On a class of squarefree monomial ideals of linear type

Yi-Huang Shen

University of Science and Technology of China

Shanghai / November 2, 2013
Let \mathbb{K} be a field and $S = \mathbb{K}[x_1, \ldots, x_n]$ a polynomial ring of n variables. A monomial $x^a := x_1^{a_1}x_2^{a_2} \cdots x_n^{a_n} \in S$ is squarefree if each $a_i \in \{0, 1\}$. Its degree is $\deg(x^a) = a_1 + \cdots + a_n$. An ideal I of S is squarefree if it can be (minimally) generated by a (finite and unique) set of squarefree monomials. A squarefree monomial ideal of degree 2 (i.e., a quadratic monomial ideal) is a squarefree monomial ideal whose minimal monomial generators are all of degree 2.
Two ways to connect squarefree monomial ideals to combinatorial objects

1. I is the Stanley-Reisner ideal of some simplicial complex.
2. I is the facet ideal of another simplicial complex. Equivalently, I is the (hyper)edge ideal of some clutter.

Definition

Let V be a finite set. A clutter C with vertex set $V(C) = V$ consists of a set $E(C)$ of subsets of V, called the edges of C, with the property that no edge contains another. Clutters are special hypergraphs.

- Squarefree ideals of degree 2 \Leftrightarrow (finite simple) graphs.
- Squarefree ideals of higher degree \Leftrightarrow clutters of higher dimension.
Examples

Example (1)

\[\langle x_1 x_2, x_2 x_5, x_3 x_5, x_1 x_3, x_1 x_4 \rangle \subset \mathbb{K}[x_1, \ldots, x_5]. \]

Example (2)

\[\langle x_1 x_2 x_5 x_6, x_2 x_3 x_7 x_8, x_3 x_4 x_9 x_{10}, x_1 x_4 x_{11} x_{12}, x_3 x_8 x_9 \rangle \subset \mathbb{K}[x_1, \ldots, x_{12}]. \]
Interplay between combinatorics and commutative algebra

Commutative algebra \Rightarrow combinatorics

E.g., Richard Stanley’s proof of the **Upper Bound Conjecture** for simplicial spheres by means of the theory of Cohen-Macaulay rings.

Combinatorics \Rightarrow commutative algebra

E.g., if G is a graph and each of its connected components has at most one odd cycle (i.e., each component either has no cycle, or has no even cycle), then its edge ideal $I(G)$ is of **linear type**.
Let S be a Noetherian ring and I an S-ideal. The **Rees algebra of I** is the subring of the ring of polynomials $S[t]$

$$\mathcal{R}(I) := S[lt] = \bigoplus_{i \geq 0} I^i t^i.$$

Analogously, one has $\text{Sym}(I)$, the **symmetric algebra of I** which is obtained from the tensor algebra of I by imposing the commutative law.

There is a canonical surjection $\Phi: \text{Sym}(I) \twoheadrightarrow \mathcal{R}(I)$. When the canonical map Φ is an isomorphism, I is called an ideal of **linear type**.
The symmetric algebra $\text{Sym}(I)$ is equipped with an S-Module homomorphism $\pi: I \rightarrow \text{Sym}(I)$ which solves the following universal problem. For a commutative S-algebra B and any S-module homomorphism $\varphi: I \rightarrow B$, there exists a unique S-algebra homomorphism $\Phi: \text{Sym}(I) \rightarrow B$ such that the diagram

$$
\begin{array}{ccc}
I & \xrightarrow{\varphi} & B \\
\downarrow{\pi} & & \uparrow{\Phi} \\
\text{Sym}(I) & &
\end{array}
$$

is commutative.
Suppose $I = \langle f_1, \ldots, f_s \rangle$ and consider the S-linear presentation
\[\psi : S[T] := S[T_1, \ldots, T_s] \to S[lt]\]
defined by setting $\psi(T_i) = f_it$. Since this map is homogeneous, the kernel $J = \bigoplus_{i \geq 1} J_i$ is a graded ideal; it will be called the \textbf{defining ideal} of $\mathcal{R}(I)$ (with respect to this presentation). Since the linear part J_1 generates the defining ideal of $\text{Sym}(R)$, I is of linear type if and only if $J = \langle J_1 \rangle$.

The maximal degree in T of the minimal generators of the defining ideal J is called the \textbf{relation type} of I.
Example of defining ideals

Example (3)

Let $S = \mathbb{K}[x_1, \ldots, x_7]$ and I be the ideal of S generated by $f_1 = x_1x_2x_3$, $f_2 = x_2x_4x_5$, $f_3 = x_5x_6x_7$ and $f_4 = x_3x_6x_7$. Then the defining ideal is minimally generated by $x_3T_3 - x_5T_4$, $x_6x_7T_1 - x_1x_2T_4$, $x_6x_7T_2 - x_2x_4T_3$, $x_4x_5T_1 - x_1x_3T_2$ and $x_4T_1T_3 - x_1T_2T_4$.

Check for $x_4T_1T_3 - x_1T_2T_4$:

$$x_4T_1T_3 \mapsto x_4(x_1x_2x_3t)(x_5x_6x_7t),$$
$$x_1T_2T_4 \mapsto x_1(x_2x_4x_5t)(x_3x_6x_7t).$$

This minimal generator of the defining ideal is of degree 2 in T. Thus the ideal I is not of linear type. Indeed, its relation type is 2.
The defining ideal of squarefree monomial ideals are always binomial, i.e., are generated by binomials.

Theorem (Taylor)

Suppose I is minimally generated by monomials f_1, \ldots, f_s. Let \mathcal{I}_k be the set of non-decreasing sequence of integers in $\{1, 2, \ldots, s\}$ of length k. If $\alpha = (i_1, i_2, \ldots, i_k) \in \mathcal{I}_k$, set $f_{\alpha} = f_{i_1} \cdots f_{i_k}$ and $T_{\alpha} = T_{i_1} \cdots T_{i_k}$. For every $\alpha, \beta \in \mathcal{I}_k$, set

$$T_{\alpha, \beta} = \frac{f_{\beta}}{\gcd(f_{\alpha}, f_{\beta})} T_{\alpha} - \frac{f_{\alpha}}{\gcd(f_{\alpha}, f_{\beta})} T_{\beta}.$$

Then the defining ideal J is generated by these $T_{\alpha, \beta}$’s with $\alpha, \beta \in \mathcal{I}_k$ and $k \geq 1$.
How to compute?

- **Q**: How to compute the defining ideal? **A**: Gröbner basis theory.
- **Q**: How to check the minimality? **A**: Gröbner basis theory.

Websites:
- Macaulay2 → http://www.math.uiuc.edu/Macaulay2/
- Singular → http://www.singular.uni-kl.de/
- CoCoA System → http://cocoa.dima.unige.it/

Example (2, continued)

\[
\langle x_1x_2x_5x_6, x_2x_3x_7x_8, x_3x_4x_9x_{10}, x_1x_4x_{11}x_{12}, x_3x_8x_9 \rangle \subset K[x_1, \ldots, x_{12}]
\]

is of linear type.
Macaulay 2 codes for Example 2

```
[10:31:27] [2013SJTU]$ M2
Macaulay2, version 1.6
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,
PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : S=QQ[x_1..x_12]
o1 = S
o1 : PolynomialRing

i2 : I = monomialIdeal(x_1*x_2*x_5*x_6,x_2*x_3*x_7*x_8,x_3*x_4*x_9*x_10,
x_1*x_4*x_11*x_12,x_3*x_8*x_9)
o2 = monomialIdeal (x x x , x x x x , x x x x , x x x , x x x x , x x x )
    1 2 5 6   2 3 7 8   3 8 9   3 4 9 10   1 4 11 12
o2 : MonomialIdeal of S

i3 : isLinearType ideal I
o3 = true
```
Singular codes for Example 3

> LIB "reesclos.lib";
> ring S=0,(x(1..7)),dp;
> ideal I=x(1)*x(2)*x(3),x(2)*x(4)*x(5), x(5)*x(6)*x(7),
 x(3)*x(6)*x(7);
> list L=ReesAlgebra(I);
> def Rees=L[1];
> setring Rees;
> Rees;
// characteristic : 0
// number of vars : 11
// block 1 : ordering dp
// : names x(1) x(2) x(3) x(4) x(5) x(6) x(7)
// U(1) U(2) U(3) U(4)
// block 2 : ordering C
> ker;
ker[1]=x(3)*U(3)-x(5)*U(4)
ker[2]=x(4)*U(1)*U(3)-x(1)*U(2)*U(4)
ker[3]=x(6)*x(7)*U(2)-x(2)*x(4)*U(3)
ker[4]=x(6)*x(7)*U(1)-x(1)*x(2)*U(4)
ker[5]=x(4)*x(5)*U(1)-x(1)*x(3)*U(2)
> ideal NewVars=U(1),U(2),U(3),U(4);
> ideal LI=reduce(ker,std(NewVars^2));
> LI;
LI[1]=x(3)*U(3)-x(5)*U(4)
LI[2]=0
LI[3]=x(6)*x(7)*U(2)-x(2)*x(4)*U(3)
LI[4]=x(6)*x(7)*U(1)-x(1)*x(2)*U(4)
LI[5]=x(4)*x(5)*U(1)-x(1)*x(3)*U(2)
> reduce(ker, std(LI));
_[1]=0
_[2]=x(4)*U(1)*U(3)-x(1)*U(2)*U(4)
_[3]=0
_[4]=0
_[5]=0
Theorem (Villarreal)

Let \mathcal{G} be a connected graph and $I = I(\mathcal{G})$ its edge ideal. Then I is an ideal of linear type if and only if \mathcal{G} is a tree or \mathcal{G} has a unique cycle of odd length. This result is independent of the characteristic of the base field K.

Example (4)

The Stanley-Reisner ring of the real projective plane is Cohen-Macaulay if and only if the characteristic of the base field is not 2.
Definition (Generator graph)

Let I be a squarefree monomial ideal whose minimal monomial generating set is $\{ f_1, \ldots, f_s \}$. Let G be a graph whose vertices v_i corresponds to f_i respectively and two vertices v_i and v_j are adjacent if and only if the two monomials f_i and f_j have a non-trivial GCD. This graph G is called the **generator graph** of I.

Theorem (Fouli and Lin)

When I is a squarefree monomial ideal and the generator graph of I is the graph of a disjoint union of trees and graphs with a unique odd cycle, then I is an ideal of linear type.
Let I be a monomial ideal in $S = \mathbb{K}[x_1, \ldots, x_n]$. Let x_{n+1} be a new variable with $S' = \mathbb{K}[x_1, \ldots, x_n, x_{n+1}]$. Then I is a squarefree monomial ideal if and only if $I' = I \cdot x_{n+1}$ is so. And I is of linear type if and only if I' is so. Indeed, I' and I will have essentially identical defining ideals. However, the generator graph of I' is a complete graph.
Leaves and quasi-forests

Definition
Let \(\Delta \) be a clutter. The edge \(F \) of \(\Delta \) is a leaf of \(\Delta \) if there exists an edge \(G \) such that \((H \cap F) \subseteq (G \cap F) \) for all edges \(H \in \Delta \). The edge \(G \) is called a branch or joint of \(F \).

Definition
A clutter \(\Delta \) is called a quasi-forest if there exists a total order of the edges \(\{ F_1, \ldots, F_m \} \) such that \(F_i \) is a leaf of the sub-clutter \(\langle F_1, \ldots, F_i \rangle \) for all \(i = 1, \ldots, m \). This order is called a leaf order of the quasi-forest. A connected quasi-forest is called a quasi-tree.
Forests

Definition

A (simplicial) forest is a clutter Δ which enjoys the property that for every subset $\{F_{i_1}, \ldots, F_{i_q}\}$ of $\mathcal{F}(\Delta)$ the sub-clutter $\langle F_{i_1}, \ldots, F_{i_q} \rangle$ of Δ has a leaf. A tree is a forest which is connected.

Facts

1. Edge ideals of forests are always of linear type.
2. Edge ideals of quasi-forests are not necessarily of linear type.
Example

This is a quasi-tree, but not a tree. Its edge ideal

\[\langle x_1x_2x_3x_4, x_1x_4x_5, x_1x_2x_8, x_2x_3x_7, x_3x_4x_6 \rangle \]

is not of linear type.
An edge F of the clutter Δ is called a **good leaf** if this F is a leaf of each sub-clutter Γ of Δ to which F belongs. An order F_1, \ldots, F_s of the edges is called a **good leaf order** if F_i is a good leaf of $\langle F_1, \ldots, F_i \rangle$ for each $i = 1, \ldots, s$.

It is known that a clutter is a forest if and only if it has a good leaf order.
Theorem (Shen)

Suppose Δ is a clutter which is obtained from the clutter Δ' by adding a good leaf. If the edge ideal of Δ' is of linear type, then the edge ideal of Δ also shares this property.

Tools: Gröbner basis. This result reproves the fact that the edge ideals of forests are of linear type.

Question: Is the converse true?

Suppose Δ is a clutter which is obtained from the clutter Δ' by adding a good leaf. If the edge ideal of Δ is of linear type, does the edge ideal of Δ' also share this property?
Theorem (Conca and De Negri)

If I is a monomial ideal which is generated by an M-sequence, then I is of linear type.

Facts

The monomial ideal I is generated by an M-sequence if and only if this I is of forest type (in the sense of Soleyman Jahan and Zheng). In particular, when I is squarefree, I is generated by an M-sequence if and only if it is the edge ideal of a simplicial forest, and this M-sequence corresponds to the good leaf order of the forest.
Simplicial cycles

Definition

A clutter Δ is called a **simplicial cycle** or simply a **cycle** if Δ has no leaf but every nonempty proper sub-clutter of Δ has a leaf.

This definition is more restrictive than the classic definition of (hyper)cycles of hypergraphs due to Berge.

Fact

If Δ is a simplicial cycle. Then

1. either the generator graph of the edge ideal of Δ is a cycle, or,
2. Δ is a cone over such a structure.
Definition

Let \mathcal{V} be the class of clutters minimal with respect to the following properties:

- Disjoint simplicial cycles of odd lengths are in \mathcal{V}, with simplexes being considered as simplicial cycles of length 1.
- \mathcal{V} is closed under the operation of attaching good leaves.

We shall call \mathcal{V} the *Villarreal class*. When a clutter Δ is in \mathcal{V}, we say Δ and its edge ideal $I(\Delta)$ are *of Villarreal type*.

Theorem (Shen)

Squarefree monomial ideals of Villarreal type are of linear type (but not vice versa).
Δ is not a simplicial cycle and has no leaves. It is not of Villarreal type, but its edge ideal is of linear type. On the other hand, the ideal of $\tilde{\Delta}$ is not of linear type.
This Δ' is a simplicial cycle of length 4. Both Δ and $\tilde{\Delta}$ are obtained from Δ by attaching new edges. The \tilde{G} in $\tilde{\Delta}$ introduces a new vertex while the Γ in Δ does not. The Γ is a patch attached to Δ' connecting the adjacent edges F_2 and F_3.

Theorem (Shen)

Suppose Δ' is a simplicial cycle of even length and Δ is obtained from Δ' by attaching a patch. Then the edge ideal of Δ is of linear type.

Further reading

Thank you!

Yi-Huang Shen (yhshen@ustc.edu.cn)