
Solutions to exam problems.

1. Recall that time-dependent potential flow system in n dimensions is:

(1)

ρ̂t + div (ρ̂∇Φ) = 0,

Φt +
1

2
|∇Φ|2 +

ρ̂γ−1 − 1

γ − 1
= K,

where x ∈ Rn, t ∈ R1, and Φ and ρ̂ are functions of (t,x), and γ > 1, K > − 1
γ−1

are a given constants. Derive self-similar potential flow equation. That is, show
that if a solution of (1) has the form Φ(t,x) = tψ(x

t
), ρ̂(t,x) = ρ(x

t
), then the

functions ϕ(ξ) = − |ξ|
2

2
+ ψ(ξ) and ρ(ξ) (where ξ ∈ Rn) satisfy:

(2) div
(
ρ(|∇ϕ|2, ϕ)∇ϕ

)
+ nρ(|∇ϕ|2, ϕ) = 0

with

(3) ρ(|∇ϕ|2, ϕ) =
(
ργ−1

0 − (γ − 1)(ϕ+
1

2
|∇ϕ|2)

) 1
γ−1 ,

where ρ0 is a constant.

Solution. Differentiating, and denoting ξ = x
t
, we obtain:

∂tΦ(t,x) = ∂t
(
tψ(
x

t
)
)

= ψ(
x

t
)− 1

t
x · ∇ξψ(

x

t
) = ψ(ξ)− ξ · ∇ψ(ξ);

∇xΦ(t,x) = ∇x
(
tψ(
x

t
)
)

= ∇ξψ(
x

t
) = ∇ψ(ξ);

∂tρ̂(t,x) = ∂t
(
ρ(
x

t
)
)

= − 1

t2
x · ∇ξρ(

x

t
) = −1

t
ξ · ∇ρ(ξ).

From this, noting that ∇x(g(x
t
)) = 1

t
∇ξg(ξ) for any g(ξ), we get

div x(ρ̂∇Φ)(x, t) = ∇x · (ρ̂∇Φ)(x, t) =
1

t
∇ξ · (ρ∇ψ)(ξ) =

1

t
div ξ(ρ∇ψ)(ξ).

Substitute all expressions obtained above into (1), get, in ξ-variables,

(4)

− ξ · ∇ρ+ div (ρ∇ψ) = 0,

ψ − ξ · ∇ψ +
1

2
|∇ψ|2 +

ργ−1

γ − 1
=

ργ−1
0

γ − 1
,

where ρ0 > 0 is determined from
ργ−1
0

γ−1
= K + 1

γ−1
, and we use that K + 1

γ−1
> 0.

Now we have ψ(ξ) = |ξ|2
2

+ϕ(ξ), so ∇ψ = ξ+∇ϕ. Substitute this to the second
equation of (4), get

|ξ|2

2
+ ϕ− ξ · (ξ +∇ϕ) +

1

2
|ξ +∇ϕ|2 +

ργ−1

γ − 1
=

ργ−1
0

γ − 1
,

1



2

which is

ϕ+
1

2
|∇ϕ|2 +

ργ−1

γ − 1
=

ργ−1
0

γ − 1
.

The last equation implies (3).
Similarly, from the first equation of (4), we get

(5) −ξ · ∇ρ+ div (ρ(ξ +∇ϕ)) = 0.

Now we note that

(6) div (ρξ) = ρdiv ξ +∇ρ · ξ = nρ+ ξ · ∇ρ,

where we used that in n dimensions, div ξ =
n∑
i=1

∂ξi
∂ξi

= n. Substituting (6) into

(5), and recalling (3), we obtain (2).

2. Let Ω ∈ Rn be an open bounded set with smooth boundary, and let Γ be a
relatively open subset of ∂Ω. Assume that u ∈ C2(Ω) ∩ C1(Ω) satisfies

n∑
i,j=1

aij(x)uxixj +
n∑
i=1

bi(x)uxi = 0 in Ω,

n∑
i=1

βi(x)uxi = 0 on Γ,

where aij, bi ∈ C(Ω), βi ∈ C(Γ), and equation is elliptic in Ω, and the boundary
condition is oblique on Γ, that is, there exists λ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2 for all x ∈ Ω, ξ = (ξ1, . . . , ξn) ∈ Rn;

n∑
i=1

βi(x)νi(x) ≥ λ for all x ∈ Γ,

where ν(x) = (ν1(x), . . . , νn(x)) is the interior unit normal to ∂Ω at x ∈ ∂Ω.
Let M = max

x∈Ω
u(x), and m = min

x∈Ω
u(x). Assume m < M , i.e. u is non-constant.

Prove that

m < u(x) < M for all x ∈ Ω ∪ Γ,

i.e. that minimum and maximum cannot be attained on Ω ∪ Γ.

Solution. Extrema of u cannot be attained in Ω by the strong maximum
principle. It remains to show that extrema cannot be attained on Γ.
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Suppose x0 ∈ Γ, and maximum of u is attained at x0, i.e. u(x0) = M . Then,
using that Γ is relatively open in ∂Ω, we obtain

(7) τ · ∇u = 0

for any vector τ tangential to ∂Ω at x0.
Let β = (β1, . . . , βn). Then boundary condition on Γ can be written as

(8) β · ∇u = 0 on Γ.

Denote τ = β − (β · ν)ν. Then (8) becomes

(9) (β · ν)uν + τ · ∇u = 0 on Γ.

From now on all calculations are at point x0, so we write ν, β for ν(x0), β(x0).
Since the vector τ = β − (β · ν)ν is orthogonal to ν (which checked explicitly,
using |ν| = 1), and thus tangential to ∂Ω at x0, we have from (9) and (7)

(β · ν)uν = 0 at x0.

Now we note that obliqueness condition can be written as β · ν ≥ λ > 0 on Γ.
Thus,

uν = 0 at x0.

However, since x0 is a point of maximum of u, and u is non-constant, Hopf’s lemma
implies uν < 0. Thus we arrived at a contradiction. This shows that maximum of
u cannot be attained on Γ. Argument for the minimum is similar.

3. Let M > 0, and let Cone ⊂ Rn+1 be the set defined by

Cone = {(x, xn+1) | x ∈ Rn, xn+1 ∈ R satisfying xn+1 > M |x| }.
Also, for b ∈ Rn, bn+1 ∈ R, we denote

Cone+ (b, bn+1) = {(x+ b, xn+1 + bn+1) | (x, xn+1) ∈ Cone }.
Let f : Rn → R1 satisfy

(10) (Cone+ (x, f(x))) ∩G = ∅ for any x ∈ Rn,

where G = {(x, f(x)) | x ∈ Rn} is the graph of f . Prove that f is Lipschitz, and
moreover that

(11) |f(x)− f(x̂)| ≤M |x− x̂| for all x, x̂ ∈ Rn.

Solution. We note that, directly from the definiitons, the condition (x, xn+1) /∈
Cone+ (b, bn+1) means that

xn+1 − bn+1 ≤M |x− b|.
Now let x, x̂ ∈ Rn. From (10), it follows that (x̂, f(x̂)) /∈ Cone + (x, f(x)),

which means
f(x̂)− f(x) ≤M |x̂− x|.

Similarly, (x, f(x)) /∈ Cone+ (x̂, f(x̂)), which means

f(x)− f(x̂) ≤M |x̂− x|.
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Combining these inequalities, we obtain (11).


