Some Counting Problems in Archimedean Tilings

Liping Yuan
College of Mathematics and Information Science
Hebei Normal University
Shijiazhuang, China

August 19, 2012
1 Introduction

2 Main Results

3 What’s next?
1 Introduction

2 Main Results

3 What's next?
Let \(\vec{u} \) and \(\vec{v} \) be two linearly independent real vectors in \(\mathbb{R}^2 \). The set of all points \(P = m\vec{u} + n\vec{v} \) with integral \(m, n \) is called a *general lattice* \(\Lambda \) with basis \(\vec{u} \) and \(\vec{v} \).
A point of the lattice Λ is called a lattice point.
Specially, if \vec{u} and \vec{v} are mutually orthogonal unit vectors, the lattice Λ is called an *integer lattice* \mathbb{Z}^2.
The number of lattice points in a circle

Let $D(n)$ be a circle centered at a lattice point and with radius $r = n$. In 1837, C.F.Gauss published a result discussing the number $N(n)$ of lattice points lying inside or on the boundary of $D(n)$, where $n \in \mathbb{Z}^+$. Furthermore, C.F.Gauss showed that the ratio $N(n)/n^2$ tends to π as n tends to ∞.

Liping Yuan

Some Counting Problems in Archimedean Tilings
Minkowski’s Theorem

In 1896, Hermann Minkowski (1864-1909) proved Minkowski’s theorem, and developed a new research area, the Geometry of Numbers.
Minkowski’s Theorem

Any convex set of area greater than or equal to 4 which is symmetric about a lattice point, contains at least one other lattice point in its interior or on its boundary.
Blichfeldt’s Theorem

In 1914, Hans Frederik Blichfeldt published a theorem from which a great portion of the geometry of numbers follows. This theorem mainly discusses the relationship between the area of any bounded set in \mathbb{R}^2 and the number of lattice points.
Blichfeldt’s Theorem

Any bounded set D of area s in \mathbb{R}^2 can be translated on the integer lattice Λ so as to cover at least $[s]+1$ lattice points.
Let P be a lattice polygon of \mathbb{R}^2, i.e., the vertices of P are points of the integer lattice \mathbb{Z}^2. Let $I(P)$ be the number of lattice points in the interior of P and $B(P)$ the number of lattice points of its boundary. In 1899, George Alexander Pick (1859 - 1942) gave the Pick’s Theorem as follow:

$$\text{Area}(P) = I(P) + B(P)/2 - 1.$$
A plane tiling \mathcal{T} is a countable family of closed sets, that is, $\mathcal{T} = \{T_1, T_2, \cdots\}$, which covers the plane without gaps or overlaps. T_1, T_2, \cdots are called the tiles of \mathcal{T}.
Introduction

A tiling is called monohedral if every tile in the tiling \mathcal{T} is congruent (directly or reflectively) to one fixed set T.

An edge-to-edge tiling means that an edge of \mathcal{T} is exactly the full common side of two adjacent tiles.

A vertex around which, in cyclic order, we have a regular n_1-gon, n_2-gon, etc., is said to be of type $n_1.n_2.\cdots$.
Let an Archimedean tiling be an edge-to-edge tiling by regular polygons with all vertices being of the same type. An Archimedean tiling with vertex type $n_1.n_2.\cdots.n_k$ is called $(n_1.n_2.\cdots.n_k)$-tiling.

There are 11 Archimedean tilings.
Introduction

Some Counting Problems in Archimedean Tilings
Introduction

Pick-type Theorem in (6,6,6)-tiling

1 Introduction

2 Main Results

3 What’s next?

Liping Yuan

Some Counting Problems in Archimedean Tilings
Counting Problems in the Archimedean (6.6.6)-tiling

Let H be the vertex set of (6.6.6)-tiling. A point of H is called an H-point. In fact, the set H can be regarded as a disjoint union of two sets H^+ and H^-.
The number of H-points in a circle

- $D(n)$: a circle of radius $r = n$ ($n \in \mathbb{Z}^+$) centered at an H-point.

- $N_{D(n)}(H)$: the number of H-points lying inside or on the boundary of $D(n)$.

We present an algorithm to calculate the number $N_{D(n)}(H)$ and obtain the following table.
The number of H-points in a circle

<table>
<thead>
<tr>
<th>$r = n$</th>
<th>$\mathcal{N}_D(n)(H)$</th>
<th>$\frac{\mathcal{N}_D(n)(H)}{n^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>244</td>
<td>2.44</td>
</tr>
<tr>
<td>20</td>
<td>979</td>
<td>2.4475</td>
</tr>
<tr>
<td>50</td>
<td>6049</td>
<td>2.4196</td>
</tr>
<tr>
<td>100</td>
<td>24202</td>
<td>2.4202</td>
</tr>
<tr>
<td>200</td>
<td>96715</td>
<td>2.417875</td>
</tr>
<tr>
<td>500</td>
<td>644597</td>
<td>2.418388</td>
</tr>
<tr>
<td>1000</td>
<td>2418358</td>
<td>2.418358</td>
</tr>
<tr>
<td>2000</td>
<td>9673627</td>
<td>2.41840675</td>
</tr>
<tr>
<td>5000</td>
<td>60460099</td>
<td>2.41840396</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$r = n$</th>
<th>$\mathcal{N}_D(n)(H)$</th>
<th>$\frac{\mathcal{N}_D(n)(H)}{n^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>241839646</td>
<td>2.41839646</td>
</tr>
<tr>
<td>20000</td>
<td>967359343</td>
<td>2.4183983575</td>
</tr>
<tr>
<td>50000</td>
<td>6045997801</td>
<td>2.4183991204</td>
</tr>
<tr>
<td>100000</td>
<td>24183991576</td>
<td>2.4183991576</td>
</tr>
<tr>
<td>200000</td>
<td>96735966373</td>
<td>2.418399159325</td>
</tr>
<tr>
<td>500000</td>
<td>604599788545</td>
<td>2.41839915418</td>
</tr>
<tr>
<td>1000000</td>
<td>2418399151576</td>
<td>2.418399151576</td>
</tr>
<tr>
<td>2000000</td>
<td>9673596608725</td>
<td>2.41839915218125</td>
</tr>
<tr>
<td>5000000</td>
<td>60459978806305</td>
<td>2.4183991522522</td>
</tr>
</tbody>
</table>
The number of H-points in a circle

Theorem. Let $D(n)$ be a circle centered at the origin O and the radius $r = n$, where $n \in \mathbb{Z}^+$. Then

$$\lim_{n \to \infty} \frac{\mathcal{N}_{D(n)}(H)}{n^2} = \frac{4\sqrt{3}\pi}{9}.$$
The number of H-points in a circle
A Minkowski-type Theorem for H-points

Theorem. Let D be a convex set which is symmetric with respect to an H-point. If the area of D is greater than or equal to $\frac{4}{3}$, then D contains at least one other H-point in its interior or on its boundary.
A Blichfeldt-type Theorem for H-points

Theorem. [Cao, Yuan, American Mathematical Monthly, 2011] Let D be a bounded set in \mathbb{R}^2 with area s. If $0 \leq \{s\} < \frac{1}{3}$, then D can be translated so as to cover at least $2\lfloor s \rfloor + 1$ H-points. If $\frac{1}{3} \leq \{s\} < 1$, then D can be translated so as to cover at least $2\lfloor s \rfloor + 2$ H-points.
The number of H-points in the interior of a convex H-polygon

Definition. Denoted by H-polygon P a simple planar polygon whose vertices are all H-points. Let $v_H(P)$, $i_H(P)$ and $b_H(P)$ be the number of H-points covered by P, lying in the interior of P and located on the boundary of P.

Definition. Let K be a convex H-polygon, denoted by $G(v) = \min\{i_H(K) : v_H(K) = v\}$.
The number of H-points in the interior of a convex H-polygon

Clearly, $G(3)=G(4)=G(5)=G(6)=0$.

The number of H-points in the interior of a convex H-polygon

Theorem. $G(8) = 2$.

Theorem. $G(9) = 4$.

\[\text{Diagram of a } H\text{-polygon with } \text{H-points marked} \]
The number of H-points in the interior of a convex H-polygon

Theorem. $G(10) = 6$.

Theorem. $G(v) \geq \left[\frac{v^3}{16\pi^2} - \frac{v}{4} + \frac{1}{2} \right] - 1$, where v is the number of vertices of the convex H-polygon.
Let C be the vertex set of (3.6.3.6)-tiling and let C-point be a point of C. For convenience, we classify the set C into two sets C_1 and C_2. A point in C_1 is called C_1-point, and a point in C_2 is called C_2-point.
The number of C-points in a circle

- $C(\sqrt{n})$: a circle of radius $r = \sqrt{n}$ ($n \in \mathbb{Z}^+$) centered at a C-point.
- $N(n)$: the number of C-points lying inside or on the boundary of $C(\sqrt{n})$.

Liping Yuan
Some Counting Problems in Archimedean Tilings
The number of C-points in a circle

<table>
<thead>
<tr>
<th>$r = \sqrt{n}$</th>
<th>$N(n)$</th>
<th>$\frac{N(n)}{n}$</th>
<th>$r = \sqrt{n}$</th>
<th>$N(n)$</th>
<th>$\frac{N(n)}{n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>275</td>
<td>2.75</td>
<td>10000</td>
<td>272069641</td>
<td>2.72069641</td>
</tr>
<tr>
<td>20</td>
<td>1095</td>
<td>2.7375</td>
<td>20000</td>
<td>108827905</td>
<td>2.7206977375</td>
</tr>
<tr>
<td>50</td>
<td>6795</td>
<td>2.718</td>
<td>50000</td>
<td>6801747319</td>
<td>2.720698609375</td>
</tr>
<tr>
<td>100</td>
<td>27217</td>
<td>2.7217</td>
<td>100000</td>
<td>27206990135</td>
<td>2.7206990135</td>
</tr>
<tr>
<td>200</td>
<td>108799</td>
<td>2.719975</td>
<td>200000</td>
<td>108827961827</td>
<td>2.720699045672</td>
</tr>
<tr>
<td>500</td>
<td>680161</td>
<td>2.720644</td>
<td>500000</td>
<td>680174760587</td>
<td>2.720699042348</td>
</tr>
<tr>
<td>1000</td>
<td>2720673</td>
<td>2.7206015625</td>
<td>1000000</td>
<td>2720699045207</td>
<td>2.720699045207</td>
</tr>
<tr>
<td>2000</td>
<td>10882787</td>
<td>2.72069675</td>
<td>2000000</td>
<td>10882796182357</td>
<td>2.72069904558925</td>
</tr>
<tr>
<td>5000</td>
<td>68017459</td>
<td>2.7206983</td>
<td>5000000</td>
<td>68017476154267</td>
<td>2.72069904617068</td>
</tr>
</tbody>
</table>
The number of C-points in a circle

Theorem. Let $D(n)$ be a circle of radius $r = \sqrt{n}$ centered at the origin O, where $n \in \mathbb{Z}^+$. Then

$$\lim_{n \to \infty} \frac{N(n)}{n} = \frac{\sqrt{3}}{2}\pi.$$
The number of C-points in a circle
A Minkowski-type Theorem for C'-points

Theorem. Let D be an M-set centered at the origin O, and $A(D)$ denotes the area of the M-set D. If $A(D) \geq 4\sqrt{3}$, then D contains C'-points other than O either in its interior or on its boundary.
Theorem. Let D be a bounded set in \mathbb{R}^2 with area S. If $0 \leq \left\{ \frac{S}{2\sqrt{3}} \right\} < \frac{1}{4}$, then D can be translated so as to cover at least $3\left\lfloor \frac{S}{2\sqrt{3}} \right\rfloor + 1$ C-points; If $\frac{1}{4} \leq \left\{ \frac{S}{2\sqrt{3}} \right\} < \frac{1}{2}$, then D can be translated so as to cover at least $3\left\lfloor \frac{S}{2\sqrt{3}} \right\rfloor + 2$ C-points; If $\frac{1}{2} \leq \left\{ \frac{S}{2\sqrt{3}} \right\} < 1$, then D can be translated so as to cover at least $3\left\lfloor \frac{S}{2\sqrt{3}} \right\rfloor + 3$ C-points.
Counting Problems in the non-Archimedean
\((\mathcal{3}^2.\mathcal{6}^2; \mathcal{3}.6.3.6)-\text{tiling}\)

Let \(F \) be the vertex set of \((\mathcal{3}^2.\mathcal{6}^2; \mathcal{3}.6.3.6)-\text{tiling} \) which is not an Archimedean tiling. The set \(F \) can be classified into three sets \(F_0, F_1 \) and \(F_2 \). A point in the set \(F \) and \(F_i (i = 0, 1, 2) \) is called an \(F\text{-point} \) and \(F_i\text{-point} \) respectively.
The number of F-points in a circle

- $C(\sqrt{n})$: a circle with its center at an F-point and the radius $r = \sqrt{n}$, where $n \in \mathbb{Z}^+$.
- $N_F(n)$: the number of F-points which lie inside or on the boundary of $C(\sqrt{n})$.

Liping Yuan

Some Counting Problems in Archimedean Tilings
The number of F-points in a circle

<table>
<thead>
<tr>
<th>$r = \sqrt{n}$</th>
<th>$N_F(n)$</th>
<th>$\frac{N_F(n)}{n}$</th>
<th>$r = \sqrt{n}$</th>
<th>$N_F(n)$</th>
<th>$\frac{N_F(n)}{n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>273</td>
<td>2.73</td>
<td>100000</td>
<td>272069371</td>
<td>2.72069371</td>
</tr>
<tr>
<td>20</td>
<td>1095</td>
<td>2.7375</td>
<td>200000</td>
<td>1088279263</td>
<td>2.7206981575</td>
</tr>
<tr>
<td>50</td>
<td>6795</td>
<td>2.718</td>
<td>500000</td>
<td>6801747155</td>
<td>2.720698862</td>
</tr>
<tr>
<td>100</td>
<td>27227</td>
<td>2.7227</td>
<td>1000000</td>
<td>27206990299</td>
<td>2.7206990299</td>
</tr>
<tr>
<td>200</td>
<td>108771</td>
<td>2.719275</td>
<td>2000000</td>
<td>108827961733</td>
<td>2.720699043325</td>
</tr>
<tr>
<td>500</td>
<td>680165</td>
<td>2.72066</td>
<td>5000000</td>
<td>680174760583</td>
<td>2.720699042332</td>
</tr>
<tr>
<td>1000</td>
<td>2720627</td>
<td>2.720627</td>
<td>10000000</td>
<td>2720699044305</td>
<td>2.720699044305</td>
</tr>
<tr>
<td>2000</td>
<td>10882789</td>
<td>2.72069725</td>
<td>20000000</td>
<td>10882796182097</td>
<td>2.72069904552425</td>
</tr>
<tr>
<td>5000</td>
<td>68017453</td>
<td>2.72069812</td>
<td>50000000</td>
<td>68017476151871</td>
<td>2.72069904607484</td>
</tr>
</tbody>
</table>

Table 1: The Number, $N_F(n)$, of F-Points for $C(\sqrt{n})$ (centered at an F_0-point)
The number of F-points in a circle

Table 2: The Number, $N_{F}(n)$, of F-Points for $C(\sqrt{n})$ (centered at an F_1-point)
The number of F-points in a circle

Theorem. Let $C(\sqrt{n})$ be a circle with its center at an F-point and the radius $r = \sqrt{n}$ where $n \in \mathbb{Z}^+$, and $N_F(n)$ be the number of F-points contained inside or on the boundary of $C(\sqrt{n})$. Then

$$\lim_{n \to \infty} \frac{N_F(n)}{n} = \frac{\sqrt{3}\pi}{2}.$$
The number of F-points in a circle
Theorem. Let D be an M-set with area S_D, and O_M denote the center of symmetry of D.

1. If O_M is an F_1-point or F_2-point and $S_D \geq 2\sqrt{3}$, then D contains at least one F-point in its interior or on its boundary other than O_M.

2. If O_M is an F_0-point and $S_D \geq 4\sqrt{3}$, then D contains at least two F-points in its interior or on its boundary other than O_M.
A Minkowski-type Theorem for F-points

The best

It is not difficult to see that the result is best.
Theorem. Let D be a bounded set in \mathbb{R}^2 with area S. If $0 \leq \left\{ \frac{S}{2\sqrt{3}} \right\} < \frac{1}{4}$, then D can be translated so as to cover at least $3\left\lfloor \frac{S}{2\sqrt{3}} \right\rfloor + 1$ F-points; If $\frac{1}{4} \leq \left\{ \frac{S}{2\sqrt{3}} \right\} < \frac{1}{2}$, then D can be translated so as to cover at least $3\left\lfloor \frac{S}{2\sqrt{3}} \right\rfloor + 2$ F-points; If $\frac{1}{2} \leq \left\{ \frac{S}{2\sqrt{3}} \right\} < 1$, then D can be translated so as to cover at least $3\left\lfloor \frac{S}{2\sqrt{3}} \right\rfloor + 3$ F-points.
A Blichfeldt-type Theorem for F-points

The best

It is worth to indicate that this theorem is the **best** possible.
1 Introduction

2 Main Results

3 What’s next?
The Hamiltonian properties of the sets of vertices of Archimedean tilings

Thank you very much for your attention!