Flows of Signed Graphs: From Modular Flows to Integer Valued Flows

Rong Luo

Department of Mathematics
West Virginia University

Joint work with Jian Cheng, You Lu and Cun-Quan Zhang
- D: an orientation of G.

$E^-(v)$: the set of all oriented-in edges at v.

$E^+(v)$: the set of all oriented-out edges at v.

$f: E(G) \rightarrow \mathbb{Z}$.

The ordered pair (D, f) is called an integer flow of G if for every $v \in V(G)$,

\[\sum_{e \in E^+(v)} f(e) = \sum_{e \in E^-(v)} f(e) \]

The support of (D, f), $\text{supp}(f) = \{ e \in E(G) : f(e) \neq 0 \}$.

Rong Luo (WVU)
• D: an orientation of G.
• $E^-(v)$: the set of all oriented-in edges at v.
- D: an orientation of G.
- $E^-(v)$: the set of all oriented-in edges at v.
- $E^+(v)$: the set of all oriented-out edges at v.

The ordered pair (D, f) is called an integer flow of G if for every $v \in V(G)$,

$$
\sum_{e \in E^+(v)} f(e) = \sum_{e \in E^-(v)} f(e)
$$

The support of (D, f), $\text{supp}(f) = \{e \in E(G) : f(e) \neq 0\}$.

Rong Luo (WVU)
D: an orientation of G.

$E^-(v)$: the set of all oriented-in edges at v.

$E^+(v)$: the set of all oriented-out edges at v.

f: $E(G) \mapsto \mathbb{Z}$.

The support of (D, f), $\text{supp}(f) = \{ e \in E(G) : f(e) \neq 0 \}$.

D: an orientation of G.

$E^-(v)$: the set of all oriented-in edges at v.

$E^+(v)$: the set of all oriented-out edges at v.

f: $E(G) \rightarrow \mathbb{Z}$.

The ordered pair (D, f) is called an integer flow of G if for every $v \in V(G)$,

$$\sum_{e \in E^+(v)} f(e) = \sum_{e \in E^-(v)} f(e)$$
D: an orientation of G.

$E^{-}(v)$: the set of all oriented-in edges at v.

$E^{+}(v)$: the set of all oriented-out edges at v.

f: $E(G) \mapsto \mathbb{Z}$.

The ordered pair (D, f) is called an integer flow of G if for every $v \in V(G)$,

$$\sum_{e \in E^{+}(v)} f(e) = \sum_{e \in E^{-}(v)} f(e)$$

The support of (D, f), $\text{supp}(f) = \{ e \in E(G) : f(e) \neq 0 \}$.
Nowhere-zero k-flows

- G admits a k-flow if G has a flow (D, f) with $|f(e)| \leq k - 1$ for each edge e.

A k-flow (D, f) is nowhere-zero if $f(e) \neq 0$ for every edge.
Nowhere-zero k-flows

- G admits a **k-flow** if G has a flow (D, f) with $|f(e)| \leq k - 1$ for each edge e.

- A k-flow (D, f) is **nowhere-zero** if $f(e) \neq 0$ for every edge.
An example

Nowhere zero 4−flow
The existence of a nowhere-zero k-flow of a graph is independent of the orientation.
The existence of a nowhere-zero k-flow of a graph is independent of the orientation.

Nowhere zero 4–flow
The existence of a nowhere-zero k-flow of a graph is independent of the orientation.
Simple facts

- The existence of a nowhere-zero k-flow of a graph is independent of the orientation.
Simple facts

- The existence of a nowhere-zero k-flow of a graph is independent of the orientation.
- If G admits a nowhere-zero k-flow, then G admits a nowhere-zero h-flow for any integer $h \geq k$.

Bridges: It is easy to see that if a graph has a bridge, then the flow of the bridge must be zero and thus it does not admit a nowhere-zero flow.
Simple facts

- The existence of a nowhere-zero k-flow of a graph is independent of the orientation.
- If G admits a nowhere-zero k-flow, then G admits a nowhere-zero h-flow for any integer $h \geq k$.
- **Bridges:** It is easy to see that if a graph has a bridge, then the flow of the bridge must be zero and thus it does not admit a nowhere-zero flow.
Nowhere-zero 2-flows

We may assume $f(e) = 1$ for every e.
We may assume \(f(e) = 1 \) for every \(e \).
Nowhere-zero 2-flows

We may assume \(f(e) = 1 \) for every \(e \).

A graph \(G \) admits a nowhere-zero 2-flow if and only if \(G \) is Eulerian.
The concept of integer flow was originally introduced by Tutte in 1949 as a generalization of map coloring problems.
The concept of integer flow was originally introduced by Tutte in 1949 as a generalization of map coloring problems.

Theorem (Tutte)

Let G be a bridgeless plane graph. G is face-k-colorable \iff G admits a nowhere-zero k-flow.
The concept of integer flow was originally introduced by Tutte in 1949 as a generalization of map coloring problems.

Theorem (Tutte)
Let G be a bridgeless plane graph. G is face-k-colorable $\iff G$ admits a nowhere-zero k-flow.

Theorem (Flow-version of the 4-color Theorem)
Every bridgeless planar graph admits a nowhere-zero 4-flow.
The concept of integer flow was originally introduced by Tutte in 1949 as a generalization of map coloring problems.

Theorem (Tutte)

Let G be a bridgeless plane graph. G is face-k-colorable $\iff G$ admits a nowhere-zero k-flow.

Theorem (Flow-version of the 4-color Theorem)

Every bridgeless planar graph admits a nowhere-zero 4-flow.

Theorem (Tutte)

Let G be a bridgeless graph embedded in an orientable surface. G is face-k-coloring $\Rightarrow G$ admits a nowhere-zero k-flow.
The concept of integer flow was originally introduced by Tutte in 1949 as a generalization of map coloring problems.

Theorem (Tutte)

Let G be a bridgeless plane graph. G is face-k-colorable \iff G admits a nowhere-zero k-flow.

Theorem (Flow-version of the 4-color Theorem)

Every bridgeless planar graph admits a nowhere-zero 4-flow.

Theorem (Tutte)

Let G be a bridgeless graph embedded in an orientable surface. G is face-k-coloring \implies G admits a nowhere-zero k-flow.

The integer flow problem of ordinary graphs is a dual problem of vertex coloring of graphs embedded in orientable surfaces.
Theorem (Seymour)

Every bridgeless graph admits a nowhere-zero 6-flow.
Tutte’s flow conjectures

Conjecture (Tutte’s flow conjectures)

3-flow Conjecture: Every 4-edge connected graph admits a nowhere-zero 3-flow.

4-flow Conjecture: Every bridgeless Petersen minor-free graph admits a nowhere-zero 4-flow.

5-flow Conjecture: Every bridgeless graph admits a nowhere-zero 5-flow.

Thomassen proved that every 8-edge connected graphs admits a nowhere-zero 3-flow.
3-flow Conjecture: Every 4-edge connected graph admits a nowhere-zero 3-flow.

4-flow Conjecture: Every bridgeless Petersen minor-free graph admits a nowhere-zero 4-flow.

5-flow Conjecture: Every bridgeless graph admits a nowhere-zero 5-flow.

- Thomassen proved that every 8-edge connected graphs admits a nowhere-zero 3-flow.
- Lovasz, Thomassen, Wu and Zhang further improved to 6-edge connected graphs.
Tutte’s flow conjectures

Conjecture (Tutte’s flow conjectures)

- **3-flow Conjecture**: Every 4-edge connected graph admits a nowhere-zero 3-flow.
- **4-flow Conjecture**: Every bridgeless Petersen minor-free graph admits a nowhere-zero 4-flow.
- **5-flow Conjecture**: Every bridgeless graph admits a nowhere-zero 5-flow.

- Thomassen proved that every 8-edge connected graphs admits a nowhere-zero 3-flow.
- Lovasz, Thomassen, Wu and Zhang further improved to 6-edge connected graphs.
- Jaeger proved that every 4-edge connected graph admits a nowhere-zero 4-flow.
Let k be an integer.
Let k be an integer.

$f : E(G) \mapsto \{- (k - 1), \ldots, -1, 0, 1, \ldots, (k - 1)\}$ and D be an orientation of G
Modular Flows-A powerful tool

Let \(k \) be an integer.

\[f: E(G) \mapsto \{- (k - 1), \ldots, -1, 0, 1, \ldots, (k - 1)\} \]
and \(D \) be an orientation of \(G \).

The ordered pair \((D, f)\) is called a nowhere-zero modular \(k\)-flow of \(G \) if \(f(e) \neq 0 \) for every edge and for every \(v \in V(G) \),

\[\sum_{e \in E^+(v)} f(e) \equiv \sum_{e \in E^-(v)} f(e) \pmod{k} \]
Let k be an integer.

- $f: E(G) \mapsto \{-(k-1), \ldots, -1, 0, 1, \ldots, (k-1)\}$ and D be an orientation of G

The ordered pair (D, f) is called a nowhere-zero modular k-flow of G if $f(e) \neq 0$ for every edge and for every $v \in V(G)$,

$$\sum_{e \in E^+(v)} f(e) \equiv \sum_{e \in E^-(v)} f(e) \pmod{k}$$

Theorem (Tutte)

A graph admits a nowhere-zero integer k-flow if and only if it admits a nowhere-zero modular k-flow.
• $\mathbb{Z}_2 = \{0, 1\}$ and $-1 = 1$.

\[Z_3 = \{0, 1, -1\} \]

For a \mathbb{Z}_3-flow (D, f), we may assume $f(e) = 1$.

A graph admits a nowhere-zero 3-flow if and only if it has an orientation D such that for each vertex v

\[\sum_{e \in E^+} (v) f(e) = |E^+ (v)| \equiv |E^-(v)| = \sum_{e \in E^- (v)} f(e) \pmod{3} \]

A cubic graph admits a nowhere-zero 3-flow if and only if it is bipartite.
$\mathbb{Z}_2 = \{0, 1\}$ and $-1 \equiv 1$.

A connected graph admits a nowhere-zero 2-flow if and only if it is Eulerian.
\[Z_2 = \{0, 1\} \text{ and } -1 = 1. \]

A connected graph admits a nowhere-zero 2-flow if and only if it is Eulerian.

\[Z_3 = \{0, 1, -1\}. \text{ For a } Z_3\text{-flow } (D, f), \text{ we may assume } f(e) = 1. \]
\begin{itemize}
 \item $\mathbb{Z}_2 = \{0, 1\}$ and $-1 = 1$.
 \item A connected graph admits a nowhere-zero 2-flow if and only if it is Eulerian.
 \item $\mathbb{Z}_3 = \{0, 1, -1\}$. For a \mathbb{Z}_3-flow (D, f), we may assume $f(e) = 1$.
 \item A graph admits a nowhere-zero 3-flow if and only if it has an orientation D such that for each vertex v
 \[
 \sum_{e \in E^+(v)} f(e) = |E^+(v)| \equiv |E^-(v)| = \sum_{e \in E^-(v)} f(e) \pmod{3}
 \]
\end{itemize}
$\mathbb{Z}_2 = \{0, 1\}$ and $-1 = 1$.

A connected graph admits a nowhere-zero 2-flow if and only if it is Eulerian.

$\mathbb{Z}_3 = \{0, 1, -1\}$. For a \mathbb{Z}_3-flow (D, f), we may assume $f(e) = 1$.

A graph admits a nowhere-zero 3-flow if and only if it has an orientation D such that for each vertex v

$$\sum_{e \in E^+(v)} f(e) = |E^+(v)| \equiv |E^-(v)| = \sum_{e \in E^-(v)} f(e) \quad (\text{mod } 3)$$

A cubic graph admits a nowhere-zero 3-flow if and only if it is bipartite.
Let k and d be two positive integers. An integer valued (or modular) circular $\frac{k}{d}$-flow of G is an integer valued (or modular) flow f such that $d \leq |f(e)| \leq k - d$ for every edge e.

Circular flow is a refinement of integer flow.
Circular flows and Modular orientations

Definition

Let k and d be two positive integers. An integer valued (or modular) circular $\frac{k}{d}$-flow of G is an integer valued (or modular) flow f such that $d \leq |f(e)| \leq k - d$ for every edge e.

- Circular flow is a refinement of integer flow.
- $(2 + \frac{1}{p})$-flow is an generalization of 3-flow.
Circular flows and Modular orientations

Definition

Let \(k \) and \(d \) be two positive integers. An integer valued (or modular) circular \(\frac{k}{d} \)-flow of \(G \) is an integer valued (or modular) flow \(f \) such that \(d \leq |f(e)| \leq k - d \) for every edge \(e \).

- Circular flow is a refinement of integer flow.
- \((2 + \frac{1}{p})\)-flow is an generalization of 3-flow.

Definition

An orientation \(D \) of \(G \) is a modular \((2p + 1)\)-orientation if \(|E^+(v)| - |E^-(v)| \equiv 0 \pmod{2p + 1} \) for each vertex \(v \).
Circular flows and Modular orientations

Definition

Let k and d be two positive integers. An integer valued (or modular) circular $\frac{k}{d}$-flow of G is an integer valued (or modular) flow f such that $d \leq |f(e)| \leq k - d$ for every edge e.

- Circular flow is a refinement of integer flow.
- $(2 + \frac{1}{p})$-flow is an generalization of 3-flow.

Definition

An orientation D of G is a modular $(2p + 1)$-orientation if $|E^+(v)| - |E^-(v)| \equiv 0 \pmod{2p+1}$ for each vertex v.

- A graph admits a nowhere-zero 3-flow if and only if it has a modular 3-orientation (if and only if it has a nowhere-zero modular 3-flow).
Theorem (Jaeger)

Let G be a graph. Then the following statements are equivalent:

(A) G admits a modular $(2p + 1)$-orientation.

(B) G admits a modular circular $(2 + \frac{1}{p})$-flow.

(C) G admits an integer-valued circular $(2 + \frac{1}{p})$-flow.
A signed graph is a graph G with a mapping $\sigma : E(G) \rightarrow \{1, -1\}$.

Signed graphs were first introduced by Harary to handle a problem in social psychology (Cartwright and Harary, 1956).
A signed graph is a graph G with a mapping $\sigma : E(G) \rightarrow \{1, -1\}$. An edge $e \in E(G)$ is positive if $\sigma(e) = 1$ and negative if $\sigma(e) = -1$. Signed graphs were first introduced by Harary to handle a problem in social psychology (Cartwright and Harary, 1956).
A signed graph is a graph G with a mapping $\sigma : E(G) \to \{1, -1\}$.

An edge $e \in E(G)$ is positive if $\sigma(e) = 1$ and negative if $\sigma(e) = -1$.

The mapping σ, called signature, is usually implicit in the notation of a signed graph and will be specified only when needed.
A **signed graph** is a graph G with a mapping $\sigma : E(G) \rightarrow \{1, -1\}$.

An edge $e \in E(G)$ is **positive** if $\sigma(e) = 1$ and **negative** if $\sigma(e) = -1$.

The mapping σ, called **signature**, is usually implicit in the notation of a signed graph and will be specified only when needed.

Signed graphs were first introduced by Harary to handle a problem in social psychology (Cartwright and Harary, 1956).
Switching a vertex means negating the signs of all the edges incident to that vertex.
Signed graphs– Switch operation

- Switching a vertex means negating the signs of all the edges incident to that vertex.
- Switching a set of vertices means negating all the edges that have one end in that set and one end in the complementary set.
Switching a vertex means negating the signs of all the edges incident to that vertex.

Switching a set of vertices means negating all the edges that have one end in that set and one end in the complementary set.

Switching a series of vertices, once each, is the same as switching the whole set at once.
Signed graphs– Switch operation

- Switching a vertex means negating the signs of all the edges incident to that vertex.
- Switching a set of vertices means negating all the edges that have one end in that set and one end in the complementary set.
- Switching a series of vertices, once each, is the same as switching the whole set at once.
- Two graphs are equivalent under the switching if one can be obtained from the other by switching at a set of vertices.
Signed graphs– Switch operation

Switching at v

Switching at v

\Rightarrow

\Rightarrow

$\begin{array}{c}
- \\
\downarrow v \\
+ \\
\end{array}
\Rightarrow

\begin{array}{c}
+ \\
\downarrow v \\
- \\
\end{array}

Orientation of signed graphs

\[e \in E^-(u) \cap E^+(v) \]
\[e \in E^+(u) \cap E^-(v) \]

positive edges

negative edges

Figure: Orientation of positive and negative edges
Orientation of signed graphs
Switch operation on orientation
Switch operation on orientation
Switch operation on orientation
Let G be a signed graph and τ be an orientation of G. An ordered pair (τ, f) is called an integer-valued k-flow of G if for every $v \in V(G)$,

$$|f(e)| \leq k$$

$$\sum_{e \in E^+(v)} f(e) = \sum_{e \in E^-(v)} f(e)$$
Examples of integer flows

nowhere-zero 3-flow

nowhere-zero 4-flow
Examples of integer flow (Cont.)

Infinite family of signed graphs with flow number 6—Schubert & Steffen

Infinite family of signed graphs with flow number 6—Schubert & Steffen
Conjecture (Bouchet, 1983)

Every flow-admissible signed graph admits a nowhere-zero 6-flow.
Let G be a signed graph and τ be an orientation of G. An ordered pair (τ, f) is called a modular k-flow if for every $v \in V(G)$,

$$|f(e)| \leq k$$

$$\sum_{e \in E^+(v)} f(e) \equiv \sum_{e \in E^-(v)} f(e) \pmod{k}$$
Let G be a signed graph and τ be an orientation of G. An ordered pair (τ, f) is called a modular k-flow if for every $v \in V(G),$

$$|f(e)| \leq k$$

$$\sum_{e \in E^+(v)} f(e) \equiv \sum_{e \in E^-(v)} f(e) \pmod{k}$$

Admitting a nowhere-zero (integer valued or modular) k-flow is an invariant under switching operations.
Example

Figure: Flow in Signed C_5
Example
An observation

If a signed graph G has only one negative edge, then it does not admits a nowhere-zero k-flow for any integer k.
Bridges are allowed
What signed graphs have a nowhere-zero integer flow?

Theorem (Bouchet, 1983, JCTB)

A connected signed graph G admits a nowhere-zero integer flow if and only neither of the following holds:

1. G is switching equivalent to a signed graph with only one negative edge.
2. G has a cut-edge e for which $G - e$ has a balanced component.
Recall—Tutte’s Theorem and Jaeger’s Theorem

Theorem (Tutte)

A graph admits a nowhere-zero integer k-flow if and only if it admits a nowhere-zero modular k-flow.

Theorem (Jaeger)

Let G be a graph. Then the following statements are equivalent:

(A) G admits a modular $(2p + 1)$-orientation.

(B) G admits a modular circular $(2 + \frac{1}{p})$-flow.

(C) G admits an integer-valued circular $(2 + \frac{1}{p})$-flow.
Recall–Tutte’s Theorem and Jaeger’s Theorem

Theorem (Tutte)

A graph admits a nowhere-zero integer k-flow if and only if it admits a nowhere-zero modular k-flow.

Theorem (Jaeger)

Let G be a graph. Then the following statements are equivalent:

(A) G admits a modular $(2p + 1)$-orientation.
(B) G admits a modular circular $(2 + \frac{1}{p})$-flow.
(C) G admits an integer-valued circular $(2 + \frac{1}{p})$-flow.

Tutte’s Theorem and Jaeger’s Theorem both fail for signed graphs.
Recall–Tutte’s Theorem and Jaeger’s Theorem

Theorem (Tutte)

A graph admits a nowhere-zero integer k-flow if and only if it admits a nowhere-zero modular k-flow.

Theorem (Jaeger)

Let G be a graph. Then the following statements are equivalent:

(A) G admits a modular $(2p + 1)$-orientation.

(B) G admits a modular circular $(2 + \frac{1}{p})$-flow.

(C) G admits an integer-valued circular $(2 + \frac{1}{p})$-flow.

Tutte’s Theorem and Jaeger’s Theorem both fail for signed graphs.

For Jaeger’s Theorem, A and B remain equivalent but B and C are not equivalent for signed graphs.
Every Eulerian signed graph admits a nowhere-zero \mathbb{Z}_2-flow.
Every Eulerian signed graph admits a nowhere-zero \mathbb{Z}_2-flow.

Theorem (Xu and Zhang)

A connected signed graph admits a nowhere-zero integer 2-flow if and only if it is Eulerian and has even number of negative edges.
Another example

Another example
Another example

\((G, \sigma)\) has a modular 3-orientation and admits a nowhere-zero modular 3-flow with all edges assigned with 1, but no integer-valued nowhere-zero 3-flow.
How to convert from Modular flows to Integer flows for signed graphs?
Theorem (Xu and Zhang)

Let \((G, \sigma)\) be a signed graph and \(\phi_1\) be a \(\mathbb{Z}_2\)-flow of \((G, \sigma)\) such that \(\text{supp}(\phi_1)\) contains an even number of negative edges. If \(\text{supp}(\phi_1)\) is connected, then \((G, \sigma)\) admits an integer 2-flow \(f_1\) such that \(\text{supp}(\phi_1) = \text{supp}(f_1)\).
Theorem (Xu and Zhang)

Let \((G, \sigma)\) be a signed graph and \(\phi_1\) be a \(Z_2\)-flow of \((G, \sigma)\) such that supp\((\phi_1)\) contains an even number of negative edges. If supp\((\phi_1)\) is connected, then \((G, \sigma)\) admits an integer 2-flow \(f_1\) such that supp\((\phi_1)\) = supp\((f_1)\).

Theorem (Xu and Zhang)

Let \((G, \sigma)\) be a signed graph and \(\phi_2\) be a \(Z_3\)-flow of \((G, \sigma)\). If supp\((\phi_2)\) is bridgeless, then \((G, \sigma)\) admits an integer 3-flow \(f_2\) such that supp\((\phi_2)\) = supp\((f_2)\).
Theorem (Chen, Lu, Luo and Zhang)

Let (G, σ) be a connected signed graph and ϕ_1 be a \mathbb{Z}_2-flow of (G, σ) such that supp(ϕ_1) contains an even number of negative edges. Then (G, σ) admits an integer 3-flow f_1 such that

$$\text{supp}(\phi_1) = \{ e \in E(G) : f_1(e) = \pm 1 \}.$$
Theorem (Chen, Lu, Luo and Zhang)

Let \((G, \sigma)\) be a connected signed graph and \(\phi_1\) be a \(\mathbb{Z}_2\)-flow of \((G, \sigma)\) such that \(\text{supp}(\phi_1)\) contains an even number of negative edges. Then \((G, \sigma)\) admits an integer 3-flow \(f_1\) such that \(\text{supp}(\phi_1) = \{e \in E(G) : f_1(e) = \pm 1\}\).

Theorem (Chen, Lu, Luo and Zhang)

Let \((G, \sigma)\) be a bridgeless signed graph and \(\phi_2\) be a \(\mathbb{Z}_3\)-flow of \((G, \sigma)\). Then \((G, \sigma)\) admits an integer 4-flow \(f_2\) such that \(\text{supp}(\phi_2) \subseteq \{e \in E(G) : f_2(e) = \pm 1, \pm 2\}\).
[(B)] \((G, \sigma)\) admits a modular circular \((2 + \frac{1}{p})\)-flow.

[(C)] \((G, \sigma)\) admits an integer-valued circular \((2 + \frac{1}{p})\)-flow.

Theorem

Let \((G, \sigma)\) be a signed graph. Then (B) and (C) are equivalent if

1. [Xu and Zhang] \(p = 1, \text{ and, } (G, \sigma)\) is cubic and contains a perfect matching;
2. [Schubert and Steffen] \((G, \sigma)\) is \((2p + 1)\)-regular and contains an \(\sigma\)-factor;
3. [Zhu] \((G, \sigma)\) is \((12p - 1)\)-edge-connected with negativeness even or at least \((2p + 1)\).
[(B)] \((G, \sigma)\) admits a modular circular \((2 + \frac{1}{p})\)-flow.

[(C)] \((G, \sigma)\) admits an integer-valued circular \((2 + \frac{1}{p})\)-flow.

Theorem (Chen, Lu, Luo and Zhang)

\((B)\) and \((C)\) are equivalent for signed graphs with odd-edge-connectivity at least \((2p + 1)\). That is, if a signed graph \((G, \sigma)\) is odd-\((2p + 1)\)-connected, then it admits a modular circular \((2 + \frac{1}{p})\)-flow if and only if it admits an integer-valued circular \((2 + \frac{1}{p})\)-flow.
An applications of our result to the integer-valued flow
Conjecture (Bouchet, 1983)

Every signed graph admitting a nowhere-zero integer flow admits a nowhere-zero integer 6-flow.

Theorem (DeVos)

Every signed graph admitting a nowhere-zero integer flow admits a nowhere-zero integer 12-flow.
Conjecture (Bouchet, 1983)

Every signed graph admitting a nowhere-zero integer flow admits a nowhere-zero integer 6-flow.

Theorem (DeVos)

Every signed graph admitting a nowhere-zero integer flow admits a nowhere-zero integer 12-flow.
Known results

Theorem

Let (G, σ) be a signed graph admitting an NZF. Then

1. (Zýka) (G, σ) admits a 30-NZF.
Known results

Theorem

Let \((G, \sigma)\) be a signed graph admitting an NZF. Then

1. (Zýka) \((G, \sigma)\) admits a 30-NZF.
2. (Lu, Luo, Zhang) If \((G, \sigma)\) contains no edge-disjoint unbalanced circuits, then \(G\) admits a nowhere-zero 6-flow.
3. (Rollov´a et al.) \((G, \sigma)\) admits an 8-NZF if \(G\) is 2-edge-connected and \(|E_N(G, \sigma)| = 2\).
4. (Raspaud and Zhu) \((G, \sigma)\) admits a 4-NZF if \(G\) is 4-edge-connected.
5. (Wu et al.) \((G, \sigma)\) admits a 3-NZF if \(G\) is 8-edge-connected.
Known results

Theorem

Let \((G, \sigma)\) be a signed graph admitting an NZF. Then

1. (Zýka) \((G, \sigma)\) admits a 30-NZF.
2. (Lu, Luo, Zhang) If \((G, \sigma)\) contains no edge-disjoint unbalanced circuits, then \(G\) admits a nowhere-zero 6-flow.
3. (Rollová et al.) \((G, \sigma)\) admits an 8-NZF if \(G\) is 2-edge-connected and \(|E_N(G, \sigma)| = 2\).
Known results

Theorem

Let \((G, \sigma)\) be a signed graph admitting an NZF. Then

1. \((Z\acute{y}ka)\) \((G, \sigma)\) admits a 30-NZF.
2. \((Lu, Luo, Zhang)\) If \((G, \sigma)\) contains no edge-disjoint unbalanced circuits, then \(G\) admits a nowhere-zero 6-flow.
3. \((Rollov\acute{a} et al.)\) \((G, \sigma)\) admits an 8-NZF if \(G\) is 2-edge-connected and \(|E_N(G, \sigma)| = 2\).
4. \((Raspaud and Zhu)\) \((G, \sigma)\) admits a 4-NZF if \(G\) is 4-edge-connected.
5. \((Wu et al.)\) \((G, \sigma)\) admits a 3-NZF if \(G\) is 8-edge-connected.
Known results

Theorem

Let (G, σ) be a signed graph admitting an NZF. Then

1. (Zýka) (G, σ) admits a 30-NZF.
2. (Lu, Luo, Zhang) If (G, σ) contains no edge-disjoint unbalanced circuits, then G admits a nowhere-zero 6-flow.
3. (Rollová et al.) (G, σ) admits an 8-NZF if G is 2-edge-connected and $|E_N(G, \sigma)| = 2$.
4. (Raspaud and Zhu) (G, σ) admits a 4-NZF if G is 4-edge-connected.
5. (Wu et al.) (G, σ) admits a 3-NZF if G is 8-edge-connected.
As an application of our results on converting the modular flows into integer-valued flows, we prove the following result.

Theorem (Cheng, Lu, Luo, Zhang)

Every bridgeless signed graph admitting an NZF admits a 11-NZF.
Theorem

Let \((G, \sigma)\) be a connected signed graph and \(\phi_1\) be a \(\mathbb{Z}_2\)-flow of \((G, \sigma)\) such that \(\text{supp}(\phi_1)\) contains an even number of negative edges. Then \((G, \sigma)\) admits an integer 3-flow \(f_1\) such that
\[\text{supp}(\phi_1) = \{e \in E(G) : f_1(e) = \pm 1\} .\]

Theorem

Let \((G, \sigma)\) be a bridgeless signed graph and \(\phi_2\) be a \(\mathbb{Z}_3\)-flow of \((G, \sigma)\). Then \((G, \sigma)\) admits an integer 4-flow \(f_2\) such that
\[\text{supp}(\phi_2) \subseteq \{e \in E(G) : f_2(e) = \pm 1, \pm 2\} .\]
Proof of the 11-Flow Theorem

Theorem

Every bridgeless flow-admissible signed graph has a nowhere-zero 11-flow.
Proof of the 11-Flow Theorem

Theorem

Every bridgeless flow-admissible signed graph has a nowhere-zero 11-flow.

We want to show that \((G, \sigma)\) has a flow \(\phi\) such that \(0 < |\phi(e)| \leq 10\) for each edge.
Proof of the 11-Flow Theorem

Theorem

Every bridgeless flow-admissible signed graph has a nowhere-zero 11-flow.

We want to show that \((G, \sigma)\) has a flow \(\phi\) such that \(0 < |\phi(e)| \leq 10\) for each edge.

Lemma (Devos)

Every flow-admissible signed graph admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow.
Proof of the 11-Flow Theorem

Theorem

*Every bridgeless flow-admissible signed graph has a nowhere-zero 11-flow.***

We want to show that \((G, \sigma)\) has a flow \(\phi\) such that \(0 < |\phi(e)| \leq 10\) for each edge.

Lemma (Devos)

*Every flow-admissible signed graph admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow.***

Let \((G, \sigma)\) be a signed graph and \(\phi = \phi_1 \times \phi_2 : E(G) \to \mathbb{Z}_2 \times \mathbb{Z}_3\) be a flow of \((G, \sigma)\), where \(\phi_1\) is a \(\mathbb{Z}_2\)-flow of \((G, \sigma)\) and \(\phi_2\) is a \(\mathbb{Z}_3\)-flow of \((G, \sigma)\). \(\phi\) is called *balanced* if \(\text{supp}(\phi_1)\) contains an even number of negative edges.
Proof of the 11-Flow Theorem

- By Devos’s Lemma, \((G, \sigma)\) admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow \(\phi = \phi_1 \times \phi_2\) with \(\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\).
Proof of the 11-Flow Theorem

- By Devos’s Lemma, \((G, \sigma)\) admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow \(\phi = \phi_1 \times \phi_2\) with \(\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\).

- A balanced \(\mathbb{Z}_2\)-flow \(\longrightarrow\) an integer 3-flow \(f_1\).
Proof of the 11-Flow Theorem

- By Devos’s Lemma, \((G, \sigma)\) admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow \(\phi = \phi_1 \times \phi_2\) with \(\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\).
- A balanced \(\mathbb{Z}_2\)-flow \(\longrightarrow\) an integer 3-flow \(f_1\).
- A \(\mathbb{Z}_3\)-flow \(\longrightarrow\) an integer 4-flow \(f_2\), satisfying...
By Devos's Lemma, \((G, \sigma)\) admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow \(\phi = \phi_1 \times \phi_2\) with \(\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\).

A balanced \(\mathbb{Z}_2\)-flow \(\rightarrow\) an integer 3-flow \(f_1\).

A \(\mathbb{Z}_3\)-flow \(\rightarrow\) an integer 4-flow \(f_2\), satisfying

\[\text{supp}(\phi_1) = \{e \in E(G) : |f_1(e)| = 1\}\]
Proof of the 11-Flow Theorem

- By Devos’s Lemma, \((G, \sigma)\) admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow \(\phi = \phi_1 \times \phi_2\) with \(\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\).
- A balanced \(\mathbb{Z}_2\)-flow \(\mapsto\) an integer 3-flow \(f_1\).
- A \(\mathbb{Z}_3\)-flow \(\mapsto\) an integer 4-flow \(f_2\), satisfying
- \(\text{supp}(\phi_1) = \{e \in E(G) : |f_1(e)| = 1\}\)
- and \(\text{supp}(\phi_2) \subseteq \{e \in E(G) : |f_2(e)| = 1, 2\}\).
Proof of the 11-Flow Theorem

- By Devos’s Lemma, \((G, \sigma)\) admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow \(\phi = \phi_1 \times \phi_2\) with \(\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\).
- A balanced \(\mathbb{Z}_2\)-flow \(\rightarrow\) an integer 3-flow \(f_1\).
- A \(\mathbb{Z}_3\)-flow \(\rightarrow\) an integer 4-flow \(f_2\), satisfying
 - \(\text{supp}(\phi_1) = \{e \in E(G) : |f_1(e)| = 1\}\)
 - and \(\text{supp}(\phi_2) \subseteq \{e \in E(G) : |f_2(e)| = 1, 2\}\).
- Then \(f = 4f_1 + f_2\) is a nowhere-zero 12-flow of \(G\).
Proof of the 11-Flow Theorem

- By Devos’s Lemma, \((G, \sigma)\) admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow \(\phi = \phi_1 \times \phi_2\) with \(\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\).
- A balanced \(\mathbb{Z}_2\)-flow \(\rightarrow\) an integer 3-flow \(f_1\).
- A \(\mathbb{Z}_3\)-flow \(\rightarrow\) an integer 4-flow \(f_2\), satisfying
 - \(\text{supp}(\phi_1) = \{e \in E(G) : |f_1(e)| = 1\}\)
 - and \(\text{supp}(\phi_2) \subseteq \{e \in E(G) : |f_2(e)| = 1, 2\}\).
- Then \(f = 4f_1 + f_2\) is a nowhere-zero 12-flow of \(G\).
- Claim \(|f(e)| \neq 11\) for each edge \(e \in E(G)\).
Proof of the 11-Flow Theorem

- By Devos’s Lemma, \((G, \sigma)\) admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow \(\phi = \phi_1 \times \phi_2\) with \(\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\).
- A balanced \(\mathbb{Z}_2\)-flow \(\rightarrow\) an integer 3-flow \(f_1\).
- A \(\mathbb{Z}_3\)-flow \(\rightarrow\) an integer 4-flow \(f_2\), satisfying
 - \(\text{supp}(\phi_1) = \{e \in E(G) : |f_1(e)| = 1\}\)
 - and \(\text{supp}(\phi_2) \subseteq \{e \in E(G) : |f_2(e)| = 1, 2\}\).
- Then \(f = 4f_1 + f_2\) is a nowhere-zero 12-flow of \(G\).
- Claim \(|f(e)| \neq 11\) for each edge \(e \in E(G)\).
- If \(|f(e)| = 11\) for some edge \(e \in E(G)\), then \(|f_1(e)| = 2\) and \(|f_2(e)| = 3\).
Proof of the 11-Flow Theorem

- By Devos’s Lemma, \((G, \sigma)\) admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow \(\phi = \phi_1 \times \phi_2\) with \(\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\).
- A balanced \(\mathbb{Z}_2\)-flow \(\longrightarrow\) an integer 3-flow \(f_1\).
- A \(\mathbb{Z}_3\)-flow \(\longrightarrow\) an integer 4-flow \(f_2\), satisfying
 - \(\text{supp}(\phi_1) = \{e \in E(G) : |f_1(e)| = 1\}\)
 - and \(\text{supp}(\phi_2) \subseteq \{e \in E(G) : |f_2(e)| = 1, 2\}\).
- Then \(f = 4f_1 + f_2\) is a nowhere-zero 12-flow of \(G\).
- Claim \(|f(e)| \neq 11\) for each edge \(e \in E(G)\).
- If \(|f(e)| = 11\) for some edge \(e \in E(G)\), then \(|f_1(e)| = 2\) and \(|f_2(e)| = 3\).
- Then \(e \not\in \text{supp}(\phi_1) \cup \text{supp}(\phi_2)\).
Proof of the 11-Flow Theorem

- By Devos’s Lemma, \((G, \sigma)\) admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow \(\phi = \phi_1 \times \phi_2\) with \(\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\).
- A balanced \(\mathbb{Z}_2\)-flow \(\rightarrow\) an integer 3-flow \(f_1\).
- A \(\mathbb{Z}_3\)-flow \(\rightarrow\) an integer 4-flow \(f_2\), satisfying
 - \(\text{supp}(\phi_1) = \{e \in E(G) : |f_1(e)| = 1\}\)
 - and \(\text{supp}(\phi_2) \subseteq\{e \in E(G) : |f_2(e)| = 1, 2\}\).
- Then \(f = 4f_1 + f_2\) is a nowhere-zero 12-flow of \(G\).
- Claim \(|f(e)| \neq 11\) for each edge \(e \in E(G)\).
- If \(|f(e)| = 11\) for some edge \(e \in E(G)\), then \(|f_1(e)| = 2\) and \(|f_2(e)| = 3\).
- Then \(e \notin \text{supp}(\phi_1) \cup \text{supp}(\phi_2)\).
- \(\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\).
By Devos’s Lemma, \((G, \sigma)\) admits a balanced \(\mathbb{Z}_2 \times \mathbb{Z}_3\)-flow \(\phi = \phi_1 \times \phi_2\) with \(\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\).

A balanced \(\mathbb{Z}_2\)-flow \(\rightarrow\) an integer 3-flow \(f_1\).

A \(\mathbb{Z}_3\)-flow \(\rightarrow\) an integer 4-flow \(f_2\), satisfying

\[\text{supp}(\phi_1) = \{e \in E(G) : |f_1(e)| = 1\}\]

and \(\text{supp}(\phi_2) \subseteq \{e \in E(G) : |f_2(e)| = 1, 2\}\).

Then \(f = 4f_1 + f_2\) is a nowhere-zero 12-flow of \(G\).

Claim \(|f(e)| \neq 11\) for each edge \(e \in E(G)\).

If \(|f(e)| = 11\) for some edge \(e \in E(G)\), then \(|f_1(e)| = 2\) and \(|f_2(e)| = 3\).

Then \(e \not\in \text{supp}(\phi_1) \cup \text{supp}(\phi_2)\).

\[\text{supp}(\phi_1) \cup \text{supp}(\phi_2) = E(G)\]

Clearly, such an edge \(e\) does not exist.
Applying the weak 2-linage theorem due to Thomassen and Seymour independently, we give a characterization of signed graphs.

Theorem (Lu, Luo, Zhang)

Let \((G, \sigma)\) be a 2-connected signed graph with negativeness \(\epsilon = |E_N| = k \geq 2\), where \(E_N = \{x_1y_1, x_2y_2, \ldots, x_ky_k\}\) is the set of negative edges of \((G, \sigma)\). Then the following are equivalent:

1. \((G, \sigma)\) contains no edge-disjoint unbalanced circuits.
2. There is a permutation \(\pi\) on \([1, k]\) and \(G - E_N(G)\) is contractible to the 2k-circuit \(\hat{z}_1\hat{z}_2\ldots\hat{z}_{2k}\hat{z}_1\) or to a graph obtained from a 2-connected plane cubic graph by selecting a facial circuit and inserting the 2k vertices \(\hat{z}_1, \hat{z}_2, \ldots, \hat{z}_{2k}\) in that cyclic order on edges of the circuit, where \(\{z_i, z_{k+i}\} = \{x_{\pi(i)}, y_{\pi(i)}\}\) for \(i \in [1, k]\).
An example

An illustration of the contracted signed graph with $|E_N| = 5$
Integer flows of signed graphs without edge disjoint unbalanced circuits

Applying the characterization, we have

Theorem (Lu, Luo, Zhang)

Every flow-admissible signed graph without edge disjoint unbalanced circuits admits a 6-NZF.
Thank you very much.