Hamiltnocity of prisms over graphs

Moshe Rosenfeld
Institute of Technology
University of Washington, Tacoma

June 29, 2013
What is a prism over a graph?
Contents

Polyhedral graphs
Contents

1 Polyhedral graphs

2 Motivations
Prisms

Contents

1. Polyhedral graphs
2. Motivations
3. Hamiltonian decomposition of prisms over cubic graphs.
Contents

1. Polyhedral graphs
2. Motivations
3. Hamiltonian decomposition of prisms over cubic graphs.
Contents

1 Polyhedral graphs
2 Motivations
3 Hamiltonian decomposition of prisms over cubic graphs.
4 A Hamiltonian hierarchy: Hamiltonian cycles in prisms.
5 A sample of results and open problems.
Definition

A graph G is d-polyhedral if it is the 1-skeleton of a d-dimensional polytope.
Polyhedral graphs

Definition

A graph G is **d-polyhedral** if it is the 1-skeleton of a d-dimensional polytope.

1. A 3-polyhedral graph (3-polytope) is a 3-connected, planar graph (Steinitz, 1934)
A graph G is **d-polyhedral** if it is the 1-skeleton of a d-dimensional polytope.

1. A 3-polyhedral graph (3-polytope) is a 3-connected, planar graph (Steinitz, 1934)

2. No characterization of k-polyhedral graphs for $k \geq 4$ is known
Polyhedral graphs

Definition

A graph G is d-polyhedral if it is the 1-skeleton of a d-dimensional polytope.

1. A 3-polyhedral graph (3-polytope) is a 3-connected, planar graph (Steinitz, 1934)
2. No characterization of k-polyhedral graphs for $k \geq 4$ is known
3. The complete graph K_n is k-polyhedral for all $k \geq 4$.
A graph G is d-polyhedral if it is the 1-skeleton of a d-dimensional polytope.

1. A 3-polyhedral graph (3-polytope) is a 3-connected, planar graph (Steinitz, 1934)
2. No characterization of k-polyhedral graphs for $k \geq 4$ is known
3. The complete graph K_n is k-polyhedral for all $k \geq 4$.
4. The prisms over k-polyhedral graphs are $(k+1)$-polyhedral.
A k-polyhedral graph is k-connected.
A k-polyhedral graph is k-connected.

Every graph is an induced subgraph of k-polyhedral graphs for \(k \geq 4 \).
A k-polyhedral graph is k-connected.

Every graph is an induced subgraph of k-polyhedral graphs for $k \geq 4$.

Tutte’s theorem:
Polyhedral graphs

1. A k-polyhedral graph is k-connected.

2. Every graph is an induced subgraph of k-polyhedral graphs for $k \geq 4$.

3. Tutte’s theorem:

4. A 4-connected planar graph is Hamiltonian.
A k-polyhedral graph is k-connected.

Every graph is an induced subgraph of k-polyhedral graphs for $k \geq 4$.

Tutte’s theorem:

A 4-connected planar graph is Hamiltonian.

Note that a planar graph of order n has at most $3n - 6$ edges, a sparse graph, so it should be surprising that it is Hamiltonian.
Prisms over cubic graphs

It turned out that planarity was not a factor: the prism over cubic, 3-connected graphs are Hamiltonian (Paulraja (1993), R.Cada, T. Kaiser, M.R. & Z. Ryjacek (2001))
It turned out that planarity was not a factor: the prism over cubic, 3-connected graphs are Hamiltonian (Paulraja (1993), R.Cada, T. Kaiser, M.R. & Z. Ryjacek (2001))

The main tool was the even-cactus:
The proof consists of two steps:

1. Every 2-connected subcubic graph has a spanning cactus.
2. Every 3-connected cubic graph has a spanning 2-connected bipartite subcubic graph.
The proof consists of two steps:

1. Every 2-connected subcubic graph has a spanning cactus.
The proof consists of two steps:

1. Every 2-connected subcubic graph has a spanning cactus.

2. Every 3-connected cubic graph has a spanning 2-connected bipartite sub-cubic graph.
In 1986 with Brian Alspach we observed that many prisms over 3-connected cubic graphs as well as some other simple 4-polytopes actually admit a Hamiltonian decomposition.
Observation

In 1986 with Brian Alspach we observed that many prisms over 3-connected cubic graphs as well as some other simple 4-polytopes actually admit a Hamiltonian decomposition.

1. Cubic graphs with a factorization such that every two factors form a hamiltonian cycle.
Observation

In 1986 with Brian Alspach we observed that many prisms over 3-connected cubic graphs as well as some other simple 4-polytopes actually admit a Hamiltonian decomposition.

1. Cubic graphs with a factorization such that every two factors form a hamiltonian cycle.

In 1986 with Brian Alspach we observed that many prisms over 3-connected cubic graphs as well as some other simple 4-polytopes actually admit a Hamiltonian decomposition.

1. Cubic graphs with a factorization such that every two factors form a hamiltonian cycle.

3. The duals of the 4-dimensional cyclic polytope.
Hamiltonian decomposition

Observation

In 1986 with Brian Alspach we observed that many prisms over 3-connected cubic graphs as well as some other simple 4-polytopes actually admit a Hamiltonian decomposition.

1. Cubic graphs with a factorization such that every two factors form a hamiltonian cycle.
3. The duals of the 4-dimensional cyclic polytope.
4. The duals of 4-dimensional stacked polytopes.
In 1986 with Brian Alspach we observed that many prisms over 3-connected cubic graphs as well as some other simple 4-polytopes actually admit a Hamiltonian decomposition.

1. Cubic graphs with a factorization such that every two factors form a hamiltonian cycle.
3. The duals of the 4-dimensional cyclic polytope.
4. The duals of 4-dimensional stacked polytopes.
5. Petersen’s graph.
The dual of cyclic polytopes

The dual of a d-polytope P is a d-polytope P^* in which the facets of P correspond to vertices of P^* such that two vertices of P^* are connected by an edge if and only if the two corresponding facets have a $d - 2$ dimensional face in common.
The dual of cyclic polytopes

The dual of a d-polytope P is a d-polytope P^* in which the facets of P correspond to vertices of P^* such that two vertices of P^* are connected by an edge if and only if the two corresponding facets have a $d-2$ dimensional face in common.

The cyclic polytope in R^4 is obtained by taking the convex hull of n points on the moment curve $\{(1, t, t^2, t^3)\}$. The graph of its dual can be described combinatorially using Gale’s evenness condition:
The dual of cyclic polytopes

The dual of a d-polytope P is a d-polytope P^* in which the facets of P correspond to vertices of P^* such that two vertices of P^* are connected by an edge if and only if the two corresponding facets have a $d - 2$ dimensional face in common.

The cyclic polytope in R^4 is obtained by taking the convex hull of n points on the moment curve $\{(1, t, t^2, t^3)\}$. The graph of its dual can be described combinatorially using Gale’s evenness condition:

$$V(G) = \{[i, j, k, m] \mid 1 \leq i < j < k < m \leq n\}$$

such that any integers $a, b \not\in \{i, j, k, m\}$ are separated by an even number of integers from $\{i, j, k, m\}$.

$$E(G) = \{(A, B) \mid |A \cap B| = 3\}.$$
The dual of cyclic polytopes

The dual of a d-polytope P is a d-polytope P^* in which the facets of P correspond to vertices of P^* such that two vertices of P^* are connected by an edge if and only if the two corresponding facets have a $d - 2$ dimensional face in common.

The cyclic polytope in R^4 is obtained by taking the convex hull of n points on the moment curve $\{(1, t, t^2, t^3)\}$. The graph of its dual can be described combinatorially using Gale’s evenness condition:

$$V(G) = \{[i, j, k, m] \mid 1 \leq i < j < k < m \leq n\}$$ such that any integers $a, b \notin \{i, j, k, m\}$ are separated by an even number of integers from $\{i, j, k, m\}$.

$$E(G) = \{(A, B) \mid |A \cap B| = 3\}.$$

It is not difficult to check that this graph is 4-regular and 4-connected.
We need to find two even cacti that share the even cycles, disjoint green edges that include all edges.
Petersen’s Hamiltonian decomposition

The prism over Petersen’s graph

Start with a C_8
Petersen's Hamiltonian decomposition

The first prism over Petersen’s graph

The first Cactus and the Hamiltonian cycle generated by it.
The complementary Cactus and the Hamiltonian cycle

1 – 5 – 4 – 10 – 6 – 7 — 8 – 9 3 – 2 – 1
 | |
 9 – 2 – 1 – 6 – 10 – 4 – 5 – 8 – 7 – 3
What makes (made) a problem famous?
What makes (made) a problem famous?

Moshe Rosenfeld Institute of Technology University of Washington

Hamiltonicity of prisms over graphs
Nash Williams conjectured in 1970 that 4-regular, 4-connected graphs are Hamilton decomposable.
Nash Williams conjectured in 1970 that 4-regular, 4-connected graphs are Hamilton decomposable.

He was wrong, Meredith’s construction.
1 Nash Williams conjectured in 1970 that 4-regular, 4-connected graphs are Hamilton decomposable.
2 He was wrong, Meredith’s construction.
3 Dave Barnette conjectured that simple 4-polytopes are Hamiltonian.
Nash Williams conjectured in 1970 that 4-regular, 4-connected graphs are Hamilton decomposable. He was wrong, Meredith’s construction. Dave Barnette conjectured that simple 4-ploytopes are Hamiltonian. So far we do not know whether he was right.
Nash Williams conjectured in 1970 that 4-regular, 4-connected graphs are Hamilton decomposable.

He was wrong, Meredith’s construction.

Dave Barnette conjectured that simple 4-polytopes are Hamiltonian.

So far we do not know whether he was right.

Are prisms over 3-connected cubic graphs Hamilton decomposable?
Nash Williams conjectured in 1970 that 4-regular, 4-connected graphs are Hamilton decomposable.

He was wrong, Meredith’s construction.

Dave Barnette conjectured that simple 4-ploytopes are Hamiltonian.

So far we do not know whether he was right.

Are prisms over 3-connected cubic graphs Hamilton decomposable?

This problem may become famous.
Nash Williams conjectured in 1970 that 4-regular, 4-connected graphs are Hamilton decomposable.

He was wrong, Meredith’s construction.

Dave Barnette conjectured that simple 4-ploytopes are Hamiltonian.

So far we do not know whether he was right.

Are prisms over 3-connected cubic graphs Hamilton decomposable?

This problem may become famous.

As a first step, it is listed among the 100 problems in Adrian Bondy’s new book.
What do we know

1. True for bipartite planar, cubic 3-connected graphs.

2. Not true for 2-connected cubic graphs, even planar.

3. Our strategy is to tackle this question "piece by piece".

4. In the next slides we shall explore some tools and examples of Hamilton decomposable families of prisms over cubic graphs.
What do we know

1. True for bipartite planar, cubic 3-connected graphs.
2. Not true for 2-connected cubic graphs, even planar.
What do we know

1. True for bipartite planar, cubic 3-connected graphs.
2. Not true for 2-connected cubic graphs, even planar.
3. Our strategy is to tackle this question “piece by piece”
What do we know

1. True for bipartite planar, cubic 3-connected graphs.
2. Not true for 2-connected cubic graphs, even planar.
3. Our strategy is to tackle this question “piece by piece”
4. In the next slides we shall explore some tools and examples of Hamilton decomposable families of prisms over cubic graphs.
A Hamilton cycle over K_4.

[Diagram of a Hamilton cycle over K_4.]
Hamilton Decompositions samples, the basics.

Hamiltonian decomposition of the prism over K_4.

The generalized Cacti associated with each cycle.
Can the given Hamiltonian cycle be the “blue-yellow” cycle for the Hamilton decomposition of the prism?

Can a Hamiltonian cycle in a cubic graph “help” us find a Hamiltonian decomposition in its prism?
Can the given Hamiltonian cycle be the “blue-yellow” cycle for the Hamilton decomposition of the prism?

Hamiltonian decomposition of prisms over Hamiltonian cubic graphs.

We wish to incorporate the green edges to get the Hamiltonian decomposition.
Can the given Hamiltonian cycle be the “blue-yellow” cycle for the Hamilton decomposition of the prism?
Prisms \((C_n \times K_2)\) are Hamiltonian, their prisms are Hamilton decomposable, but the Hamilton cycle can not be used as the “blue-yellow” cycle to decompose them.
Hamiltonian cubic graphs

Prisms \((C_n \times K_2)\) are Hamiltonian, their prisms are Hamilton decomposable, but the Hamilton cycle can not be used as the “blue-yellow” cycle to decompose them.

Question

1. Given a cycle \(C_{2n}\) and \(n\) diagonals. Is it possible to determine in polynomial time whether the diagonals can be split into two sets such that each set together with the Hamiltonian cycle will produce Hamiltonian cycles in the prism?
Prisms \((C_n \times K_2)\) are Hamiltonian, their prisms are Hamilton decomposable, but the Hamilton cycle can not be used as the “blue-yellow” cycle to decompose them.

Question

1. **Given a cycle** \(C_{2n}\) **and** \(n\) **diagonals. Is it possible to determine in polynomial time whether the diagonals can be split into two sets such that each set together with the Hamiltonian cycle will produce Hamiltonian cycles in the prism?**

Question

2. **Given a planar, Hamiltonian cubic graph and the hamiltonian cycle. Can the cycle be used as the “blue-yellow” cycle for the decomposition?**
A generalized Halin graph is a tree plus a cycle through its leaves.

We proved that the prisms over halin graphs are Hamiltonian.
A generalized Halin graph is a tree plus a cycle through its leaves.

We proved that the prisms over halin graphs are Hamiltonian.

Here we’ll be concerned with cubic Halin graphs, i.e. a binary tree plus a cycle through its leaves. For example, Petersen’s graph is such a graph.
Generalized Halin Graphs

A generalized Halin graph is a tree plus a cycle through its leaves.

We proved that the prisms over halin graphs are Hamiltonian.

Here we’ll be concerned with cubic Halin graphs, i.e. a binary tree plus a cycle through its leaves. For example, Petersen’s graph is such a graph.

Conjecture

The prisms over cubic Halin graphs are Hamilton decomposable.
Halin representation of Petersen’s graph.
Halin representation of Petersen’s graph.
One Hamiltonian cycle in the prism.

Halin representation of Petersen’s graph.
Second Hamiltonian cycle in the prism
We conclude this section with one more problem inspired by Bruce Reed’s presentation:
We conclude this section with one more problem inspired by Bruce Reed’s presentation:

All 3 connected cubic graphs can be generated from K_4 by H or A operations.
H-free cubic graphs

We conclude this section with one more problem inspired by Bruce Reed’s presentation:

All 3 connected cubic graphs can be generated from K_4 by H or A operations.

Conjecture

The prism of all 3-connected cubic graphs generated from K_4 by A operations are Hamilton decomposable.
A k-walk in a graph is a closed walk that visits every vertex at most k times.
A k-walk in a graph is a closed walk that visits every vertex at most k times.
Definition (slightly less Hamiltonian)

A k-walk in a graph is a closed walk that visits every vertex at most k times.

A k-spanning tree is a spanning tree of maximum degree k.

In a talk in the conference, Mark Ellingham gave a survey of k-walks in graphs.

Jackson and Wormald pointed out in 1990 the following sharp “hierarchy:”

1-walk (Hamilton) \(\Rightarrow\) 2-tree (traceable) \(\Rightarrow\) 2-walk \(\Rightarrow\) 3-tree \(\Rightarrow\) ...
Definition (slightly less Hamiltonian)

A *k*-walk in a graph is a closed walk that visits every vertex at most *k* times.

A *k*-spanning tree is a spanning tree of maximum degree *k*.

A 1-walk is a Hamiltonian cycle, a 2-tree is a Hamiltonian path.
Definition (slightly less Hamiltonian)

A \textit{k-walk in a graph} is a closed walk that visits every vertex at most \textit{k times}.

A \textit{k-spanning tree} is a spanning tree of maximum degree \textit{k}.

A 1-walk is a Hamiltonian cycle, a 2-tree is a Hamiltonian path.

In a talk in the conference, Mark Ellingham gave a survey of k-walks in graphs.
Definition (slightly less Hamiltonian)

A *k*-walk in a graph is a closed walk that visits every vertex at most *k* times.

A *k*-spanning tree is a spanning tree of maximum degree *k*.

A 1-walk is a Hamiltonian cycle, a 2-tree is a Hamiltonian path.

1. In a talk in the conference, Mark Ellingham gave a survey of *k*-walks in graphs.

2. Jackson and Wormald pointed out in 1990 the following sharp “hierarchy:”

...
Definition (slightly less Hamiltonian)

A *k*-walk in a graph is a closed walk that visits every vertex at most *k* times.

A *k*-spanning tree is a spanning tree of maximum degree *k*.

A *1*-walk is a Hamiltonian cycle, a *2*-tree is a Hamiltonian path.

1. In a talk in the conference, Mark Ellingham gave a survey of *k*-walks in graphs.

2. Jackson and Wormald pointed out in 1990 the following sharp “hierarchy:”

3. 1-walk (Hamilton) \implies 2-tree (traceable) \implies 2-walk \implies 3-tree \implies ...
Do prisms fit in this hierarchy?

We noted: 2-tree \subset Hamiltonian prism \subset 2-walk and all inclusions are sharp.

Example

1. In 1967 D. Barnette proved that all 3-polytopes have a spanning 3-tree.
2. In 1994 Z. Gao and B. Richter improved it by proving that 3-polytopes have a 2-walk.
3. Can we improve it further?
Do prisms fit in this hierarchy?

We noted: 2-tree \subset Hamiltonian prism \subset 2-walk and all inclusions are sharp.

This means that proving that a graph is prism Hamiltonian is “stronger” than proving that it has a 2-walk.

Example

1. In 1967 D. Barnette proved that all 3-polytopes have a spanning 3-tree.
2. In 1994 Z. Gao and B. Richter improved it by proving that 3-polytopes have a 2-walk.
3. Can we improve it further?
Do prisms fit in this hierarchy?

We noted: 2-tree ⊂ Hamiltonian prism ⊂ 2-walk

and all inclusions are sharp.

This means that proving that a graph is prism Hamiltonian is “stronger” than proving that it has a 2-walk.

Example

Moshe Rosenfeld
Moshe Rosenfeld Institute of Technology
University of Washington, Tacoma

Hamiltonicity of prisms over graphs
Do prisms fit in this hierarchy?

We noted: 2-tree \subset Hamiltonian prism \subset 2-walk and all inclusions are sharp.
This means that proving that a graph is prism Hamiltonian is “stronger” than proving that it has a 2-walk.

Example

1. **In 1967 D. Barnette proved that all 3-polytopes have a spanning 3-tree.**
Do prisms fit in this hierarchy?

We noted: 2-tree \subset Hamiltonian prism \subset 2-walk and all inclusions are sharp.

This means that proving that a graph is prism Hamiltonian is “stronger” than proving that it has a 2-walk.

Example

1. *In 1967 D. Barnette proved that all 3-polytopes have a spanning 3-tree.*
2. *In 1994 Z. Gao and B. Richter improved it by proving that 3-polytopes have a 2-walk.*
Do prisms fit in this hierarchy?

We noted: 2-tree \subset Hamiltonian prism \subset 2-walk and all inclusions are sharp. This means that proving that a graph is prism Hamiltonian is “stronger” than proving that it has a 2-walk.

Example

1. In 1967 D. Barnette proved that all 3-polytopes have a spanning 3-tree.
2. In 1994 Z. Gao and B. Richter improved it by proving that 3-polytopes have a 2-walk.
3. Can we improve it further?
In (2007) we proved that the prisms over Kleetopes are Hamiltonian.
Are prisms over 3-polytopes Hamiltonian?

1. In (2007) we proved that the prisms over Kleetopes are Hamiltonian.

2. In 2008 D. Biebighauser and M. Ellingham improved it to all planar triangulations as well as triangulations of other surfaces.
Are prisms over 3-polytopes Hamiltonian?

1. In (2007) we proved that the prisms over Kleetopes are Hamiltonian.

2. In 2008 D. Biebighauser and M. Ellingham improved it to all planar triangulations as well as triangulations of other surfaces.

3. The prisms over bipartite 3-polytopes are Hamiltonian.
Are prisms over 3-polytopes Hamiltonian?

1. In (2007) we proved that the prisms over Kleetopes are Hamiltonian.

2. In 2008 D. Biebighauser and M. Ellingham improved it to all planar triangulations as well as triangulations of other surfaces.

3. The prisms over bipartite 3-polytopes are Hamiltonian.

Conjecture
The prisms over 3-polytopes are Hamiltonian
Opportunities

The prisms provide us with many opportunities to revisit Hamiltonian problems, results and even resuscitate “dead” conjectures.

1. Is the mid-level graph Hamiltonian? (open)
2. We proved that the prism over the mid-level graph is Hamiltonian. (2005)
3. 4-connected 4-regular graphs are Hamiltonian? (Nash Williams)
4. NO! (Meredith's construction)
5. Are the prisms over 4-connected 4-regular graphs Hamiltonian? I conjecture YES!
Opportunities

The prisms provide us with many opportunities to revisit Hamiltonian problems, results and even resuscitate “dead” conjectures.

1. Is the mid-level graph Hamiltonian? (open)

2. We proved that the prism over the mid-level graph is Hamiltonian. (2005)

3. 4-connected 4-regular graphs are Hamiltonian? (Nash Williams)

4. NO! (Meredith’s construction)

5. Are the prisms over 4-connected 4-regular graphs Hamiltonian?

I conjecture YES!
Opportunities

The prisms provide us with many opportunities to revisit Hamiltonian problems, results and even resuscitate “dead” conjectures.

1. Is the mid-level graph Hamiltonian? (open)

2. We proved that the prism over the mid-level graph is Hamiltonian. (2005)
Opportunities

The prisms provide us with many opportunities to revisit Hamiltonian problems, results and even resuscitate “dead” conjectures.

1. Is the mid-level graph Hamiltonian? (open)

2. We proved that the prism over the mid-level graph is Hamiltonian. (2005)

3. 4-connected 4-regular graphs are Hamiltonian? (Nash Williams)
Opportunities

The prisms provide us with many opportunities to revisit Hamiltonian problems, results and even resuscitate “dead” conjectures.

1. Is the mid-level graph Hamiltonian? (open)
2. We proved that the prism over the mid-level graph is Hamiltonian. (2005)
3. 4-connected 4-regular graphs are Hamiltonian? (Nash Williams)
4. NO! (Meredith’s construction)
Opportunities

The prisms provide us with many opportunities to revisit Hamiltonian problems, results and even resuscitate “dead” conjectures.

1. Is the mid-level graph Hamiltonian? (open)
2. We proved that the prism over the mid-level graph is Hamiltonian. (2005)
3. 4-connected 4-regular graphs are Hamiltonian? (Nash Williams)
4. NO! (Meredith’s construction)
5. Are the prisms over 4-connected 4-regular graphs Hamiltonian?
Opportunities

The prisms provide us with many opportunities to revisit Hamiltonian problems, results and even resuscitate “dead” conjectures.

1. Is the mid-level graph Hamiltonian? (open)
2. We proved that the prism over the mid-level graph is Hamiltonian. (2005)
3. 4-connected 4-regular graphs are Hamiltonian? (Nash Williams)
4. NO! (Meredith’s construction)
5. Are the prisms over 4-connected 4-regular graphs Hamiltonian?
Opportunities

The prisms provide us with many opportunities to revisit Hamiltonian problems, results and even resuscitate “dead” conjectures.

1. Is the mid-level graph Hamiltonian? (open)
2. We proved that the prism over the mid-level graph is Hamiltonian. (2005)
3. 4-connected 4-regular graphs are Hamiltonian? (Nash Williams)
4. NO! (Meredith’s construction)
5. Are the prisms over 4-connected 4-regular graphs Hamiltonian? I conjecture YES!
Open problems

The prisms over graphs open the door for many Hamilton cycles related problems. The number of related results is growing. We highlighted three open problems:

1. Are the prisms over 3-connected, cubic graph Hamilton decomposable?
2. Are the prisms over 3-connected planar graphs hamiltonian?
3. Are the prisms over 4-connected, 4-regular graphs Hamiltonian?
The prisms over graphs open the door for many Hamilton cycles related problems. The number of related results is growing. We highlighted three open problems:

1. Are the prisms over 3-connected, cubic graph Hamilton decomposable?
Open problems

The prisms over graphs open the door for many Hamilton cycles related problems. The number of related results is growing. We highlighted three open problems:

1. Are the prisms over 3-connected, cubic graph Hamilton decomposable?

2. Are the prisms over 3-connected planar graphs hamiltonian?
Open problems

The prisms over graphs open the door for many Hamilton cycles related problems. The number of related results is growing. We highlighted three open problems:

1. Are the prisms over 3-connected, cubic graph Hamilton decomposable?

2. Are the prisms over 3-connected planar graphs hamiltonian?

3. Are the prisms over 4-connected, 4-regular graphs Hamiltonian?
Dense graphs

There is a very large number of papers devoted to Hamilton cycles in “dense graphs:” namely graphs with cn^2 edges. These problems usually start with Dirac’s or Ore’s theorem:

Theorem (Dirac’s)

If $\delta(G) \geq \frac{n}{2}$, G a graph of order n then G is Hamiltonian.

Theorem (Ore’s)

If for any two vertices u, v of a graph G of order n, not connected by an edge, $\deg_G(u) + \deg_G(v) \geq n$ then G is Hamiltonian.
Dense graphs

There is a very large number of papers devoted to Hamilton cycles in “dense graphs:” namely graphs with cn^2 edges. These problems usually start with Dirac’s or Ore’s theorem:

Theorem (Dirac’s)

If $\delta(G) \geq \frac{n}{2}$, G a graph of order n then G is Hamiltonian.
Dense graphs

There is a very large number of papers devoted to Hamilton cycles in “dense graphs:” namely graphs with cn^2 edges. These problems usually start with Dirac’s or Ore’s theorem:

Theorem (Dirac’s)

If $\delta(G) \geq \frac{n}{2}$, G a graph of order n then G is Hamiltonian.
Dense graphs

There is a very large number of papers devoted to Hamilton cycles in “dense graphs:” namely graphs with cn^2 edges. These problems usually start with Dirac’s or Ore’s theorem:

Theorem (Dirac’s)

If $\delta(G) \geq \frac{n}{2}$, G a graph of order n then G is Hamiltonian.

Theorem (Ore’s)

If for any two vertices u, v of a graph G of order n, not connected by an edge, $\deg_G(u) + \deg_G(v) \geq n$ then G is Hamiltonian.
Dense graphs

There is a very large number of papers devoted to Hamilton cycles in “dense graphs:” namely graphs with cn^2 edges. These problems usually start with Dirac’s or Ore’s theorem:

Theorem (Dirac’s)

If $\delta(G) \geq \frac{n}{2}$, G a graph of order n then G is Hamiltonian.

Theorem (Ore’s)

If for any two vertices u, v of a graph G of order n, not connected by an edge, $\deg_G(u) + \deg_G(v) \geq n$ then G is Hamiltonian.
Dense graphs

There is a very large number of papers devoted to Hamilton cycles in “dense graphs:” namely graphs with cn^2 edges. These problems usually start with Dirac’s or Ore’s theorem:

Theorem (Dirac’s)

If $\delta(G) \geq \frac{n}{2}$, G a graph of order n then G is Hamiltonian.

Theorem (Ore’s)

If for any two vertices u, v of a graph G of order n, not connected by an edge, $\deg_G(u) + \deg_G(v) \geq n$ then G is Hamiltonian.
A sample of problems

One type of problem is whether by adding a “few” edges (usually increasing the degree requirements) we can get some more specific Hamiltonian cycles.

For instance, we can ask when for a given fixed number of vertices $v_{i_1}, v_{i_2}, \ldots v_{i_k}$ can we have a Hamiltonian cycle in G in which these vertices appear in this order in the cycle?
One type of problem is whether by adding a “few” edges (usually increasing the degree requirements) we can get some more specific Hamiltonian cycles.

For instance, we can ask when for a given fixed number of vertices \(v_{i_1}, v_{i_2}, \ldots v_{i_k} \) can we have a Hamiltonian cycle in \(G \) in which these vertices appear in this order in the cycle? When can we specify a path of length \(k \) in \(G \) and find a Hamiltonian cycle that contains this path?
Problems on Hamiltonian cycles in prisms

In the prism paradigm we can ask the same questions for sparse graphs. For instance:

1. Is it true that for any four vertices u_1, u_2, u_3, u_4 of the cubic, 3-connected graph G, one can find a Hamiltonian cycle in the prism over G in which these vertices appear in this order? How far can we extend this? ($5, 6, \ldots$ some fraction of n)
Problems on Hamiltonian cycles in prisms

In the prism paradigm we can ask the same questions for sparse graphs. For instance:

1. Is it true that for any four vertices u_1, u_2, u_3, u_4 of the cubic, 3-connected graph G, one can find a Hamiltonian cycle in the prism over G in which these vertices appear in this order? How far can we extend this? (5, 6, \ldots \text{ some fraction of } n)

2. Same for the generalized Halin graphs.
Problems on Hamiltonian cycles in prisms

In the prism paradigm we can ask the same questions for sparse graphs. For instance:

1. Is it true that for any four vertices u_1, u_2, u_3, u_4 of the cubic, 3-connected graph G, one can find a Hamiltonian cycle in the prism over G in which these vertices appear in this order? How far can we extend this? ($5, 6, \ldots$ some fraction of n)

2. Same for the generalized Halin graphs.

3. (Enomoto) Is it true that for every pair of vertices u, v of G, a 3-connected cubic graph, one can find a Hamiltonian cycle in the prism over G in which u and v appear at distance n from each other?
A Sample of recent results

Degree Sum: G of order n is prism-hamiltonian if $\sigma(3) \geq n$. Kenta Ozeki, (2009)
Degree Sum: G of order n is prism-hamiltonian if $\sigma(3) \geq n$. Kenta Ozeki, (2009)

Closure: G is prism hamiltonian iff $CL\frac{4n}{3} - \frac{4}{3}$ is prism hamiltonian.

$CL\frac{4n}{3} - \frac{4}{3}$ means repeatedly adding an edge between two vertices not connected by an edge if the sum of their degrees is $\geq \frac{4n}{3} - \frac{4}{3}$ (D. Král and L. Stacho, 2004)
A Sample of recent results

1. **Degree Sum**: G of order n is prism-hamiltonian if $\sigma(3) \geq n$. Kenta Ozeki, (2009)

2. **Closure**: G is prism hamiltonian iff $CL_{\frac{4n}{3} - \frac{4}{3}}$ is prism hamiltonian.
$CL_{\frac{4n}{3} - \frac{4}{3}}$ means repeatedly adding an edge between two vertices not connected by an edge if the sum of their degrees is $\geq \frac{4n}{3} - \frac{4}{3}$ (D. Kràl and L. Stacho, 2004)

3. **Kneser Graphs**: The prism over the mid-level graph is hamiltonian (P. Horàk, T. Kaiser, M. Rosenfeld, Z. Rjyaček 2006)
A Sample of recent results

1. **Degree Sum**: G of order n is prism-hamiltonian if $\sigma(3) \geq n$. Kenta Ozeki, (2009)

2. **Closure**: G is prism hamiltonian iff $CL_{\frac{4n}{3} - \frac{4}{3}}$ is prism hamiltonian. $CL_{\frac{4n}{3} - \frac{4}{3}}$ means repeatedly adding an edge between two vertices not connected by an edge if the sum of their degrees is $\geq \frac{4n}{3} - \frac{4}{3}$ (D. Kràl and L. Stachó, 2004)

3. **Kneser Graphs**: The prism over the mid-level graph is hamiltonian (P. Horàk, T. Kaiser, M. Rosenfeld, Z. Rjyaček 2006)

4. **Kneser Graphs** The prism over $K(4k + 1, 2k)$ is hamiltonian. (L. R. Bueno, P. Horàk, 2011)
Success is not final, failure is not fatal: it is the courage to continue that counts.
Success is not final, failure is not fatal: it is the courage to continue that counts.

Winston Churchill
Success is not final, failure is not fatal: it is the courage to continue that counts.

Winston Churchill

June 29, 2013,
Shanghai Jiao Tong University
Success is not final, failure is not fatal: it is the courage to continue that counts.

Winston Churchill

June 29, 2013,
Shanghai Jiao Tong University

Thank you.