Decomposition of 3-connected Matroids

Rong Chen

Center for Discrete Mathematics
Fuzhou University

August 21, 2012
In this talk, we use matroid to represent both finite and infinite matroid.
Sources of Matroids

Matroid theory was founded in the 1935’s by Hassler Whitney, who noticed a common thread in certain ideas of dependence in algebra and graph theory.
Sources of Matroids

Matroid theory was founded in the 1935’s by Hassler Whitney, who noticed a common thread in certain ideas of dependence in algebra and graph theory.

Matroid theory also has increasing connections with graph, algebra, geometry, topology, lattice theory, combinatorial optimization, theoretical physics and many other areas.
Matroid theory was founded in the 1935’s by Hassler Whitney, who noticed a common thread in certain ideas of dependence in algebra and graph theory.

Matroid theory also has increasing connections with graph, algebra, geometry, topology, lattice theory, combinatorial optimization, theoretical physics and many other areas.

Usually, there are “three” ways doing matroid theory: the graph-theoretic way, the geometric way, and the algorithmic way.
Definition of Finite Matroids

Let E be some finite set, \mathcal{B} a set of subsets of E. Say $M = (E, \mathcal{B})$ a matroid if the following conditions are satisfied:

(B1) \mathcal{B} is non-empty.

(B2) Whenever $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$, there is an element $y \in B_2 \setminus B_1$ such that $B_1 - x + y \in \mathcal{B}$.

Rong Chen (Center for Discrete Math., Fuzhou Uni.)
Decomposition of 3-connected Matroids
Definition of Finite Matroids

Let E be some finite set, \mathcal{B} a set of subsets of E. Say $M = (E, \mathcal{B})$ a matroid if the following conditions are satisfied:

(B1) \mathcal{B} is non-empty.

(B2) Whenever $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$, there is an element $y \in B_2 \setminus B_1$ such that $B_1 - x + y \in \mathcal{B}$.

E is the ground set of M, and the members of \mathcal{B} are bases of M.
Examples

Example 1. Let \mathbb{F} be a finite matroid and $V(r, \mathbb{F})$ a r-dimensional vector space over \mathbb{F}. And let E denote the set of all elements of $V(r, \mathbb{F})$, and B the set of all bases of $V(r, \mathbb{F})$. Then $M = (E, B)$ is a matroid and every element in B is a basis of M.

Example 2. Let E denote the edge set of a finite graph G and B the set of spanning trees of G. Then $M = (E, B)$ is a matroid and every spanning tree of G is a basis of M.
Examples

Example 1. Let \mathbb{F} be a finite matroid and $V(r, \mathbb{F})$ a r-dimensional vector space over \mathbb{F}. And let E denote the set of all elements of $V(r, \mathbb{F})$, and \mathcal{B} the set of all bases of $V(r, \mathbb{F})$. Then $M = (E, \mathcal{B})$ is a matroid and every element in \mathcal{B} is a basis of M.

Example 2. Let E denote the edge set of a finite graph G and \mathcal{B} the set of spanning trees of G. Then $M = (E, \mathcal{B})$ is a matroid and every spanning tree of G is a basis of M.
Assume $X \subseteq E$. Let

$$r(X) = \max\{|I| : I \subseteq X \text{ is a subset of some basis of } M.\}$$

Then say $r(X)$ is the rank of X.

There are also many other different but equivalent ways to define finite matroids, say, from circuits, from rank, from independent sets, or from a closure operator.
Assume $X \subseteq E$. Let

$$r(X) = \max\{|I| : I \subseteq X \text{ is a subset of some basis of } M.\}$$

Then say $r(X)$ is the rank of X.

There are also many other different but equivalent ways to define finite matroids, say, from circuits, from rank, from independent sets, or from a closure operator.
The *connectivity function* λ of a finite matroid M is defined, for all subsets X of E, by

$$\lambda_M(X) = r_M(X) + r_M(E - X) - r(M).$$
The *connectivity function* \(\lambda \) of a finite matroid \(M \) is defined, for all subsets \(X \) of \(E \), by

\[
\lambda_M(X) = r_M(X) + r_M(E - X) - r(M).
\]

A partition \((X, E - X)\) of \(E \) is *\(k \)-separating* if \(\lambda_M(X) \leq k - 1 \).
Connectivity of Finite Matroids

The *connectivity function* λ of a finite matroid M is defined, for all subsets X of E, by

$$\lambda_M(X) = r_M(X) + r_M(E - X) - r(M).$$

A partition $(X, E - X)$ of E is *k-separating* if $\lambda_M(X) \leq k - 1$.

And if in addition $|X|, |Y| \geq k$, then (X, Y) is a *k-separation*.
Connectivity of Finite Matroids

The *connectivity function* λ of a finite matroid M is defined, for all subsets X of E, by

$$\lambda_M(X) = r_M(X) + r_M(E - X) - r(M).$$

A partition $(X, E - X)$ of E is *k-separating* if $\lambda_M(X) \leq k - 1$.

And if in addition $|X|, |Y| \geq k$, then (X, Y) is a *k-separation*.

M is *n-connected* if it has no ℓ-separation for any $\ell < n$.
It is well-known that 1-separations of a finite matroid M induce a decomposition of M into 2-connected components.
It is well-known that 1-separations of a finite matroid M induce a decomposition of M into 2-connected components.

For a 2-connected finite matroid M, Cunningham and Edmonds (in *Canada. J. Math* 32: 734-765, 1980) showed that M can be decomposed into a set of 3-connected finite matroids via a canonical operation known as 2-sum; more concretely, there is a labeled tree that gives a precise description of the way that M is built from the 3-connected pieces.
It is well-known that 1-separations of a finite matroid M induce a decomposition of M into 2-connected components.

For a 2-connected finite matroid M, Cunningham and Edmonds (in *Canada. J. Math* 32: 734-765, 1980) showed that M can be decomposed into a set of 3-connected finite matroids via a canonical operation known as 2-sum; more concretely, there is a labeled tree that gives a precise description of the way that M is built from the 3-connected pieces.

The counterexamples given to show Kahn’s Conjecture is false for all fields with at least 7 elements (in *JCTB* 67: 325-343, 1996) have many mutually interacting 3-separations. Thus, it is not possible to decompose a 3-connected matroid across 3-separations in a similar way.
Recently, for any 3-connected finite matroid M with at least 9 elements, Oxley, Semple and Whittle (in *JCTB* 92: 257-293, 2004) described a tree decomposition that displays all non-trivial 3-separations of M up to a certain natural equivalence.

We prove that (in *JCTB* 102: 647-670, 2012) via an operation "reducing", every finite 3-connected representable matroid M with at least 9 elements can be decomposed into a set of sequentially 4-connected matroids and three special matroids; more concretely, there is a labeled tree that gives a precise description of the way that M is built from its pieces.

Sequentially 4-connectivity is weaker than 4-connectivity with many good properties 4-connectivity does not have, such as satisfying duality and a corresponding Tutte’s Wheels and Whirls Theorem, which guarantees the feasibility of implement of mathematics induction for sequentially 4-connected matroids.
Recently, for any 3-connected finite matroid M with at least 9 elements, Oxley, Semple and Whittle (in *JCTB* 92: 257-293, 2004) described a tree decomposition that displays all non-trivial 3-separations of M up to a certain natural equivalence.

We prove that (in *JCTB* 102: 647-670, 2012) via an operation “reducing”, every finite 3-connected representable matroid M with at least 9 elements can be decomposed into a set of sequentially 4-connected matroids and three special matroids; more concretely, there is a labeled tree that gives a precise description of the way that M is built from its pieces.
Recently, for any 3-connected finite matroid M with at least 9 elements, Oxley, Semple and Whittle (in *JCTB* 92: 257-293, 2004) described a tree decomposition that displays all non-trivial 3-separations of M up to a certain natural equivalence.

We prove that (in *JCTB* 102: 647-670, 2012) via an operation “reducing”, every finite 3-connected representable matroid M with at least 9 elements can be decomposed into a set of sequentially 4-connected matroids and three special matroids; more concretely, there is a labeled tree that gives a precise description of the way that M is built from its pieces.

Sequentially 4-connectivity is weaker than 4-connectivity with many good properties 4-connectivity does not have, such as satisfying duality and a corresponding Tutte’s Wheels and Whirls Theorem, which guarantees the feasibility of implement of mathematics induction for sequentially 4-connected matroids.
Next, I will introduce one of my recent result about decomposition result of infinite matroids.
Traditionally, infinite matroids most often defined highlighted one of the aspects of finite matroids (usually closure). Some had duality built in force, but none came with a set of axioms similar to those known from finite matroids.
Traditionally, infinite matroids most often defined highlighted one of the aspects of finite matroids (usually closure). Some had duality built in force, but none came with a set of axioms similar to those known from finite matroids.

Recently, Bruhn, Diestel, Kriesell, Pendavingh, Wollan (in arXiv: 1003.3919v2), gave axiomatic foundation for infinite matroids with duality, in terms of independent sets, bases, circuits, closure and rank.
Traditionally, infinite matroids most often defined highlighted one of the aspects of finite matroids (usually closure). Some had duality built in force, but none came with a set of axioms similar to those known from finite matroids.

Recently, Bruhn, Diestel, Kriesell, Pendavingh, Wollan (in arXiv: 1003. 3919v2), gave axiomatic foundation for infinite matroids with duality, in terms of independent sets, bases, circuits, closure and rank.

The main feature of these definitions is that even on infinite ground sets matroids have bases, circuits and minors while maintain duality at the same time.
Definition of Matroids in Terms of Bases

Let E be some (possibly infinite) set, \mathcal{B} a set of subsets of E, and let $[\mathcal{B}]$ be the set of subsets of elements of \mathcal{B}. Say $M = (E, \mathcal{B})$ a matroid if the following conditions are satisfied:

(B1) \mathcal{B} is non-empty.

(B2) Whenever $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$, there is an element $y \in B_2 \setminus B_1$ such that $B_1 - x + y \in \mathcal{B}$.

(BM) Set $\mathcal{I} := [\mathcal{B}]$. Whenever $I \subseteq X \subseteq E$ and $I \in \mathcal{I}$, the set $\{I' \in \mathcal{I} : I \subseteq I' \subseteq X\}$ has a maximal element.
Definition of Matroids in Terms of Bases

Let E be some (possibly infinite) set, \mathcal{B} a set of subsets of E, and let $[\mathcal{B}]$ be the set of subsets of elements of \mathcal{B}. Say $M = (E, \mathcal{B})$ a matroid if the following conditions are satisfied:

(B1) \mathcal{B} is non-empty.

(B2) Whenever $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$, there is an element $y \in B_2 \setminus B_1$ such that $B_1 - x + y \in \mathcal{B}$.

(BM) Set $\mathcal{I} := [\mathcal{B}]$. Whenever $I \subseteq X \subseteq E$ and $I \in \mathcal{I}$, the set \{ $I' \in \mathcal{I}$: $I \subseteq I' \subseteq X$ \} has a maximal element.

When E is finite, the definition is equivalent to the former one.
Connectivity of Matroids

Let \((X, Y)\) be a partition of \(E\), \(B_X\) and \(B_Y\) two arbitrary bases of \(M|X\) and \(M|Y\), respectively. Then there is a set \(F \subseteq B_X \cup B_Y\) such that \((B_X \cup B_Y) \setminus F\) is a basis of \(M\). Set \(k = |F|\). (It is known that the number \(k\) does not depend on the choice of \(B_X\) and \(B_Y\).) Say \((X, Y)\) is \((k + 1)\)-separating. And if in addition \(|X|, |Y| \geq k + 1\), then \((X, Y)\) is a \((k + 1)\)-separation.

The matroid \(M\) is \(n\)-connected if it has no \(\ell\)-separation for any \(\ell < n\). For \(M\) finite, these definitions are equivalent to the former one.
Connectivity of Matroids

Let \((X, Y)\) be a partition of \(E\), \(B_X\) and \(B_Y\) two arbitrary bases of \(M|X\) and \(M|Y\), respectively. Then there is a set \(F \subseteq B_X \cup B_Y\) such that \((B_X \cup B_Y) \setminus F\) is a basis of \(M\). Set \(k = |F|\). (It is known that the number \(k\) does not depend on the choice of \(B_X\) and \(B_Y\).) Say \((X, Y)\) is \((k + 1)\)-separating. And if in addition \(|X|, |Y| \geq k + 1\), then \((X, Y)\) is a \((k + 1)\)-separation.

The matroid \(M\) is \(n\)-connected if it has no \(\ell\)-separation for any \(\ell < n\).
Connectivity of Matroids

Let \((X, Y)\) be a partition of \(E\), \(B_X\) and \(B_Y\) two arbitrary bases of \(M|X\) and \(M|Y\), respectively. Then there is a set \(F \subseteq B_X \cup B_Y\) such that \((B_X \cup B_Y)\setminus F\) is a basis of \(M\). Set \(k = |F|\). (It is known that the number \(k\) does not depend on the choice of \(B_X\) and \(B_Y\).) Say \((X, Y)\) is \((k + 1)\)-separating. And if in addition \(|X|, |Y| \geq k + 1\), then \((X, Y)\) is a \((k + 1)\)-separation.

The matroid \(M\) is \(n\)-connected if it has no \(\ell\)-separation for any \(\ell < n\).

For \(M\) finite, these definitions are equivalent to the former one.
For any connected matroid M, Aigner-Horev, Diestel, Postel (in arXiv: 1201.1135v1) proved that there is a unique tree T such that the nodes of T corresponding to minors of M that are either 3-connected or circuits or cocircuits.

Recently, we prove Theorem (in preparation) For any 3-connected matroid M with at least 9 elements, there is a tree decomposition of M, which displays all non-trivial 3-separation of M up to a certain natural equivalence.

For 3-connected finite matroids with at least 9 elements, Oxley, Semple and Whittle in the paper mentioned above gave a similar tree decomposition.

Rong Chen (Center for Discrete Math., Fuzhou Uni.)
Decomposition of 3-connected Matroids
For any connected matroid M, Aigner-Horev, Diestel, Postel (in arXiv: 1201.1135v1) proved that there is a unique tree T such that the nodes of T corresponding to minors of M that are either 3-connected or circuits or cocircuits.

Recently, we prove

Theorem (in preparation)

For any 3-connected matroid M with at least 9 elements, there is a tree decomposition of M, which displays all non-trivial 3-separation of M up to a certain natural equivalence.
For any connected matroid M, Aigner-Horev, Diestel, Postel (in arXiv: 1201.1135v1) proved that there is a unique tree T such that the nodes of T corresponding to minors of M that are either 3-connected or circuits or cocircuits.

Recently, we prove

Theorem (in preparation)

For any 3-connected matroid M with at least 9 elements, there is a tree decomposition of M, which displays all non-trivial 3-separation of M up to a certain natural equivalence.

For 3-connected finite matroids with at least 9 elements, Oxley, Semple and Whittle in the paper mentioned above gave a similar tree decomposition.
We prove the result from a different angle not similar to theirs although many definitions related to flowers are similar to theirs.
We prove the result from a different angle not similar to theirs although many definitions related to flowers are similar to theirs.

In the proof, first we find a special set G and define a labeled graph T_G corresponding to it; and then we show the labeled graph is a tree-decomposition with the satisfied properties.
We prove the result from a different angle not similar to theirs although many definitions related to flowers are similar to theirs.

In the proof, first we find a special set G and define a labeled graph T_G corresponding to it; and then we show the labeled graph is a tree-decomposition with the satisfied properties.

The paper is about 40 pages, a little longer than theirs.
Thank You!