On colorings of mixed hypergraphs

Kaishun Wang
Beijing Normal University
(with K. Diao and P. Zhao)

August 21, 2012
A mixed hypergraph on a X: triple

$$\mathcal{H} = (X, \mathcal{C}, \mathcal{D}),$$

where \mathcal{C} and \mathcal{D} are families of subsets of X.

- \mathcal{C}-edges, \mathcal{D}-edges.
- A set $B \in \mathcal{C} \cap \mathcal{D}$ is called a bi-edge.
- \mathcal{H} is a bi-hypergraph if $\mathcal{C} = \mathcal{D}$, denoted by (X, \mathcal{B}).
- \mathcal{H} is r-uniform if any edge has r vertices.
A k-coloring of \mathcal{H} is a surjective from X into a set of k colors so that each \mathcal{C}-edge has two vertices with a Common color and each \mathcal{D}-edge has two vertices with Distinct colors. The maximum (minimum) number of colors in any coloring of \mathcal{H} is the upper chromatic number $\overline{\chi}$ (lower chromatic number χ.)
The set of all the values k such that \mathcal{H} has a k-coloring is called the **feasible set** of \mathcal{H}, denoted by $\Phi(\mathcal{H})$.
For each k, let r_k denote the number of partitions of the vertex set into k color classes. The vector

$$R(\mathcal{H}) = (r_1, r_2, \ldots, r_{\chi})$$

is called the **chromatic spectrum** of \mathcal{H}.
Theorem 1 (Jiang, Mubayi, Tuza, Voloshin, West, 2002)
For any finite set S of integers greater than 1, there exists a mixed hypergraph \mathcal{H} such that $\Phi(\mathcal{H}) = S$,

Theorem 2 (Král, 2004)
Let $S = \{n_1, \ldots, n_t\}$ be a finite set of integers greater than 1. For any positive integer r_{n_i}, there exists a mixed hypergraph with chromatic spectrum $(r_{n_1}, \ldots, r_{n_t})$.
Theorem 3 (Bujtás and Tuza, 2008)
Let \(r \geq 3 \), \(S \) be a set of positive integers. Then there exists a \(r \)-uniform mixed hypergraph with feasible set \(S \) if and only if

- \(\min(S) \geq r \), or
- \(2 \leq \min(S) \leq r - 1 \) and \(S \) contains all integers between \(\min(S) \) and \(r - 1 \), or
- \(\min(S) = 1 \) and \(S = \{1, \ldots, \bar{x}\} \) for some natural number \(\bar{x} \geq r - 1 \).
Problems

1. (Bujtás, Tuza, 2008) Determine the chromatic spectrum of r-uniform bi-hypergraphs.

2. (Jiang et al 2002) Determine the minimum number of vertices in mixed hypergraphs with given chromatic spectrum.

3. (Bujtás, Tuza, 2008) Determine the minimum number of vertices in r-uniform bi-hypergraphs with given feasible set.

4. (Tuza, Voloshin 2008) Determine the minimum numbers of (C-, D-, bi-) edges in a mixed (bi-) hypergraph with given feasible set S.

Construction:
For any integers $s \geq 2$ and $n_1 \geq \cdots \geq n_s \geq 3$, let
$$X_{n_1,\ldots,n_s} = \{(x_1, \ldots, x_s) | x_j \in [n_j], j \in [s]\}$$
$$\mathcal{B}_{n_1,\ldots,n_s} = \left\{ \left\{(x_1, \ldots, x_s), (y_1, \ldots, y_s), (z_1, \ldots, z_s) \right\} | x_j, y_j, z_j \in [n_j], |\{x_j, y_j, z_j\}| = 2, \forall j \in [s] \right\}.$$
Then $(X_{n_1,\ldots,n_s}, \mathcal{B}_{n_1,\ldots,n_s})$ is a 3-uniform bi-hypergraph, denoted by $\mathcal{H}_{n_1,\ldots,n_s}$.
3-uniform bi-hypergraph

Theorem 4 (Diao, Zhao, W, 2011, DM)
Let $S = \{n_1, n_2, \ldots, n_t\}$ be a set of positive integers $n_1 > \cdots > n_t \geq 3$ and $t \geq 2$. Then

$$H(n_1, \ldots, n_1, \ldots, n_t, \ldots, n_t)$$

is a 3-uniform bi-hypergraph with the feasible set S and the chromatic spectrum $(r_{n_1}, \ldots, r_{n_t})$.
A mixed hypergraph \mathcal{H} is a one-realization of S if it is a realization of S and all the entries of the chromatic spectrum of \mathcal{H} are either 0 or 1. Next we shall introduce the development on Problems 2,3,4 for one-realization.
Theorem 5 (Král, 2004, EJC)
Let S be a set of positive integers at least 2. If $\mathcal{H} = (X, C, D)$ is a one-realization of S. Then

$$|X| \leq |S| + 2 \max S - \min S.$$
Theorem 6 (Diao, Zhao, W, 2012, EJC)
For integers $s \geq 2$ and $n_1 > n_2 > \cdots > n_s \geq 2$, let $\delta(S)$ denote the number of vertices of the smallest one-realization of $S = \{n_1, n_2, \ldots, n_s\}$. Then

$$\delta(S) = \begin{cases} 2n_1 - n_s, & \text{if } n_1 > n_2 + 1, \\ 2n_1 - n_s - 1, & \text{if } n_1 = n_2 + 1. \end{cases}$$
Theorem 7 (Diao, Zhao, W, 2012, DM)
For integers $s \geq 2$ and $n_1 > n_2 > \cdots > n_s \geq 2$, let $\delta_3(S)$ be the minimum number of vertices of 3-uniform bi-hypergraphs which are one-realizations of $S = \{n_1, n_2, \ldots, n_s\}$. Then

$$\delta_3(S) = \begin{cases}
6, & \text{if } n_1 = 3, n_2 = 2, \\
2n_1, & \text{if } n_1 > n_2 + 1, \\
2n_1 - 1, & \text{otherwise}.
\end{cases}$$
Theorem 8 (Diao, Zhao, W, 2012)
For integers $s \geq 2$ and $n_1 > n_2 > \cdots > n_s \geq 2$, let $\delta_D(S)$ denote the minimum number of D-edges of one-realizations of $S = \{n_1, n_2, \ldots, n_s\}$. Then

$$\delta_D(S) = \begin{cases}
\frac{n_1(n_1-1)}{2}, & \text{if } n_1 - 1 \notin S, \\
\frac{n_1(n_1-1)}{2} - 1, & \text{if } n_1 - 1 \in S.
\end{cases}$$
Theorem 9 (Diao, Zhao, W, 2012)
For integers $s \geq 2$ and $n_1 > n_2 > \cdots > n_s \geq 2$, let $\delta_C(S)$ be the minimum number of C-edges of one-realizations of $S = \{n_1, n_2, \ldots, n_s\}$. Then

$$\delta_C(S) = \begin{cases}
2n_1 - 2n_s, & \text{if } n_1 - 1, n_s + 1 \notin S, \\
2n_1 - 2n_s - 2, & \text{if } n_1 - 1, n_s + 1 \in S, \\
2n_1 - 2n_s - 1, & \text{otherwise.}
\end{cases}$$

Thank you for listening!