Numerical Integration over unit sphere–by using spherical t-designs

Congpei An

1. Institute of Computational Sciences, Department of Mathematics, Jinan University

Spherical Design and Numerical Analysis 2015, SJTU

2015 年 4 月 23 日
Outline

1. Well conditioned spherical designs
2. Numerical verification methods
3. Numerical results of verification methods
4. Numerical integration over unit sphere
5. Performance of Numerical Integrations
Numerical Integration over unit sphere–by using spherical t-designs

Notations

- $X_N = \{x_1, \ldots, x_N\} \subset S^2 = \{x, y, z \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$
- $\mathbb{P}_t = \{\text{spherical polynomials of degree } \leq t\}$
 $= \{\text{polynomials in } x, y, z \text{ of degree } \leq t \text{ restricted to } S^2\}$
- $N = \text{Number of points}$
- $t = \text{Degree of polynomials}$
Spherical coordinates

\[x_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad x_2 = \begin{bmatrix} \sin(\theta_2) \\ 0 \\ \cos(\theta_2) \end{bmatrix}, \quad x_i = \begin{bmatrix} \sin(\theta_i) \cos(\phi_i) \\ \sin(\theta_i) \sin(\phi_i) \\ \cos(\theta_i) \end{bmatrix}, \quad i = 3, \ldots, N \]
Part I

Background on spherical $t-$designs
Definition of Spherical t–design

Definition (Spherical t–design)

The set $X_N = \{x_1, \ldots, x_N\} \subset \mathbb{S}^2$ is a spherical t-design if

$$
\frac{1}{N} \sum_{j=1}^{N} p(x_j) = \frac{1}{4\pi} \int_{\mathbb{S}^2} p(x) d\omega(x) \quad \forall p \in \mathbb{P}_t,
$$

where $d\omega(x)$ denotes surface measure on \mathbb{S}^2.

The definition of spherical t–design was given by Delsarte, Goethals, Seidel in 1977 [10].
Numerical Integration over unit sphere—by using spherical t-designs

—Background on spherical t—designs

Real Spherical harmonics

Real Spherical harmonics[14]

$Y_{\ell k} : k = 1, \ldots, 2\ell + 1, \ell = 0, 1, \ldots, t$

- Basis
 \[\mathbb{P}_t = \text{Span}\{Y_{\ell k} : k = 1, \ldots, 2\ell + 1, \ell = 0, 1, \ldots, t\} \]

- Orthonormality with respect to L_2 inner product
 \[(p, q)_{L_2} = \int_{S^2} p(x)q(x)d\omega(x), \]

- Normalization
 \[Y_{0,1} = \frac{1}{\sqrt{4\pi}} \]

- $\text{dim} \mathbb{P}_t = (t + 1)^2$

- Addition Theorem
 \[\sum_{k=1}^{2\ell+1} Y_{\ell,k}(x)Y_{\ell,k}(y) = \frac{2\ell+1}{4\pi} P_\ell (x \cdot y), \; x, y \in S^2 \]
Spherical harmonic basis matrix

For $t \geq 1$, and $N \geq \dim(\mathbb{P}_t) = (t + 1)^2$, let Y_t^0 be the $((t + 1)^2 - 1)$ by N matrix defined by

\[
Y_t^0(\mathcal{X}_N) := [Y_{\ell,k}(x_j)], \quad k = 1, \ldots, 2\ell + 1, \quad \ell = 1, \ldots, t; \quad j = 1, \ldots, N, \quad (3)
\]

\[
Y_t(\mathcal{X}_N) := \begin{bmatrix}
\frac{1}{\sqrt{4\pi}} e^T \\
Y_t^0(\mathcal{X}_N)
\end{bmatrix} \in \mathbb{R}^{(t+1)^2 \times N}, \quad (4)
\]

where $e = [1, \ldots, 1]^T \in \mathbb{R}^N$.

\[
G_t(\mathcal{X}_N) := Y_t(\mathcal{X}_N)^T Y_t(\mathcal{X}_N) \in \mathbb{R}^{N \times N},
\]

\[
H_t(\mathcal{X}_N) := Y_t(\mathcal{X}_N) Y_t(\mathcal{X}_N)^T \in \mathbb{R}^{(t+1)^2 \times (t+1)^2}.
\]
Nonlinear system $C_t(\mathcal{X}_N) = 0$

Let $N \geq (t + 1)^2$, define $C_t : (\mathbb{S}^d)^N \to \mathbb{R}$,

$$C_t(\mathcal{X}_N) = EG_t(\mathcal{X}_N)e$$

where the $N \times N$ Gram matrix G_t for $\mathcal{X}_N \subset \mathbb{S}^2$

$$G_t(\mathcal{X}_N) = Y_t(\mathcal{X}_N)^T Y_t(\mathcal{X}_N)$$

$$e = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^N, \ E = [1, -I] \in \mathbb{R}^{(N-1) \times N}, \ 1 = [1, \ldots, 1]^T \in \mathbb{R}^{N-1}$$
Nonlinear system \(C_t(\mathcal{X}_N) = 0 \)

Theorem (ACSW2010,[1])

Let \(N \geq (t + 1)^2 \). Suppose that \(\mathcal{X}_N = \{x_1, \ldots, x_N\} \) is a fundamental system for \(\mathbb{P}_t \). Then \(\mathcal{X}_N \) is a spherical \(t \)-design if and only if \(C_t(\mathcal{X}_N) = 0 \).

Definition (Fundamental system)

A point set \(\mathcal{X}_N = \{x_1, \ldots, x_N\} \subset S^2 \) is a fundamental system for \(\mathbb{P}_t \) if the zero polynomial is the only member of \(\mathbb{P}_t \) that vanishes at each point \(x_i, \ i = 1, \ldots, N \).

\(H_t(\mathcal{X}_N) \) is nonsingular \(\iff \) \(\mathcal{X}_N \) is a fundamental system for \(\mathbb{P}_t \).

Let \(N = (t + 1)^2 \), \(G_t(\mathcal{X}_N) \) is nonsingular \(\iff \) \(\mathcal{X}_N \) is a fundamental system for \(\mathbb{P}_t \).
Well conditioned spherical designs
Definition

Chen and Womersley [8], Chen, Frommer and Lang [9] verified that a spherical t-design exists in a neighborhood of an extremal system. This leads to the idea of *extremal spherical t-designs*, which first appeared in [8] in $N = (t + 1)^2$. We here extend the definition to $N \geq (t + 1)^2$.

Definition (Extremal spherical designs[1])

A set $\mathcal{X}_N = \{x_1, \ldots, x_N\} \subset \mathbb{S}^2$ of $N \geq (t + 1)^2$ points is a *extremal spherical t-design* if the determinant of the matrix

$\mathbf{H}_t(\mathcal{X}_N) := \mathbf{Y}_t(\mathcal{X}_N) \mathbf{Y}_t(\mathcal{X}_N)^T \in \mathbb{R}^{(t+1)^2 \times (t+1)^2}$

is maximal subject to the constraint that \mathcal{X}_N is a spherical t-design.
Optimization Problem on S^2

$$\max \log \det (H_t(X_N))$$

$X_N \subset S^2$

subject to $C_t(X_N) = 0.$

$$\downarrow$$

Well conditioned spherical t-design.

The log of the determinant is bounded above by

$$\log \det (H_L(X_N)) \leq (t + 1)^2 \log \left(\frac{N}{4\pi}\right).$$
Numerical Integration over unit sphere—by using spherical t-designs

Numerical Verification method
Notations on Interval method

1. By \mathbb{IR}^n, denote $[a] = [a, \bar{a}]$, $a, \bar{a} \in \mathbb{R}^n$, $a \leq \bar{a}$

2. $+, -, \times, /$ can be extended from \mathbb{R}^n to \mathbb{IR}^n and from $\mathbb{R}^{n \times n}$ to $\mathbb{IR}^{n \times n}$.

3. Let $\text{mid}[a] = (a + \bar{a})/2$ in componentwise.

4. $\text{diam}[a] = \bar{a} - a = 2\text{rad}[a]$,

5. $F : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a continuously differentiable function. Let $[dF] \in \mathbb{IR}^{n \times n}$ be an interval matrix containing $F'(\xi)$ for all $\xi \in [x]$,

i.e.

$$\{F'(x) : x \in [x]\} \subseteq [dF]([x]).$$

(9)

Such $[dF]$ can be obtained by an interval arithmetic evaluation of (expressions for) the Jacobian F' at the interval vector $[x]$.
Numerical Integration over unit sphere–by using spherical t-designs

Numerical Verification method

Krawczyk operator

Definition (Krawczyk operator,[11])

Given a nonsingular matrix $B_L \in \mathbb{R}^{n \times n}$, $\tilde{z} \in [z] \subseteq D$ and $[dF] \in \mathbb{I}\mathbb{R}^{n \times n}$, the Krawczyk operator [11] is defined by:

$$k_F(\tilde{z}, [z], B_L, [dF]) := \tilde{z} - B_L F(\tilde{z}) + (I_n - B_L \cdot [dF])([z] - \tilde{z}). \quad (10)$$

It is known that $k_F(\tilde{z}, [z], B_L, [dF])$ is an interval extension of the function $\psi(z) := z - B_L F(z)$ over $[z]$, that is, $z - B_L F(z) \in k_F(\tilde{z}, [z], B_L, [F])$ for all $z \in [z]$.

Verification Theorem

Theorem (Krawczyk 1969 [11], Moore 1977[12])

Let $F : D \subset \mathbb{R}^n \to \mathbb{R}^n$ be a continuously differentiable function. Choose $[z] \in \mathbb{R}^n$, $\tilde{z} \in [z] \subseteq D$, an invertible matrix $B_L \in \mathbb{R}^{n \times n}$ and $[dF] \in \mathbb{R}^{n \times n}$ such that $F'(\xi) \in [dF]$ for all $\xi \in [z]$. Assume that

$$k_F(\tilde{z}, [z], B_L, [dF]) \subseteq [z].$$

Then F has a zero z^* in $k_F(\tilde{z}, [z], B_L, [dF])$.
Deal with $C_t(\mathcal{X}_N)$

1. Represent the points x_i on the sphere by spherical coordinates with ϕ, θ. That is

$$[x_i] = [\sin([\theta])\cos([\phi]), \sin([\theta])\sin([\phi]), \cos([\theta])]^T, \ i = 1, \ldots, N.$$

2. $C_t(\mathcal{X}_N)$ is redefined as a system of nonlinear equation

$$\tilde{\mathbf{F}}(\mathbf{y}) = 0.$$

The components of \mathbf{y} are $y_{i-1} = \theta_i, \ i = 2, \ldots, N,$

$y_{N+i-3} = \varphi_i, \ i = 3, \ldots, N.$
1 Use a QR-factorization method at each step to determine the $N - 2$ least important components of y, which we label collectively by y_N, then write $y := (z, y_N)$, and define a new function $F(z) = \tilde{F}(z, y_N)$, where $F : \mathbb{R}^{N-1} \rightarrow \mathbb{R}^{N-1}$.

2 Using the Krawczyk operator with $B_L = (\text{mid}[dF])^{-1}$ we can verify the existence of a fixed point of $z - B_L F(z)$, which is a solution of $F(z) = 0$.
The estimate on determinant

Theorem (ACSW2010,[1])

Let U be a nonsingular upper triangular matrix. Assume that

$$
\|I_n - U^T[A]U\|_\infty \leq r < 1. \tag{11}
$$

Let $\beta = \left(\prod_{j=1}^{N} U_{jj}\right)^{-2}$. Then

$$
0 < \beta(1 - r)^N \leq \det(A) \leq \beta(1 + r)^N, \quad \text{for} \quad A \in [A] \quad \text{and} \quad A^T = A^a. \tag{12}
$$

Proof. We consider a symmetric matrix $A \in [A]$. Noting that $U^T A U$ preserves the symmetric structure, we denote its (real) eigenvalues by $\lambda_i(U^T A U)$. Since

$$\max_{1 \leq i \leq N} |1 - \lambda_i(U^T A U)| = \rho \left(I_n - U^T A U \right) \leq \|I_n - U^T A U\|_\infty \leq r,$$

where ρ is the spectral radius, we have

$$0 < 1 - r \leq \lambda_i(U^T A U) \leq 1 + r, \quad i = 1, \ldots, N.$$

Hence,

$$(1 - r)^N \leq \det(U^T A U) \leq (1 + r)^N.$$

Noting that $\det(U) \det(U^T) = \left(\prod_{j=1}^{N} U_{jj} \right)^2 = \beta^{-1}$, from

$$0 < (1 - r)^N \leq \beta^{-1} \det(A) \leq (1 + r)^N,$$

we obtain (12).
In practical computation for H_t

1. Choose a preconditioning matrix U s.t \((U^{-1})^T U^{-1} = \text{mid}[H_t]\)

2. Conduct all operations in machine interval arithmetic and get an interval enclosing \(\|I_n - U^T [H_t] U\|_\infty\).

\[
\|I_n - U^T [H_t] U\|_\infty = \|U^T ((U^{-1})^T U^{-1} - [H_t]) U\|_\infty \quad (13a)
\]

\[
= \|U^T (\text{mid}(H_t) - [H_t]) U\|_\infty \quad (13b)
\]

\[
\leq \|U^T\|_\infty \|\text{rad}(H_t)\|_\infty \|U\|_\infty < 1, \quad (13c)
\]

3. \[
[\log \det (H_t(\mathcal{X}_N))] \subseteq [\underline{b}, \bar{b}] \quad (14)
\]

for all $\mathcal{X}_N \in [\mathcal{X}_N]$, where

\[
\underline{b} = \log \beta + N \log (1 - r) \quad \text{and} \quad \bar{b} = \log \beta + N \log (1 + r).
\]
Numerical results of verification method

IV

Numerical results of verification method

- For $N = (t + 1)^2$, $\det(G_t(X_N)) = \det(H_t(X_N))$.
 Using an Extremal system 1 as a initial point set.
- Based on the MATLAB toolbox INTLAB 2, 3.

Numerical Integration over unit sphere—by using spherical t-designs

Numerical results of verification method

For $t = 1, \ldots, 151$ with $N = (t + 1)^2$

1. $\max \text{diam}(\mathcal{X}_N)$ represents the maximum diameter of all computed enclosures for the parametrization of the respective spherical t-design.

2. $[\log \det(G_t(\mathcal{X}_N))]$ is over 10^4 for the largest t.
Numerical Integration over unit sphere—by using spherical t-designs

Numerical results of verification method

Figure: The diameters of $[\mathcal{X}_N]$
Numerical Integration over unit sphere by using spherical t-designs

Numerical results of verification method

Figure: Middle point values and diameters of $\log \det(G_t(X_N))$
Geometry

Separation distance—well separated spherical t-design

$$\delta x_N := \min_{x_i, x_j \in x_N, i \neq j} \text{dist} (x_i, x_j) \geq \frac{\pi}{2t} \geq \frac{\pi}{2\sqrt{N}}.$$
Numerical Integration over unit sphere—by using spherical t-designs

Existence of well separated spherical t-designs

For each even $N \geq C_d t^d$, there exists of a well separated spherical t-design in the sphere S^d consisting of N points, where C_d is a constant depending only on d^4.

Geometry

Mesh norm

\[h_{\mathcal{X}_N} := \max_{y \in S^2} \min_{x_i \in \mathcal{X}_N} \text{dist}(y, x_i) \leq \frac{4.8097}{t}, \]

Figure: The mesh norm of \(\mathcal{X}_N \) with \(N = (t + 1)^2 \)
Geometry

Mesh ratio \(\rho x_N := \frac{2h x_N}{\delta x_N} \geq 1 \)

Figure: The mesh ratio of extremal spherical t-designs with \(N = (t + 1)^2 \)
Conjecture on S^2

Let C_δ, C_h be constants. A lower bound on the separation of well conditioned spherical t-designs for

$$\delta \chi_N \geq C_\delta N^{-\frac{1}{2}},$$

combined with the known upper bounds on mesh norm

$$h \chi_N \leq C_h N^{\frac{1}{2}}$$

would give the uniform bound

$$\rho \chi_N \leq \frac{2C_h}{C_\delta}$$

independent of t, N. (15)
Numerical Integration over unit sphere—by using spherical t-designs

Numerical results of verification method

An example

Figure: Well conditioned 49 design with 2500 points
A question

Can we verify Womersley’s efficient spherical t-designs successfully by using Interval analysis?
Numerical Integrations over unit sphere

1. Bivariate trapezoidal rule\(^5\), with \(q = 2.5\).

2. Well conditioned spherical \(t\)-designs

3. Equal area points\(^6\)

Numerical Integrations over unit sphere

Bivariate trapezoidal rule

For the problem of approximate

\[I(f) = \int_{S^2} f(\mathbf{x}) d\omega(\mathbf{x}) \]

in which \(f \) is several times continuously differentiable over the unit sphere \(S^2 \), we can use spherical coordinates to rewrite it as

\[I(f) = \int_{0}^{\pi} \int_{0}^{2\pi} f(\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta) \sin \theta d\phi d\theta \]
We use a transformation $\mathcal{L} : S^2 \rightarrow \tilde{S}^2$ With respect to spherical coordinates on S^2

\[
\mathcal{L} : x = (\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta) \mapsto \tilde{x} = (\cos \phi \sin^q \theta, \sin \phi \sin^q \theta, \cos \theta) = L(\theta, \phi). \tag{16}
\]

\[
\frac{\sqrt{\cos^2 \theta + \sin^2 q \theta}}{\cos \theta} = L(\theta, \phi). \tag{17}
\]

In this transformation, $q \geq 1$ is a ‘grading parameter’, The north and south poles of S^2 remain fixed, while the region around them is distorted by the mapping. If we chose a higher q, the area near two poles will have more points and equator area are more sparser.
The integral $I(f)$ becomes

$$I(f) = \int_{S^2} f(Lx) J_L(\tilde{x}) d\omega(\tilde{x})$$

with $J_L(\tilde{x})$ the jacobian of the mapping L,

$$J_L(\tilde{x}) = |D_\phi L(\theta, \phi) \times D_\theta L(\theta, \phi)| = \frac{\sin^{2q-1} \theta (q \cos^2 \theta + \sin^2 \theta)}{(\cos^2 \theta + \sin^{2q} \theta)^{\frac{3}{2}}}.$$

In spherical coordinates,

$$I(f) = \int_0^\pi \sin^{2q-1} \theta (q \cos^2 \theta + \sin^2 \theta) \int_0^{2\pi} f(\xi, \eta, \zeta) d\phi d\theta,$$

$$(\xi, \eta, \zeta) = \frac{(\cos \phi \sin^q \theta, \sin \phi \sin^q \theta, \cos \theta)}{\sqrt{\cos^2 \theta + \sin^{2q} \theta}}.$$
For $n \geq 1$, let $h = \pi / n$, and

$$
\phi_j = \theta_j = jh
$$

$$
\int_0^\pi \int_0^{2\pi} g(\sin \theta, \cos \theta, \sin \phi, \cos \phi) \, d\phi \, d\theta
\approx h^2 \sum_{k=1}^{n-1} \sum_{j=1}^{2n} g(\sin \theta_k, \cos \theta_k, \sin \phi_j, \cos \phi_j) \equiv I_n,
$$

$$
g = \frac{\sin^{2q-1} \theta (q \cos^2 \theta + \sin^2 \theta)}{(\cos^2 \theta + \sin^{2q} \theta)^{3/2}} f(\xi, \eta, \zeta).
$$

Error satisfies

$$
I - I_n = O(h^k) \quad f \in C^k(S^2)
$$
Equal-Area Points

The equal-area points aim to achieve a partition T of the sphere into a user-chosen number of N of subsets T_j each of which has the same area

$$|T_j| = \frac{4\pi}{N}, \quad j = 1, \ldots, N,$$

and

$$diam(T_j) \leq \frac{c}{\sqrt{N}},$$

Then we obtain the equal weight rule

$$I_N f := \frac{4\pi}{N} \sum_{j=1}^{N} f(x_j).$$

We have

$$|I f - I_N f| \leq \frac{4\pi \sigma c}{\sqrt{N}}.$$
Geometry of different nodes

(a) Bi. trapezoidal rule (b) Equal area points (c) spherical t-design
Numerical Integration over unit sphere—by using spherical t-designs

Numerical Integrations over unit sphere

Franke1 function

\[f_1(x, y, z) = 0.75 \exp\left(-\frac{(9x - 2)^2}{4} - \frac{(9y - 2)^2}{4} - \frac{(9z - 2)^2}{4}\right) \\
+ 0.75 \exp\left(-\frac{(9x + 1)}{49} - \frac{(9y + 1)}{10} - \frac{(9z + 1)}{10}\right) \\
+ 0.5 \exp\left(-\frac{(9x - 7)^2}{4} - \frac{(9y - 3)^2}{4} - \frac{(9z - 5)^2}{10}\right) \\
+ 0.2 \exp\left(-\frac{(9x - 4)^2}{10} - \frac{(9y - 7)^2}{10} - \frac{(9z - 5)^2}{10}\right) \]
Numerical Integrations over unit sphere

C_0 function

$$f_2(x) = \sin^2(1 + \|x\|_1)/10$$

is not continuously differentiable at points where any component of x is zero.

Figure: f_2
Nearby singular function

\[f_3(x, y, z) = \frac{1}{101 - 100z} \]

is analytic over \(\mathbb{S}^2 \), it has a pole just off the surface of the sphere at \(x = (0, 0, 1.01) \), in other word, \(f_3((0, 0, 1.01)) = \infty \).

Figure: \(f_3 \)
Numerical Integrations over unit sphere

Cap function with $R = \frac{1}{3}$, center $x_0 = (0, 0, 1)^T$.

$$f_4(x) = \begin{cases} \cos^2\left(\frac{\pi}{2} \frac{\text{dist}(x, x_0)}{R}\right) & \text{if } \text{dist}(x, x_0) < R \\ 0 & \text{if } \text{dist}(x, x_0) \geq R, \end{cases}$$

Figure: f_4
Performance of Numerical Integrations
Performance of Numerical Integrations

<table>
<thead>
<tr>
<th>function</th>
<th>exact integration values</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>6.6961822200736179523</td>
</tr>
<tr>
<td>f_2</td>
<td>0.45655373990000</td>
</tr>
<tr>
<td>f_3</td>
<td>$\pi \log 201/50^*$</td>
</tr>
<tr>
<td>f_4</td>
<td>0.103351*</td>
</tr>
</tbody>
</table>

Absolute error = $|I_f - I_nf|$ \hspace{1cm} (19)
Numerical Integration over unit sphere by using spherical \(t \)-designs

Performance of Numerical Integrations

Integration Error of \(f_1 \)

Franke1 Function

Figure: \(f_1 \)
Numerical Integration over unit sphere by using spherical t-designs

Performance of Numerical Integrations

Integration Error of f_2

$$\sin^2 \left(1 + \frac{\| (x, y, z) \|_1}{10} \right)$$

Figure: f_2
Numerical Integration over unit sphere by using spherical t-designs

Performance of Numerical Integrations

Integration Error of f_3

Figure: f_3
Numerical Integration over unit sphere by using spherical t-designs

Performance of Numerical Integrations

Figure: f_4
Final Remark

1. Well conditioned Spherical t-design is a useful tool to deal with numerical integration over the sphere.

2. Can we give a sharp error analysis for numerical integration (with different nodes) over the sphere as results on $[-1, 1]$?

3. How to set up a efficient quadrature rule when integrand with special properties? such as highly oscillatory integrals, potential integrals....
Thank you very much!
Numerical Integration over unit sphere—by using spherical t-designs

REFERENCES
Numerical Integration over unit sphere—by using spherical \(t \)-designs

REFERENCES

