 = k^2 - k$;
- If $n = 2k + 1$, then $N(n, 2) = C_k^2 + C_{k+1}^2 = k^2$.
Existence of \((n, 2)^{th}\) \(f\)-ideal

Existence

\[V(n, 2) \neq \emptyset \text{ if and only if } 2 \mid C_n^2, \text{ i.e., if and only if } n = 4k \text{ or } n = 4k + 1 \text{ for some positive integer } k. \]
Existence of \((n, 2)^{th}\) \(f\)-ideal

Existence

\[V(n, 2) \neq \emptyset \text{ if and only if } 2 \mid C_n^2, \text{ i.e., if and only if } n = 4k \text{ or } n = 4k + 1 \text{ for some positive integer } k. \]

Note that: When \(n = 4k\)

- \(N_{(n,2)} = 4k^2 - 2k\) and \(C_n^2/2 = 4k^2 - k;\)
Existence of \((n, 2)^{th}\) \textit{f}-ideal

Existence

\(V(n, 2) \neq \emptyset\) if and only if \(2 \mid C_n^2\), i.e., if and only if \(n = 4k\) or \(n = 4k + 1\) for some positive integer \(k\).

Note that: When \(n = 4k\)

- \(N_{(n,2)} = 4k^2 - 2k\) and \(C_n^2/2 = 4k^2 - k\);

- \(N_{(n,2)} \leq C_n^2/2\).
Existence of \((n, 2)^{th}\) \(f\)-ideal

Existence

\(V(n, 2) \neq \emptyset\) if and only if \(2 \mid C_n^2\), i.e., if and only if \(n = 4k\) or \(n = 4k + 1\) for some positive integer \(k\).

Note that: When \(n = 4k\)

- \(N_{(n, 2)} = 4k^2 - 2k\) and \(C_n^2/2 = 4k^2 - k\);
- \(N_{(n, 2)} \leq C_n^2/2\).

When \(n = 4k + 1\)

- \(N_{(n, 2)} = 4k^2\) and \(C_n^2/2 = 4k^2 + k\);
Existence of \((n, 2)^{th}\) \(f\)-ideal

Existence

\(V(n, 2) \neq \emptyset\) if and only if \(2 \mid C_n^2\), i.e., if and only if \(n = 4k\) or \(n = 4k + 1\) for some positive integer \(k\).

Note that: When \(n = 4k\)
- \(N_{(n,2)} = 4k^2 - 2k\) and \(C_n^2/2 = 4k^2 - k\);
- \(N_{(n,2)} \leq C_n^2/2\).

When \(n = 4k + 1\)
- \(N_{(n,2)} = 4k^2\) and \(C_n^2/2 = 4k^2 + k\);
- \(N_{(n,2)} \leq C_n^2/2\).
Existence of \((n, 2)^{th}\) \(f\)-ideal

Existence

\(V(n, 2) \neq \emptyset\) if and only if \(2 \mid C_n^2\), i.e., if and only if \(n = 4k\) or \(n = 4k + 1\) for some positive integer \(k\).

Note that: When \(n = 4k\)

- \(N_{(n,2)} = 4k^2 - 2k\) and \(C_n^2/2 = 4k^2 - k\);
- \(N_{(n,2)} \leq C_n^2/2\).

When \(n = 4k + 1\)

- \(N_{(n,2)} = 4k^2\) and \(C_n^2/2 = 4k^2 + k\);
- \(N_{(n,2)} \leq C_n^2/2\).
Some notations

Two Part Complete Structure

For a subset B of \mathbb{N}, denote $W_B = \{x_i x_j | i, j \in B \text{ or } i, j \in B\}$; Clearly $W_B = W_B$ holds, and W_B is an $(n, 2)$th perfect set; A subset A of $S(n, 2)$ is called satisfying Two Part Complete Structure, abbreviated as TPCS, if there exists a $B \subseteq \mathbb{N}$, such that $W_B \subseteq A$; If further $|B| = l$, then A is called satisfying lth TPCS; An f-ideal I is called of l type, if $G(I)$ satisfies lth TPCS; Denote by W_l the set of f-ideals of l type in $S(n, 2)$.
Some notations

Two Part Complete Structure

For a subset B of $[n]$, denote $W_B = \{x_ix_j \mid i, j \in B \text{ or } i, j \in \overline{B}\}$;
Some notations

Two Part Complete Structure

- For a subset B of $[n]$, denote $W_B = \{x_i x_j \mid i, j \in B \text{ or } i, j \in \overline{B}\}$;

- Clearly $W_B = W_{\overline{B}}$ holds, and W_B is an $(n, 2)^{th}$ perfect set;
Some notations

Two Part Complete Structure

- For a subset B of $[n]$, denote $W_B = \{x_ix_j \mid i, j \in B \text{ or } i, j \in B\}$;

- Clearly $W_B = W_{\overline{B}}$ holds, and W_B is an $(n, 2)^{th}$ perfect set;

- A subset A of $sm(S)_2$ is called satisfying *Two Part Complete Structure*, abbreviated as TPCS, if there exists a $B \subseteq [n]$, such that $W_B \subseteq A$;
Some notations

Two Part Complete Structure

- For a subset B of $[n]$, denote $W_B = \{x_i x_j \mid i, j \in B \text{ or } i, j \in \overline{B}\}$;

- Clearly $W_B = W_{\overline{B}}$ holds, and W_B is an $(n, 2)^{th}$ perfect set;

- A subset A of $sm(S)_2$ is called satisfying Two Part Complete Structure, abbreviated as TPCS, if there exists a $B \subseteq [n]$, such that $W_B \subseteq A$;

- If further $|B| = l$, then A is called satisfying l^{th} TPCS;
Two Part Complete Structure

- For a subset B of $[n]$, denote $W_B = \{x_i x_j \mid i, j \in B \text{ or } i, j \in \overline{B}\}$;

- Clearly $W_B = W_{\overline{B}}$ holds, and W_B is an $(n, 2)^{th}$ perfect set;

- A subset A of $\text{sm}(S)_2$ is called satisfying Two Part Complete Structure, abbreviated as TPCS, if there exists a $B \subseteq [n]$, such that $W_B \subseteq A$;

- If further $|B| = l$, then A is called satisfying l^{th} TPCS;

- An f-ideal I is called of l type, if $G(I)$ satisfies l^{th} TPCS;
Some notations

Two Part Complete Structure

- For a subset B of $[n]$, denote $W_B = \{x_ix_j \mid i, j \in B \text{ or } i, j \in \overline{B}\}$;

- Clearly $W_B = W_{\overline{B}}$ holds, and W_B is an $(n, 2)^{th}$ perfect set;

- A subset A of $sm(S)_2$ is called satisfying *Two Part Complete Structure*, abbreviated as TPCS, if there exists a $B \subseteq [n]$, such that $W_B \subseteq A$;

- If further $|B| = l$, then A is called satisfying l^{th} TPCS;

- An f-ideal I is called *of l type*, if $G(I)$ satisfies l^{th} TPCS;

- Denote by W_l the set of f-ideals of l type in S.
Some notations

Two Part Complete Structure

- For a subset B of $[n]$, denote $W_B = \{x_ix_j \mid i, j \in B \text{ or } i, j \in \overline{B}\}$;

- Clearly $W_B = W_{\overline{B}}$ holds, and W_B is an $(n, 2)^{th}$ perfect set;

- A subset A of $sm(S)_2$ is called satisfying Two Part Complete Structure, abbreviated as TPCS, if there exists a $B \subseteq [n]$, such that $W_B \subseteq A$;

- If further $|B| = l$, then A is called satisfying l^{th} TPCS;

- An f-ideal I is called of l type, if $G(I)$ satisfies l^{th} TPCS;

- Denote by W_l the set of f-ideals of l type in S.
Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals of degree d

$(n, 2)^{th}$ perfect number

Structure of $V(n, 2)$

Further works

References

ℓ type

Question:

Let $S = K[x_1, x_2, x_3, x_4, x_5]$. Consider the ideal $I = \langle x_1 x_2, x_2 x_3, x_3 x_4, x_4 x_5, x_1 x_5 \rangle$. It is direct to check that I is an f-ideal. But I is not of ℓ type for any ℓ.

Such kind of f-ideal of $K[x_1, x_2, x_3, x_4, x_5]$ is called C_5 (5-cycle).
Question:

Is there any f-ideal who is of no l type?

Example

Let $S = K[x_1, x_2, x_3, x_4, x_5]$. Consider the ideal $I = \langle x_1 x_2, x_2 x_3, x_3 x_4, x_4 x_5, x_1 x_5 \rangle$. It is direct to check that I is an f-ideal. But I is not of l type for any l. Such kind of f-ideal of $K[x_1, x_2, x_3, x_4, x_5]$ is called C_5 (5-cycle).
Question:

Is there any f-ideal who is of no l type?

Example

Let $S = K[x_1, x_2, x_3, x_4, x_5]$. Consider the ideal

$$I = \langle x_1x_2, x_2x_3, x_3x_4, x_4x_5, x_1x_5 \rangle$$
Is there any f-ideal who is of no l type?

Example

Let $S = K[x_1, x_2, x_3, x_4, x_5]$. Consider the ideal

$$I = \langle x_1x_2, x_2x_3, x_3x_4, x_4x_5, x_1x_5 \rangle$$

- It is direct to check that I is an f-ideal.
Question:
Is there any f-ideal who is of no l type?

Example

Let $S = K[x_1, x_2, x_3, x_4, x_5]$. Consider the ideal

$$I = \langle x_1x_2, x_2x_3, x_3x_4, x_4x_5, x_1x_5 \rangle$$

- It is direct to check that I is an f-ideal.
- but I is not of l type for any l.
Question:

Is there any f-ideal who is of no l type?

Example

Let $S = K[x_1,x_2,x_3,x_4,x_5]$. Consider the ideal

$$I = \langle x_1x_2, x_2x_3, x_3x_4, x_4x_5, x_1x_5 \rangle$$

- It is direct to check that I is an f-ideal.
- but I is not of l type for any l.
- Such kind of f-ideal of $K[x_1,x_2,x_3,x_4,x_5]$ is called C_5 (5-cycle).
Is there any f-ideal who is of no l type?

Example

Let $S = K[x_1, x_2, x_3, x_4, x_5]$. Consider the ideal

$$I = \langle x_1x_2, x_2x_3, x_3x_4, x_4x_5, x_1x_5 \rangle$$

- It is direct to check that I is an f-ideal.
- but I is not of l type for any l.
- Such kind of f-ideal of $K[x_1, x_2, x_3, x_4, x_5]$ is called C_5 (5-cycle).
Another question:
Another question:
Is there any other f-ideal who is of no l type?
Bijection τ

τ: From $2^{sm(S)_2}$ to the set of Graphs with n vertices.
Bijection τ

τ: From $2^{sm(S)}_2$ to the set of Graphs with n vertices.

- $A \subseteq sm(S)_2$, where $S = K[x_1, \ldots, x_n]$;
Bijection τ

τ: From $2^{sm(S)_2}$ to the set of Graphs with n vertices.

- $A \subseteq sm(S)_2$, where $S = K[x_1, \ldots, x_n]$;
- $T = \tau(A)$ is a graph whose vertices are v_1, \ldots, v_n;
Bijection τ

τ: From $2^{sm(S)}$ to the set of Graphs with n vertices.

- $A \subseteq sm(S)_2$, where $S = K[x_1, \ldots, x_n]$;
- $T = \tau(A)$ is a graph whose vertices are v_1, \ldots, v_n;
- $v_iv_j \in E(T)$ holds if and only if $x_ix_j \in A$, where $E(T)$ is the edge set of T.

Example: Let $S = K[x_1, x_2, x_3, x_4, x_5]$, and let $I = \langle x_1x_2, x_2x_3, x_3x_4, x_4x_5, x_5x_1 \rangle$.

Note that $\tau(G(I)) = v_1 - v_2 - v_3 - v_4 - v_5 - v_1$ is a 5-cycle.
Bijection τ

τ: From $2^{sm(S)}_2$ to the set of Graphs with n vertices.

- $A \subseteq sm(S)_2$, where $S = K[x_1, \ldots, x_n]$;
- $T = \tau(A)$ is a graph whose vertices are v_1, \ldots, v_n;
- $v_iv_j \in E(T)$ holds if and only if $x_ix_j \in A$, where $E(T)$ is the edge set of T.

Example
Bijection τ

τ: From $2^{sm(S)}_2$ to the set of Graphs with n vertices.

- $A \subseteq sm(S)_2$, where $S = K[x_1, \ldots, x_n]$;
- $T = \tau(A)$ is a graph whose vertices are v_1, \ldots, v_n;
- $v_iv_j \in E(T)$ holds if and only if $x_ix_j \in A$, where $E(T)$ is the edge set of T.

Example

Let $S = K[x_1, x_2, x_3, x_4, x_5]$, and let

$$I = \langle x_1x_2, x_2x_3, x_3x_4, x_4x_5, x_1x_5 \rangle.$$

Note that $\tau(G(I)) = v_1 - v_2 - v_3 - v_4 - v_5 - v_1$ is a 5-cycle.
Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets

and f-ideals

degrees d

$(n,2)^{th}$ perfect
number

Structure of

$V(n,2)$

Further works

References

Bijection τ

τ: From $2^{sm(S)_{2}}$ to the set of Graphs with n vertices.

- $A \subseteq sm(S)_{2}$, where $S = K[x_1, \ldots, x_n]$;
- $T = \tau(A)$ is a graph whose vertices are v_1, \ldots, v_n;
- $v_i v_j \in E(T)$ holds if and only if $x_i x_j \in A$, where $E(T)$ is the edge set of T.

Example

Let $S = K[x_1, x_2, x_3, x_4, x_5]$, and let

$$I = \langle x_1 x_2, x_2 x_3, x_3 x_4, x_4 x_5, x_1 x_5 \rangle.$$

Note that $\tau(G(I)) = v_1 - v_2 - v_3 - v_4 - v_5 - v_1$ is a 5-cycle.
Perfect set

Let $A \subseteq \mathcal{S}(S)_2$. Then the followings hold:

- A is upper perfect if and only if $\omega(\tau(A)) \leq 2$ holds, where $\tau(A)$ is the complement graph of $\tau(A)$.
- A is lower perfect if and only if for each $i \in \{n\}$, $d(v_i) < n - 1$ holds in the graph $\tau(G(I))$.

If I is an $(n, 2)^{th}$ f-ideal, then I is of l type for some $1 \leq l \leq \lfloor n/2 \rfloor$ if and only if $\tau(G(I))$ is a bipartite graph.
Perfect set

Let $A \subseteq sm(S)_2$. Then the followings hold:

- A is upper perfect if and only if $\omega(\overline{\tau(A)}) \leq 2$ holds, where $\tau(A)$ is the complement graph of $\tau(A)$.
Perfect set

Let $A \subseteq sm(S)_2$. Then the followings hold:

- A is upper perfect if and only if $\omega(\overline{\tau(A)}) \leq 2$ holds, where $\overline{\tau(A)}$ is the complement graph of $\tau(A)$.

- A is lower perfect if and only if for each $i \in [n]$, $d(v_i) < n - 1$ holds in the graph $\tau(A)$.

Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals of degree d

$(n, 2)^{th}$ perfect number

Structure of $V(n, 2)$

Further works

References
Perfect set

Let $A \subseteq sm(S)_2$. Then the followings hold:

- A is upper perfect if and only if $\omega(\overline{\tau(A)}) \leq 2$ holds, where $\overline{\tau(A)}$ is the complement graph of $\tau(A)$.

- A is lower perfect if and only if for each $i \in [n]$, $d(v_i) < n - 1$ holds in the graph $\overline{\tau(A)}$.

translation from combinatorics to graph theory
Perfect sets and f-ideals

Jin Guo

Outline

Introduction

Perfect sets and f-ideals

of degree d

$(n, 2)^{th}$

perfect number

Structure of $V(n, 2)$

Further works

References

Perfect set

Let $A \subseteq sm(S)_2$. Then the followings hold:

- A is upper perfect if and only if $\omega(\tau(A)) \leq 2$ holds, where $\tau(A)$ is the complement graph of $\tau(A)$.
- A is lower perfect if and only if for each $i \in [n]$, $d(v_i) < n - 1$ holds in the graph $\tau(A)$.

l type

If I is an $(n, 2)^{th}$ f-ideal, then I is of l type for some $1 \leq l \leq \lfloor n/2 \rfloor$ if and only if $\tau(G(I))$ is a bipartite graph.
Perfect set

Let $A \subseteq sm(S)_2$. Then the followings hold:

- A is upper perfect if and only if $\omega(\overline{\tau(A)}) \leq 2$ holds, where $\overline{\tau(A)}$ is the complement graph of $\tau(A)$.

- A is lower perfect if and only if for each $i \in [n]$, $d(v_i) < n - 1$ holds in the graph $\overline{\tau(A)}$.

l type

If I is an $(n, 2)^{th}$ f-ideal, then I is of l type for some $1 \leq l \leq \lfloor n/2 \rfloor$ if and only if $\tau(G(I))$ is a bipartite graph.
Four conditions

I is an $(n, 2)^{th}$ f-ideal which is not of l type for any l, if and only if $\tau(G(I))$ satisfies the following four conditions (abbreviated as FC in what follows):

1. For each $i \in [n]$, $d(v_i) < n - 1$ holds in $\tau(G(I))$.
2. $|E(\tau(G(I)))| = C_2^{2n^2}$.
3. $\omega(\tau(G(I))) = 2$.
4. $\tau(G(I))$ is not a bipartite graph.
Four conditions

I is an $(n, 2)^{th} f$-ideal which is not of l type for any l, if and only if $\tau(G(I))$ satisfies the following four conditions (abbreviated as FC in what follows):

- For each $i \in [n]$, $d(v_i) < n - 1$ holds in $\tau(G(I))$.
Four conditions

I is an $(n, 2)^{th}$ f-ideal which is not of l type for any l, if and only if $\tau(G(I))$ satisfies the following four conditions (abbreviated as FC in what follows):

- For each $i \in [n]$, $d(v_i) < n - 1$ holds in $\tau(G(I))$.
- $\omega(\tau(G(I))) = 2$.
Four conditions

I is an $(n, 2)^{th}$ f-ideal which is not of l type for any l, if and only if $\tau(G(I))$ satisfies the following four conditions (abbreviated as FC in what follows):

- For each $i \in [n]$, $d(v_i) < n - 1$ holds in $\tau(G(I))$.
- $\omega(\tau(G(I))) = 2$.
- $|E(\tau(G(I)))| = \frac{C_n^2}{2}$.
- $\tau(G(I))$ is not a bipartite graph.
Four conditions

I is an $(n,2)^{th}$ f-ideal which is not of l type for any l, if and only if $\tau(G(I))$ satisfies the following four conditions (abbreviated as FC in what follows):

- For each $i \in [n]$, $d(v_i) < n - 1$ holds in $\overline{\tau(G(I))}$.
- $\omega(\overline{\tau(G(I))}) = 2$.
- $|E(\overline{\tau(G(I))})| = \frac{C_n^2}{2}$.
- $\tau(G(I))$ is not a bipartite graph.
Four conditions

I is an $(n,2)^{th}$ f-ideal which is not of l type for any l, if and only if $\tau(G(I))$ satisfies the following four conditions (abbreviated as FC in what follows):

- For each $i \in [n]$, $d(v_i) < n - 1$ holds in $\tau(G(I))$.
- $\omega(\tau(G(I))) = 2$.
- $|E(\tau(G(I)))| = \frac{C_n^2}{2}$.
- $\tau(G(I))$ is not a bipartite graph.
Main result

Structure of $V(n, 2)$

If $n \neq 5$, then $V(n, 2) = \bigcup_{l=1}^{\lfloor n/2 \rfloor} W_l$, which is a mutually disjoint union of the W_l's.
Main result

Structure of $V(n, 2)$

If $n \neq 5$, then $V(n, 2) = \bigcup_{l=1}^{\lfloor n/2 \rfloor} W_l$, which is a mutually disjoint union of the W_l's.

Proof: Note that $V(n, 2) = \bigcup_{l=1}^{\lfloor n/2 \rfloor} W_l$ holds true, if and only if each f-ideal is of l type for some l; and the latter holds if and only if, there is no graph satisfying the FC. We will show that a graph will not satisfy condition (3) if it satisfies conditions (2) and (4), except for the case $n = 5$.
Main result

Assume that T is a graph satisfying conditions (2) and (4). Since T is not a bipartite graph, there exists at least an odd cycle in T. Assume that D is a minimal odd cycle of T, with $|V(D)| = 2i + 1$. Note that $\omega(T) = 2$, so $i \geq 2$. Denote by $|E(D)|$ the edge number of the subgraph induced on D, and denote by $|E(B, C)|$ the number of edges, each of which has end vertices in B and C respectively. It is clear that

$$|E(T)| = |E(D)| + |E(T \setminus D)| + |E(D, T \setminus D)|.$$ \hspace{1cm} \text{holds.}$$

Note that $|E(D)| = 2i + 1$ holds, since D is a minimal cycle. Since there exists no triangles in T, it is not hard to see that

$$|E(D, T \setminus D)| \leq (n - 2i - 1)i$$ \hspace{1cm} \text{holds, since D is an odd cycle. We will discuss $|E(T \setminus D)|$ in the following two subcases:}
Main result

If \(n = 2k \) for some positive \(k \), then \(|V(T \setminus D)| = 2k - 2i - 1 \) holds. It follows from Turan theorem that \(|E(T \setminus D)| \leq (k - i)(k - i - 1) \) hold, hence we get

\[
|E(T)| = |E(D)| + |E(T \setminus D)| + |E(D, T \setminus D)|
\leq (2i + 1) + (2k - 2i - 1)i + (k - i)(k - i - 1) = k^2 - k - i^2 + 2i + 1.
\]

Note that \(C^2_{2n}/2 = k^2 - k/2 \), thus

\[
C^2_{2n}/2 - |E(T)| \geq k/2 + i^2 - 2i - 1 = k/2 + (i - 1)^2 - 2
\]
holds. Since \(i \geq 2 \) and \(2k > 2i + 1 \), \(C^2_{2n}/2 - |E(T)| > 0 \) holds. This shows that there is no graph satisfying FC when \(n = 2k \).
Main result

If \(n = 2k + 1 \), then \(|V(T \setminus D)| = 2k - 2i \) holds. Again by Turan theorem, \(|E(T \setminus D)| \leq (k - i)^2 \) holds, hence we have

\[
|E(T)| = |E(D)| + |E(T \setminus D)| + |E(D, T \setminus D)|
\]

\[
\leq (2i + 1) + (2k - 2i)i + (k - i)^2 = k^2 - i^2 + 2i + 1.
\]

Note that \(C_n^2/2 = k^2 + k/2 \), thus

\[
C_n^2/2 - |E(T)| \geq k/2 + i^2 - 2i - 1 = k/2 + (i - 1)^2 - 2
\]

holds true. Then we have \(C_n^2/2 - |E(T)| \geq 0 \), since \(i \geq 2 \) and \(k \geq i \) hold by assumption. Note further that the equality holds if and only if \(k = i = 2 \). Thus in this case, there is no graph satisfying FC except \(n = 5 \). This completes the proof.
Let k be a positive integer. Then the following equalities hold true:

- $V(n, 2) = \bigcup_{0 \leq i \leq \sqrt{k}} W_{2k-i}$, if $n = 4k$;
Structure of $V(n, 2)$

Let k be a positive integer. Then the following equalities hold true:

1. $V(n, 2) = \bigcup_{0 \leq i \leq \sqrt{k}} W_{2k-i}$, if $n = 4k$;
2. $V(n, 2) = \bigcup_{0 \leq i \leq \sqrt{1+4k-1}/2} W_{2k-i}$, if $n = 4k + 1 (k \neq 1)$;
Structure of $V(n, 2)$

Let k be a positive integer. Then the following equalities hold true:

- $V(n, 2) = \bigcup_{0 \leq i \leq \sqrt{k}} W_{2k-i}$, if $n = 4k$;
- $V(n, 2) = \bigcup_{0 \leq i \leq \frac{\sqrt{1+4k}-1}{2}} W_{2k-i}$, if $n = 4k + 1 (k \neq 1)$;
- $V(n, 2) = W_2 \cup C_5$, if $n = 5$;
Structure of $V(n, 2)$

Let k be a positive integer. Then the following equalities hold true:

- $V(n, 2) = \bigcup_{0 \leq i \leq \sqrt{k}} W_{2k-i}$, if $n = 4k$;
- $V(n, 2) = \bigcup_{0 \leq i \leq \frac{\sqrt{1+4k}-1}{2}} W_{2k-i}$, if $n = 4k + 1 (k \neq 1)$;
- $V(n, 2) = W_2 \cup C_5$, if $n = 5$;
- $V(n, 2) = \emptyset$, if $n = 4k + 2$ or $n = 4k + 3$.
Structure of $V(n, 2)$

Let k be a positive integer. Then the following equalities hold true:

1. $V(n, 2) = \bigcup_{0 \leq i \leq \sqrt{k}} W_{2k-i}$, if $n = 4k$;
2. $V(n, 2) = \bigcup_{0 \leq i \leq \sqrt{\frac{1+4k-1}{2}}} W_{2k-i}$, if $n = 4k + 1 (k \neq 1)$;
3. $V(n, 2) = W_2 \cup C_5$, if $n = 5$;
4. $V(n, 2) = \emptyset$, if $n = 4k + 2$ or $n = 4k + 3$.

Cardinality of $V(n, 2)$

Let k be a positive integer. Then the following equalities hold true:

- $|V(n, 2)| = \frac{1}{2} \binom{2k}{4k} \binom{k}{4k^2} + \sum_{1 \leq i \leq \sqrt{k}} \binom{2k-i}{4k} \binom{k-i^2}{4k^2-i^2}$, if $n = 4k$;
Cardinality of $V(n, 2)$

Let k be a positive integer. Then the following equalities hold true:

- $|V(n, 2)| = \frac{1}{2} C_{4k}^{2k} C_{4k^2}^{k} + \sum_{1 \leq i \leq \sqrt{k}} C_{4k}^{2k-i} C_{4k^2-i^2}^{k-i^2}$, if $n = 4k$;

- $|V(n, 2)| = \sum_{0 \leq i \leq \frac{\sqrt{1+4k}-1}{2}} C_{4k+1}^{2k-i} C_{4k^2+2k-i-i^2}^{k-i-i^2}$, if $n = 4k + 1$ ($k \neq 1$).
Cardinality of $V(n, 2)$

Let k be a positive integer. Then the following equalities hold true:

- $|V(n, 2)| = \frac{1}{2} \binom{2k}{4k} \binom{k}{4k^2} + \sum_{1 \leq i \leq \sqrt{k}} \binom{2k-i}{4k} \binom{k-i^2}{4k^2-i^2}$, if $n = 4k$;

- $|V(n, 2)| = \sum_{0 \leq i \leq \frac{\sqrt{1+4k-1}}{2}} \binom{2k-i}{4k+1} \binom{k-i^2}{4k^2+2k-i^2}$, if $n = 4k + 1 (k \neq 1)$;

- $|V(n, 2)| = 72$, if $n = 5$;
Let k be a positive integer. Then the following equalities hold true:

- $|V(n, 2)| = \frac{1}{2} C_{4k}^{2k} C_{4k^2}^{k} + \sum_{1 \leq i \leq \sqrt{k}} C_{4k}^{2k-i} C_{4k^2-i^2}^{k-i^2}$, if $n = 4k$;

- $|V(n, 2)| = \sum_{0 \leq i \leq \sqrt{1+4k+1} - 1} C_{4k+1}^{2k-i} C_{4k^2+2k-i^2}^{k-i^2-i^2}$, if $n = 4k + 1 (k \neq 1)$;

- $|V(n, 2)| = 72$, if $n = 5$;

- $|V(n, 2)| = 0$, if $n = 4k + 2$ or $n = 4k + 3$.

Cardinality of $V(n, 2)$
Cardinality of $V(n, 2)$

Let k be a positive integer. Then the following equalities hold true:

- $|V(n, 2)| = \frac{1}{2} C_{4k}^{2k} C_{4k^2}^k + \sum_{1 \leq i \leq \sqrt{k}} C_{4k}^{2k-i} C_{4k^2-i^2}^k$, if $n = 4k$;

- $|V(n, 2)| = \sum_{0 \leq i \leq \frac{\sqrt{1+4k} - 1}{2}} C_{4k+1}^{2k-i} C_{4k^2+2k-i-i^2}^k$, if $n = 4k + 1$ ($k \neq 1$);

- $|V(n, 2)| = 72$, if $n = 5$;

- $|V(n, 2)| = 0$, if $n = 4k + 2$ or $n = 4k + 3$.
In general, an f-ideal may be not unmixed. But when $d = 2$, we have:
In general, an f-ideal may be not unmixed. But when $d = 2$, we have:

f-ideals of degree 2 is unmixed

If I is an f-ideal, then I is unmixed.
Other results

In general, an f-ideal may be not unmixed. But when $d = 2$, we have:

f-ideals of degree 2 is unmixed

If I is an f-ideal, then I is unmixed.

Corresponding to $V(n, 2) \neq \emptyset$, we have:

$V(n, d) \neq \emptyset$

For any integer $d \geq 2$ and any integer $n \geq d + 2$ such that $2 \mid C^d_n$, $V(n, d) \neq \emptyset$.
Other results

Denote $G(I) = \bigcup_{i=1}^{k} G_{d_i}$, in which G_{d_i} consists of the generators of degree d_i.
Denote $G(I) = \bigcup_{i=1}^{k} G_{d_i}$, in which G_{d_i} consists of the generators of degree d_i.

f-ideals in general case

Let I be a square-free monomial ideal of $S = K[x_1, \ldots, x_n]$, with the minimal generating set $G(I) = \bigcup_{i=1}^{k} G_{d_i}$. Then I is an f-ideal if and only if

$$|G_l| = \frac{1}{2} \left(C_n^l - |\bigcup_{d_i > l} \left(\bigcap_{d_i}^{d_i - l} (G_{d_i}) \right) | - |\bigcup_{d_i < l} \left(\bigcup_{l-d_i}^{l-d_i} (G_{d_i}) \right) | \right)$$

holds for each $l \in [n]$.

Other results

unmixed f-ideals

I is an $(n, d)^{th}$ unmixed f-ideal if and only if

$|G(I)| = C_{n}^{d}/2;$
Other results

unmixed \(f \)-ideals

\(I \) is an \((n, d)^{th}\) unmixed \(f \)-ideal if and only if
- \(|G(I)| = C_n^d / 2; \)
- \(G(I) \) is perfect;
unmixed f-ideals

I is an $(n, d)^{th}$ unmixed f-ideal if and only if
- $|G(I)| = C^d_n/2$;
- $G(I)$ is perfect;
- $\langle \sigma(u) \mid u \in sm(S)_d \setminus G(I) \rangle$ is a d-flag complex.
Other results

unmixed f-ideals

I is an $(n, d)^{th}$ unmixed f-ideal if and only if

- $|G(I)| = C^d_n/2$;
- $G(I)$ is perfect;
- $sm(S)_d \setminus G(I)$ is lower perfect.
Other results

unmixed \(f \)-ideals

\(I \) is an \((n, d)^{th}\) unmixed \(f \)-ideal if and only if

1. \(|G(I)| = \frac{C_n^d}{2} \);
2. \(G(I) \) is perfect;
3. \(sm(S)_d \setminus G(I) \) is lower perfect.

if and only if

\(|G(I)| = \frac{C_n^d}{2} \);
Other results

unmixed f-ideals

I is an $(n, d)^{th}$ unmixed f-ideal if and only if

- $|G(I)| = C_n^d/2$;
- $G(I)$ is perfect;
- $sm(S)_d \setminus G(I)$ is lower perfect.

if and only if

- $|G(I)| = C_n^d/2$;
- $ldeg(I_{\sigma(G(I))}) = d$;
unmixed f-ideals

I is an $(n, d)^{th}$ unmixed f-ideal if and only if

- $|G(I)| = C_{n}^{d}/2$;

- $G(I)$ is perfect;

- $sm(S)_{d} \setminus G(I)$ is lower perfect.

if and only if

- $|G(I)| = C_{n}^{d}/2$;

- $ldeg(I_{\sigma(G(I))}) = d$;

- $\langle \sigma(u) \mid u \in sm(S)_{d} \setminus G(I) \rangle$ is a d-flag complex.
Other results

unmixed f-ideals

I is an $(n, d)^{th}$ unmixed f-ideal if and only if
- $|G(I)| = C_n^d / 2$;
- $G(I)$ is perfect;
- $sm(S)_d \setminus G(I)$ is lower perfect.

if and only if
- $|G(I)| = C_n^d / 2$;
- $ldeg(I_{\sigma(G(I))}) = d$;
- $\langle \sigma(u) | u \in sm(S)_d \setminus G(I) \rangle$ is a d-flag complex.
Further works

Questions

- How to calculate the perfect number $N_{(n,d)}$?
Further works

Questions

- How to calculate the perfect number $N(n,d)$?
- What about the structure of $V(n,d)$?
Further works

Questions

- How to calculate the perfect number $N_{(n,d)}$?
- What about the structure of $V(n,d)$?
- What about nonhomogeneous f-ideal?
Questions

- How to calculate the perfect number $N_{(n,d)}$?
- What about the structure of $V(n,d)$?
- What about nonhomogeneous f-ideal?
References

Thank you!!!

Author: Guo Jin
Address: Department of Mathematics
Shanghai Jiaotong University
Shanghai, 200240, China
Email: guojinecho@163.com