The Maximum Distance Separable (MDS) Codes Conjecture

Jiyou Li
lijiyou@sjtu.edu.cn

Shanghai Jiao Tong University

May 18th, 2013
Outline

1. Introduction
2. Results
3. Ball’s proof according to Ball’s slides
4. MDS codes for AG codes
A Simple Communication Model

Message Source

Source Encoder

Channel

Source Decoder

Receiver
A Simple Communication Model: Example

banana

00

Channel

00

banana
A Simple Communication Model
A Simple Communication Model

banana

00

Channel

apple

01

Noisy!
An Error Correcting Communication Model

- **Message Source**
- **Source Encoder**
- **Channel Encoder**
- **Channel**
- **Channel Decoder**
- **Source Decoder**
- **Receiver**
An Example of Repetition Codes

banana

00

00000

Channel

00001
A photo of Callisto
What is a code (Channel Encoder)

- Let \mathbf{F}_q be the finite field of q elements;
What is a code (Channel Encoder)

- Let \mathbb{F}_q be the finite field of q elements;
- For integers $1 \leq k \leq n$, an $[n, k]_q$ code C is a k-dimensional subspace of \mathbb{F}_q^n over \mathbb{F}_q;

$$C : \mathbb{F}_q^k \rightarrow \mathbb{F}_q^n.$$
What is a code (Channel Encoder)

- Let \mathbf{F}_q be the finite field of q elements;
- For integers $1 \leq k \leq n$, an $[n, k]_q$ code C is a k-dimension subspace of \mathbf{F}_q^n over \mathbf{F}_q;

$$C : \mathbf{F}_q^k \rightarrow \mathbf{F}_q^n;$$

- The minimum distance $d(C)$ of C is defined to be the smallest size of the support of a nonzero element in C;
What is a code (Channel Encoder)

- Let \mathbb{F}_q be the finite field of q elements;
- For integers $1 \leq k \leq n$, an $[n, k]_q$ code C is a k-dimension subspace of \mathbb{F}_q^n over \mathbb{F}_q;

$$C : \mathbb{F}_q^k \rightarrow \mathbb{F}_q^n;$$

- The minimum distance $d(C)$ of C is defined to be the smallest size of the support of a nonzero element in C;
- C is called an $[n, k, d]_q$ code if $d(C) = d$.
A code with minimum distance d
An Example of Repetition Code

banana

00

000000

Channel

000001

banana

00
Important parameters and MDS codes

- The information rate $\frac{k}{n}$;
Important parameters and MDS codes

- The information rate $\frac{k}{n}$;
- The relative distance $\frac{d}{n}$;

Singleton bound: $k + d \leq 1 + \frac{1}{n}$;

If $d = n - k + 1$, then C is called a maximum distance separable (MDS) code.

Examples: Reed-Solomon Codes
Important parameters and MDS codes

- The information rate \(\frac{k}{n} \);
- The relative distance \(\frac{d}{n} \);
- C is theoretically good if both \(\frac{k}{n} \) and \(\frac{d}{n} \) are large;
Important parameters and MDS codes

- The information rate $\frac{k}{n}$;
- The relative distance $\frac{d}{n}$;
- C is theoretically good if both $\frac{k}{n}$ and $\frac{d}{n}$ are large;
- Singleton bound: $\frac{k}{n} + \frac{d}{n} \leq 1 + \frac{1}{n}$;
Important parameters and MDS codes

- The information rate $\frac{k}{n}$;
- The relative distance $\frac{d}{n}$;
- C is theoretically good if both $\frac{k}{n}$ and $\frac{d}{n}$ are large;
- Singleton bound: $\frac{k}{n} + \frac{d}{n} \leq 1 + \frac{1}{n}$;
- If $d = n - k + 1$, then C is called a maximum distance separable (MDS) code.

Examples: Reed-Solomon Codes
Important parameters and MDS codes

- The information rate $\frac{k}{n}$;
- The relative distance $\frac{d}{n}$;
- C is theoretically good if both $\frac{k}{n}$ and $\frac{d}{n}$ are large;
- Singleton bound: $\frac{k}{n} + \frac{d}{n} \leq 1 + \frac{1}{n}$;
- If $d = n - k + 1$, then C is called a maximum distance separable (MDS) code.
- Examples: Reed-Solomon Codes
Generalized Reed-Solomon codes

- \(D = \{x_1, \cdots, x_n\} \subset F_q, \ |D| = n > 0. \) For \(1 \leq k \leq n, \) denote by \(D_{n,k} \) the subspace spanned by

\[
(f(x_1), \cdots, f(x_n)) \in F_q^n,
\]

where \(\deg(f(x)) \leq k - 1; \)
Generalized Reed-Solomon codes

1. \(D = \{ x_1, \cdots, x_n \} \subset F_q, \ |D| = n > 0. \) For \(1 \leq k \leq n, \) denote by \(D_{n,k} \) the subspace spanned by

\[
(f(x_1), \cdots, f(x_n)) \in F_q^n,
\]

where \(\text{deg}(f(x)) \leq k - 1; \)

2. Since a polynomial of degree \(k - 1 \) has at most \(k - 1 \) roots, we have \(d = n - k + 1 \) and thus \(D_{n,k} \) are (MDS) codes.
The followings are all equivalent

- An **MDS** $[n, k, d]$ linear code.
The followings are all equivalent

- An **MDS** \([n, k, d]\) linear code.
- A \(k \times (n - k)\) matrix over \(\mathbb{F}_q\) such that every minor is nonzero.
The followings are all equivalent

- An **MDS** $[n, k, d]$ linear code.
- A $k \times (n - k)$ matrix over \mathbb{F}_q such that every minor is nonzero.
- A set of n vectors in \mathbb{F}_q^k such that any k vectors in S are linearly independent.
The followings are all equivalent

- An **MDS** \([n, k, d]\) linear code.
- A \(k \times (n - k)\) matrix over \(\mathbb{F}_q\) such that every minor is nonzero.
- A set of \(n\) vectors in \(\mathbb{F}_q^k\) such that any \(k\) vectors in \(S\) are linearly independent.
- A set of \(n\) projective points in \(\text{PG}(k - 1, q)\) such that there are at most \(k - 1\) points in any hyperplane of \(\text{PG}(k - 1, q)\).
They are all equivalent

\[
\begin{pmatrix}
1 & 0 & \ldots & 0 & a_{11} & \ldots & a_{1,n-k} \\
0 & 1 & \ldots & 0 & a_{21} & \ldots & a_{2,n-k} \\
0 & 0 & \ldots & 1 & a_{k1} & \ldots & a_{k,n-k}
\end{pmatrix}_{k \times n}
\]
A \([q + 1, k, q - k + 2]_q\) code

\[
\begin{pmatrix}
1 & 1 & \ldots & 1 & 0 \\
a_1 & a_2 & \ldots & a_q & 0 \\
a_1^2 & a_2^2 & \ldots & a_q^2 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_1^{k-1} & a_2^{k-1} & \ldots & a_q^{k-1} & 1
\end{pmatrix}
\]
A $[q + 2, 3, q]_q$ MDS code

- When q is even,

\[
\begin{pmatrix}
1 & 1 & \ldots & 1 & 0 & 0 \\
 a_1 & a_2 & \ldots & a_q & 1 & 0 \\
 a_1^2 & a_2^2 & \ldots & a_q^2 & 0 & 1
\end{pmatrix}.
\]
A \([q + 2, 3, q]_q\) MDS code

- When \(q\) is even,

\[
\begin{pmatrix}
1 & 1 & \cdots & 1 & 0 & 0 \\
\mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_q & 1 & 0 \\
\mathbf{a}_1^2 & \mathbf{a}_2^2 & \cdots & \mathbf{a}_q^2 & 0 & 1
\end{pmatrix}.
\]

- Question: Why not odd \(q\)?
MDS conjecture

Let $M(k, q)$ be the maximum length n of an $[n, k, n - k + 1]_q$ code;
MDS conjecture

- Let $M(k, q)$ be the maximum length n of an $[n, k, n - k + 1]_q$ code;
- (Bush, 1952) If $k \geq q + 1$, then $M(k, q) = k + 1$.
Let $M(k, q)$ be the maximum length n of an $[n, k, n - k + 1]_q$ code;

(Bush, 1952) If $k \geq q + 1$, then $M(k, q) = k + 1$.

(Conjectured by Segre, 1955) If $k \leq q$, then $M(k, q) = q + 1$, except the cases that when q is even and $k = 3$ or $k = q - 1$, in which cases $M(k, q) = q + 2$. An easy bound $M(k, q) \leq q + k + 1$.

MDS conjecture
Let $M(k, q)$ be the maximum length n of an $[n, k, n - k + 1]_q$ code;

(Bush, 1952) If $k \geq q + 1$, then $M(k, q) = k + 1$.

(Conjectured by Segre, 1955) If $k \leq q$, then $M(k, q) = q + 1$,

except the cases that when q is even and $k = 3$ or $k = q - 1$, in which cases $M(k, q) = q + 2$.
Let $M(k, q)$ be the maximum length n of an $[n, k, n - k + 1]_q$ code;

(Bush, 1952) If $k \geq q + 1$, then $M(k, q) = k + 1$.

(Conjectured by Segre, 1955) If $k \leq q$, then $M(k, q) = q + 1$,

except the cases that when q is even and $k = 3$ or $k = q - 1$, in which cases $M(k, q) = q + 2$.

An easy bound

$$M(k, q) \leq q + k + 1.$$
Three more problems enunciated by Segre, 1955

- Determine the maximal arcs in $PG(k, q)$;
Three more problems enunciated by Segre, 1955

- Determine the maximal arcs in $PG(k, q)$;
- Does every $(q + 1)$-arc be contained in a rational normal curve?
Three more problems enunciated by Segre, 1955

- Determine the maximal arcs in $PG(k, q)$;
- Does every $(q + 1)$-arc be contained in a rational normal curve?
- What are the n's such that every n-arc must be contained in a rational normal curve? And how many?
Three more problems enunciated by Segre, 1955

- Determine the maximal arcs in $PG(k, q)$;
- Does every $(q + 1)$-arc be contained in a rational normal curve?
- What are the n's such that every n-arc must be contained in a rational normal curve? And how many?
- (Hirschfeld and Thas) Determine the complete arcs in $PG(k, q)$.
Notations

- $m(k, q)$: the largest size of an arc in $PG(k, q)$;
Notations

- $m(k, q)$: the largest size of an arc in $PG(k, q)$;
- $m'(k, q)$: the second largest size of a complete arc in $PG(k, q)$;
Notations

- $m(k, q)$: the largest size of an arc in $PG(k, q)$;
- $m'(k, q)$: the second largest size of a complete arc in $PG(k, q)$;
- Each arc with size larger than $m'(k, q)$ is contained in an arc of size $m(k, q)$.

A normal rational curve in $PG(k, q)$ is defined as:

\[\{(1, t, t_2, \ldots, t_k) \ | \ t \in \mathbb{F}_q\} \cup \{\infty\}. \]

A normal rational curve of degree 2 is called a conic.
Notations

- $m(k, q)$: the largest size of an arc in $PG(k, q)$;
- $m'(k, q)$: the second largest size of a complete arc in $PG(k, q)$;
- Each arc with size larger than $m'(k, q)$ is contained in an arc of size $m(k, q)$.
- A normal rational curve in $PG(k, q)$ is defined as:
 $$\left\{(1, t, t^2, \ldots, t^k) \mid t \in \mathbb{F}_q\right\} \cup \{\infty\}.$$
Notations

- $m(k, q)$: the largest size of an arc in $PG(k, q)$;
- $m'(k, q)$: the second largest size of a complete arc in $PG(k, q)$;
- Each arc with size larger than $m'(k, q)$ is contained in an arc of size $m(k, q)$.
- A normal rational curve in $PG(k, q)$ is defined as:

 $$\left\{(1, t, t^2, \ldots, t^k) \mid t \in F_q\right\} \cup \{\infty\}.$$

- A normal rational curve of degree 2 is called a conic.
(Segre, 1967) In $PG(2, q)$, q odd, a $(q + 1)$-arc is a conic.
Preliminary results

- (Segre, 1967) In $PG(2, q)$, q odd, a $(q + 1)$-arc is a conic.
- (Casse and Glynn, 1985) In $PG(4, q)$, q even, a $(q + 1)$-arc is a normal rational curve.
Preliminary results

- (Segre, 1967) In $PG(2, q)$, q odd, a $(q + 1)$-arc is a conic.
- (Casse and Glynn, 1985) In $PG(4, q)$, q even, a $(q + 1)$-arc is a normal rational curve.
- It is elementary that $m(2, q) = q + 1$ if q is odd and otherwise $m(2, q) = q + 2$.
Preliminary results

- (Segre, 1967) In $\text{PG}(2, q)$, q odd, a $(q + 1)$-arc is a conic.
- (Casse and Glynn, 1985) In $\text{PG}(4, q)$, q even, a $(q + 1)$-arc is a normal rational curve.
- It is elementary that $m(2, q) = q + 1$ if q is odd and otherwise $m(2, q) = q + 2$.
- In $\text{PG}(2, q)$, q even, a $(q + 2)$-arc is a conic plus a nucleus.
Preliminary results

Theorem

(H. Kaneta and T. Maruta, 1989) In $\text{PG}(k, q)$, q odd, $k > 3$. Then

(i). if \mathcal{K} is an n-arc with $n > m'(2, q) + k - 2$, then \mathcal{K} lies on a unique normal rational curve;

(ii). If $q + 1 > m'(2, q) + k - 2$, then every $(q + 1)$-arc is a normal rational curve;

(iii). if $q + 1 > m'(2, q) + k - 3$, then $m(k, q) = q + 1$.
Main results

Theorem (Segre, 1967; Blokhuis et al., 1990)

The tangents to an n-arc \mathcal{K} in $\text{PG}(2, q)$ belong to an algebraic envelope F of class t or $2t$ according as q is even or odd, where $t = q + 2 - n$.
Recent Results

- (Segre, 1967) $m'(2, q) = q - \sqrt{q} + 1$ for $q = 2^{2e}, e > 1$.

Recent Results

- (Segre, 1967) \(m'(2, q) = q - \sqrt{q} + 1 \) for \(q = 2^{2e}, e > 1 \).
- (Segre, 1967) \(m'(2, q) < q - \frac{\sqrt{q}}{4} + \frac{25}{16} \) for \(q \) odd.
Recent Results

- (Segre, 1967) $m'(2, q) = q - \sqrt{q} + 1$ for $q = 2^{2e}, e > 1$.
- (Segre, 1967) $m'(2, q) < q - \frac{\sqrt{q}}{4} + \frac{25}{16}$ for q odd.
- (Voloch, 1990) $m'(2, q) < \frac{44}{45}q + \frac{9}{8}$ for q prime, $q > 5$.
Recent Results

- (Segre, 1967) \(m'(2, q) = q - \sqrt{q} + 1 \) for \(q = 2^{2e}, e > 1 \).
- (Segre, 1967) \(m'(2, q) < q - \frac{\sqrt{q}}{4} + \frac{25}{16} \) for \(q \) odd.
- (Voloch, 1990) \(m'(2, q) < \frac{44}{45} q + \frac{9}{8} \) for \(q \) prime, \(q > 5 \).
- (Hirschfeld and Korchmáros, 1994) \(m'(2, q) < q - \frac{1}{2} \sqrt{q} + 5 \) for \(q = p^{2h} \) with \(p > 5 \).
Recent Results

- (Segre, 1967) \(m'(2, q) = q - \sqrt{q} + 1 \) for \(q = 2^{2e}, e > 1 \).
- (Segre, 1967) \(m'(2, q) < q - \frac{\sqrt{q}}{4} + \frac{25}{16} \) for \(q \) odd.
- (Voloch, 1990) \(m'(2, q) < \frac{44}{45} q + \frac{9}{8} \) for \(q \) prime, \(q > 5 \).
- (Hirschfeld and Korchmáros, 1994) \(m'(2, q) < q - \frac{1}{2} \sqrt{q} + 5 \) for \(q = p^{2h} \) with \(p > 5 \).
- (Voloch, 1991) \(m'(2, q) < q - \sqrt{2q} + 2 \) for \(q = 2^{2e+1}, e > 1 \).
Recent Results

- (Segre, 1967) $m'(2, q) = q - \sqrt{q} + 1$ for $q = 2^{2e}, e > 1$.
- (Segre, 1967) $m'(2, q) < q - \frac{\sqrt{q}}{4} + \frac{25}{16}$ for q odd.
- (Voloch, 1990) $m'(2, q) < \frac{44}{45}q + \frac{9}{8}$ for q prime, $q > 5$.
- (Hirschfeld and Korchmehros, 1994) $m'(2, q) < q - \frac{1}{2}\sqrt{q} + 5$ for $q = p^{2h}$ with $p > 5$.
- (Voloch, 1991) $m'(2, q) < q - \sqrt{2}q + 2$ for $q = 2^{2e+1}, e > 1$.
- Recall if $n > m'(2, q) + k - 2$ then an n-arc is contained in a rational curve. Thus for odd q, the MDS conjecture holds when $k - 1$ satisfies above bounds!
Results on MDS conjecture

Let $M(k, q) = m(k - 1, q)$ be defined as above. Then the main conjecture holds when

- (Segre, 1967) $k < \sqrt{q}$ for $q = 2^{2e}, e > 1$;
Results on MDS conjecture

Let $M(k, q) = m(k - 1, q)$ be defined as above. Then the main conjecture holds when

- (Segre, 1967) $k < \sqrt{q}$ for $q = 2^{2e}, e > 1$;
- (Segre, 1967) $k < \frac{\sqrt{q}}{4}$ for q odd;
Results on MDS conjecture

Let $M(k, q) = m(k - 1, q)$ be defined as above. Then the main conjecture holds when

- (Segre, 1967) $k < \sqrt{q}$ for $q = 2^{2e}, e > 1$;
- (Segre, 1967) $k < \frac{\sqrt{q}}{4}$ for q odd;
- (Voloch, 1990) $k < \frac{1}{45} q$ for q prime, $q > 5$;
- (Ball, 2010) $k < q$, $q = p$;
- (Ball, 2011) $k < 2\sqrt{q}$, $q = p^2$.

Results on MDS conjecture

Let $M(k, q) = m(k - 1, q)$ be defined as above. Then the main conjecture holds when

- (Segre, 1967) $k < \sqrt{q}$ for $q = 2^{2e}, e > 1$;
- (Segre, 1967) $k < \frac{\sqrt{q}}{4}$ for q odd;
- (Voloch, 1990) $k < \frac{1}{45}q$ for q prime, $q > 5$;
- (Hirschfeld and Korchmhros, 1994) $k < \frac{1}{2}\sqrt{q}$ for $q = p^{2h}$ with $p > 5$;
Results on MDS conjecture

Let $M(k, q) = m(k - 1, q)$ be defined as above. Then the main conjecture holds when

- (Segre, 1967) $k < \sqrt{q}$ for $q = 2^{2e}, e > 1$;
- (Segre, 1967) $k < \frac{\sqrt{q}}{4}$ for q odd;
- (Voloch, 1990) $k < \frac{1}{45}q$ for q prime, $q > 5$;
- (Hirschfeld and Korchmhros, 1994) $k < \frac{1}{2}\sqrt{q}$ for $q = p^{2h}$ with $p > 5$;
- (Voloch, 1991) $k < \sqrt{2q}$ for $q = 2^{2e+1}, e > l$;
Let $M(k, q) = m(k - 1, q)$ be defined as above. Then the main conjecture holds when

- (Segre, 1967) $k < \sqrt{q}$ for $q = 2^{2e}, e > 1$;
- (Segre, 1967) $k < \frac{\sqrt{q}}{4}$ for q odd;
- (Voloch, 1990) $k < \frac{1}{45}q$ for q prime, $q > 5$;
- (Hirschfeld and Korchmhoros, 1994) $k < \frac{1}{2}\sqrt{q}$ for $q = p^{2h}$ with $p > 5$;
- (Voloch, 1991) $k < \sqrt{2q}$ for $q = 2^{2e+1}, e > l$;
- (Ball, 2010) $k < q$, $q = p$;
Results on MDS conjecture

Let $M(k, q) = m(k - 1, q)$ be defined as above. Then the main conjecture holds when

- (Segre, 1967) $k < \sqrt{q}$ for $q = 2^{2e}, e > 1$;
- (Segre, 1967) $k < \frac{\sqrt{q}}{4}$ for q odd;
- (Voloch, 1990) $k < \frac{1}{45} q$ for q prime, $q > 5$;
- (Hirschfeld and Korchmáros, 1994) $k < \frac{1}{2} \sqrt{q}$ for $q = p^{2h}$ with $p > 5$;
- (Voloch, 1991) $k < \sqrt{2q}$ for $q = 2^{2e+1}, e > l$;
- (Ball, 2010) $k < q$, $q = p$;
- (Ball, 2011) $k < 2\sqrt{q}$, $q = p^2$.

Ball’s proof

Please refer to the talk by S. Ball.
For every $Y \subset S$ of size $k - 2$, there are

$$t := q + k - 1 - |S|$$

hyperplanes of \mathbb{F}_q^k containing Y and no other vectors of S.

The $\binom{|S|}{k-2}t$ vectors dual to these hyperplanes lie on an algebraic hypersurface of small degree.
For every $Y \subset S$ of size $k - 2$, define a function

$$T_Y(x) = \prod f(x),$$

where the product is over the t linear maps f whose kernels are the t hyperplanes containing the vectors of Y and no others from S.

[Segre] (1967) $k = 3$. For all $x, y, z \in S$,

$$T_{\{x\}}(y) T_{\{y\}}(z) T_{\{z\}}(x) = (-1)^{t+1} T_{\{x\}}(z) T_{\{y\}}(x) T_{\{z\}}(y)$$

For every $B \subset S$ of size $k - 3$,

$$T_{B \cup x}(y) T_{B \cup y}(z) T_{B \cup z}(x) = (-1)^{t+1} T_{B \cup x}(z) T_{B \cup y}(x) T_{B \cup z}(y)$$
\[s = (s_1, s_2, s_3) \]

\[s_2 X_1 - s_1 X_2 = 0 \]

\[a_{13} X_1 + a_{23} X_2 = 0 \]

\[T_z(X) = \begin{bmatrix} a_{13} X_1 + a_{23} X_2 \end{bmatrix} \]

\[T_z(x) = \begin{bmatrix} a_{13} \end{bmatrix} \]

With respect to the basis \{x, y, z\}.

\[\frac{s_2}{s_1} \begin{bmatrix} a_{13} \end{bmatrix} (-1)^{t} = -1 \]

\[T_x(y) T_y(z) = (-1)^{t+1} T_x(y) T_y(z) \]
For every $D \subset S$ of size $k - 1 - n$,

Segre’s Lemma implies that changing the order of two elements of $A = \{a_1, \ldots, a_n\}$ (or $B = \{b_0, \ldots, b_{n-1}\}$) changes the sign of the product

$$P_D(A, B) = \prod_{i=1}^{n} \frac{T_{D \cup \{a_1, \ldots, a_{i-1}, b_i, \ldots, b_{n-1}\}}(a_i)}{T_{D \cup \{a_1, \ldots, a_{i-1}, b_i, \ldots, b_{n-1}\}}(b_{i-1})}$$

by $(-1)^{t+1}$.
By interpolation, for disjoint ordered sequences \(E = (e_1, \ldots, e_{t+2}) \) and \(Y = (y_1, \ldots, y_{k-2}) \) of \(S \),

\[
\sum_{e \in E} T_Y(e) \prod_{z \in E \setminus e} \det(z, e, y_1, \ldots, y_{k-2})^{-1} = 0.
\]
Let p be the characteristic of the field.

By induction for $r = 1, \ldots, \min(p - 1, t + 2)$,

$$0 = \sum_{\Delta \subseteq E, |\Delta| = r} P_D(\Delta, L) \prod_{z \in (E \setminus \Delta) \cup (L \setminus \ell_0)} \det(z, \Delta, D)^{-1},$$

where $|L| = r$, $|D| = k - 1 - r$ and ℓ_0 is the first element of L.

If $|S| = q + 2$ then $t = k - 3$. Thus, if $k \leq p$ put $r = t + 2$ and this sum has just one term, a contradiction.

So when $q = p$ the MDS conjecture is true.

Moreover, putting $|S| = q + 1$ one can prove that for $k \leq p$ the longest MDS codes are Reed Solomon.
AG codes

Let X/F_q be a geometrically irreducible smooth projective curve of genus g over the finite field F_q with function field $F_q(X)$.
Let X/F_q be a geometrically irreducible smooth projective curve of genus g over the finite field F_q with function field $F_q(X)$.

Let $X(F_q)$ be the set of all F_q-rational points on X.
AG codes

- Let X/F_q be a geometrically irreducible smooth projective curve of genus g over the finite field F_q with function field $F_q(X)$.
- Let $X(F_q)$ be the set of all F_q-rational points on X.
- Let $D = \{P_1, P_2, \ldots, P_n\}$ be a proper subset of rational points $X(F_q)$.
AG codes

- Let X/F_q be a geometrically irreducible smooth projective curve of genus g over the finite field F_q with function field $F_q(X)$.
- Let $X(F_q)$ be the set of all F_q-rational points on X.
- Let $D = \{P_1, P_2, \ldots, P_n\}$ be a proper subset of rational points $X(F_q)$.
- Denote D by $D = P_1 + P_2 + \cdots + P_n$.
Let X/\mathbb{F}_q be a geometrically irreducible smooth projective curve of genus g over the finite field \mathbb{F}_q with function field $\mathbb{F}_q(X)$.

Let $X(\mathbb{F}_q)$ be the set of all \mathbb{F}_q-rational points on X.

Let $D = \{P_1, P_2, \ldots, P_n\}$ be a proper subset of rational points $X(\mathbb{F}_q)$.

Denote D by $D = P_1 + P_2 + \cdots + P_n$.

Let G be a divisor of degree m ($2g - 2 < m < n$) such that $\text{Supp}(G) \cap D = \emptyset$.

MDS codes for AG codes
AG codes

- Let V be a divisor.
AG codes

- Let V be a divisor.
- Denote by $\mathcal{L}(V)$ the \mathbb{F}_q-vector space of all rational functions $f \in \mathbb{F}_q(X)$ with $\text{div}(f) \geq -V$, together with 0 function.
AG codes

- Let V be a divisor.
- Denote by $\mathcal{L}(V)$ the \mathbb{F}_q-vector space of all rational functions $f \in \mathbb{F}_q(X)$ with $\text{div}(f) \geq -V$, together with 0 function.
- The functional AG code $C_L(D, G)$ is defined to be the image of the following evaluation map:

$$ev : \mathcal{L}(V) \rightarrow \mathbb{F}_q^n; f \mapsto (f(P_1), f(P_2), \ldots, f(P_n)).$$
Theorem (Katsman and Tsfasman (1987), Munucra (1992), Walker (1996))

The MDS conjecture for elliptical curves holds.
AG codes for curves

- \(d(C_L(D, G)) \geq n - m \) and \(m = \text{deg}(G) \).
AG codes for curves

- \(d(C_L(D, G)) \geq n - m \) and \(m = \text{deg}(G) \).
- By Riemann-Roch theorem, the AG code \(C_L(D, G) \) has parameters \([n, m - g + 1, d \geq n - m]\).
AG codes for curves

- \(d(C_L(D, G)) \geq n - m \) and \(m = \text{deg}(G) \).
- By Riemann-Roch theorem, the AG code \(C_L(D, G) \) has parameters \([n, m - g + 1, d \geq n - m]\).
- By the Singleton bound, we have

\[
 n - m \leq d \leq n - m + g.
\]
AG codes for curves

- $d(C_L(D, G)) \geq n - m$ and $m = \text{deg}(G)$.
- By Riemann-Roch theorem, the AG code $C_L(D, G)$ has parameters $[n, m - g + 1, d \geq n - m]$.
- By the Singleton bound, we have

$$n - m \leq d \leq n - m + g.$$

- When $g = 1$ one has

$$n - m \leq d \leq n - m + 1.$$
To determine the minimum distance of a code

- When $g = 1$ one has a $[n, n - m, d]$ code with

 $$n - m \leq d \leq n - m + 1.$$
To determine the minimum distance of a code

- When \(g = 1 \) one has a \([n, n - m, d]\) code with
 \[
 n - m \leq d \leq n - m + 1 .
 \]

- In general, Cheng showed that determining \(d \) exactly is an \textbf{NP}-complete problem.
SSP in the Mordell group of an elliptical curve

Theorem (Q. Cheng, 2005)

\[d = n - m \text{ if and only if a suitable subset sum has a solution.} \]
The proof

\[E(\mathbb{F}_q) \cong \text{div}^0(E)/\text{Prin}(\mathbb{F}_q(E)) \]
The proof

- \(E(\mathbb{F}_q) \cong \text{div}^0(E) / \text{Prin}(\mathbb{F}_q(E)) \)

- \[N_G(k, b, D) = \# \{ S \subseteq D | \# S = k \text{ and } \sum_{x \in S} x = b \} . \]
The proof

- $E(\mathbb{F}_q) \cong \text{div}^0(E)/\text{Prin}(\mathbb{F}_q(E))$

- $N_G(k, b, D) = \#\left\{ S \subseteq D \mid \#S = k \text{ and } \sum_{x \in S} x = b \right\}.$

- Let $G = (m - 1)0 + P$ ($0 < m < n$). Endow $E(\mathbb{F}_q)$ a group structure with the zero element O.

\[N_G(k, b, D) = \#\left\{ S \subseteq D \mid \#S = k \text{ and } \sum_{x \in S} x = b \right\}. \]
The proof

- \(E(\mathbb{F}_q) \cong \text{div}^0(E)/\text{Prin}(\mathbb{F}_q(E)) \)

\[
N_G(k, b, D) = \# \{ S \subseteq D \mid \# S = k \text{ and } \sum_{x \in S} x = b \}.
\]

- Let \(G = (m - 1)0 + P \) (\(0 < m < n \)). Endow \(E(\mathbb{F}_q) \) a group structure with the zero element \(O \).

- Then the AG code \(C_L(D, G) \) is an MDS code, i.e., \(d = n - m + 1 \) if and only if

\[
N(m, P, D) = 0.
\]
A counting proof of the MDS conjecture for elliptical curves

Theorem (with D. Wan and J. Zhang, 2013)

The MDS conjecture for elliptical curves holds.
Thank you very much for your attention!